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Abstract: Molecularly imprinted polymers (MIPs) have gained growing interest among researchers
worldwide, due to their key features that make these materials interesting candidates for imple-
mentation as receptors into sensor applications. In fact, MIP-based glucose sensors could overcome
the stability issues associated with the enzymes present in commercial glucose devices. Various
reports describe the successful development of glucose MIPs and their coupling to a wide variety of
transducers for creating sensors that are able to detect glucose in various matrices. In this review, we
have summarized and critically evaluated the different production methods of glucose MIPs and
the different transducer technologies used in MIP-based glucose sensors, and analyzed these from a
commercial point of view. In this way, this review sets out to highlight the most promising approaches
in MIP-based sensing in terms of both manufacturing methods and readout technologies employed.
In doing so, we aim at delineating potential future approaches and identifying potential obstacles that
the MIP-sensing field may encounter in an attempt to penetrate the commercial, analytical market.

Keywords: glucose sensing; molecularly imprinted polymers; artificial receptors; glucose monitoring;
non-enzymatic glucose sensors; clinical analysis; health diagnostics

1. Introduction
1.1. Glucose Sensing

Glucose plays a key role in numerous biological processes, such as cellular respiration
and glycosylation [1,2]. Once its metabolism is disturbed, it may lead to a variety of
diseases, such as hyperinsulinism and diabetes [3,4]. The latter is characterized by a
high concentration of glucose in the blood and other physiological fluids (hyperglycemia).
Classical diabetes diagnostic tests, therefore, aim at directly assessing glucose levels in
the blood of patients. More specifically, when the sugar concentration is higher than
7 mmol L−1 after no caloric intake for a minimum of 8h or higher than 11.1 mmol L−1 two
hours after an oral glucose tolerance test (OGTT), the individual is considered to be affected
by diabetes [5].

Diabetes is an incurable disease that causes a plethora of symptoms, including in-
creased thirst and hunger, diabetic ketoacidosis, or hyperosmolar coma [6]. However, it
does not only cause different discomforts, but is also responsible for severe long-term com-
plications, such as kidney failure, stroke, and coronary heart disease [6,7]. For these reasons,
the World Health Organization (WHO) classifies it as one of the top ten causes of death
in adults [8]. Unfortunately, this condition has become increasingly more common and
predictions estimate that by 2045, the number of sufferers will reach 693 million adults [9].
Due to the potentially life-threatening consequences of hyper- and hypoglycemia, it is
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crucial that diabetics monitor their blood glucose levels closely and adjust their diet and
insulin therapy accordingly. This has led to the emergence and spread of several low-cost
biosensor technologies, such as glucose meters, that enable patients to self-monitor their
blood glucose levels. These devices have become indispensable in diabetes management in
the current society [10,11].

Before advancements in blood glucose monitoring were introduced, analysis was car-
ried out using urine samples. Most of these tests were based on the technology developed
by Benedict in 1908, which relied on the oxidation of glucose in the urine sample by a
copper reagent [12]. In 1962, an enzyme membrane electrode system based on glucose
oxidase (GOx) was introduced that allowed for the direct electrochemical detection of
glucose in whole blood samples [13]. This breakthrough led to the development of the first
commercial glucose meter in the 1970s [14], which gradually evolved over the past few
decades into the first continuous glucose monitoring (CGM) system that was introduced in
1999 [15]. Over the years, three generations of enzyme-based sensors have been fabricated
and commercialized (Figure 1) [16].
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The first-generation system used oxygen as the electron acceptor. The main drawback
of these systems is the influence of dissolved oxygen in the blood samples, which may com-
promise the accuracy of the measurement [17]. To overcome this issue, a second generation
of sensors was created, relying on electron transfer from the enzymes to artificial electron
receptors (redox dyes) [18]. To eliminate any intermediate steps, the third generation
of sensors utilizes direct electron transfer to the electrode [19]. Currently, the market is
in the process of evolving towards a fourth generation of glucose sensors that will not
make use of enzymes (Figure 1) [20]. These new technologies can overcome the stability
issues associated with enzyme-based sensors, but could also offer advantages in terms of
cost-effectiveness and selectivity [21,22].

All medical procedures, including diagnostic tests, can be categorized into the follow-
ing two major groups: invasive and non-invasive procedures. In glucose monitoring, this
often depends on the physiological sample under study [23]. Invasive glucose monitoring
implies that the samples in which the glucose levels are measured can only be obtained
by puncturing the skin of a patient [24]. For instance, in traditional self-monitoring of
blood glucose (SMBG), a drop of blood is drawn from the fingertip of a patient [25]. Many
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development studies were performed to optimize this procedure to reduce the pain associ-
ated with the measurement, resulting in the use of a blood lancet rather than a traditional
needle and syringe [26]. However, this method still causes discomfort and increases the
risks of blood-related infections [27]. Therefore, there has been a shift in the research focus
towards the development of minimally invasive and non-invasive methods in recent years,
although invasive blood glucose monitoring is still the most widely spread commercial
approach [28,29]. Non-invasive glucose monitoring typically aims at measuring the glu-
cose concentration in other physiological fluids, such as urine, saliva, sweat, or tears, and
relating them to the current blood glucose levels [30]. The increased comfort that these
methods offer patients also enables us to increase the number of measurements, opening up
the possibility of creating new-generation systems for continuous monitoring [31]. Both the
invasive and non-invasive methods can be analyzed with different readout technologies,
including electrochemical, mass-sensitive, optical, and thermal methods, with electro-
chemical transducers being the most used [32]. Since the topic has attracted increasing
interest, and due to the benefits of non-invasive monitoring, innovative glucose biosensor
technologies have been continuously explored. In fact, numerous studies reported in the
last few years have focused on the development of novel wearable sensors that would
enable patient-oriented, rapid, and convenient tracking of glucose [33–35]. Such sensors
could be incorporated in, for instance, smartwatches [36]. However, the most important
challenge associated with the current-generation blood glucose monitoring techniques
is the specificity and stability of such sensors in different physiological matrices [37]. A
crucial step to overcome these issues lies in the development of new recognition materials
that can offer alternatives to the current enzyme-based sensors. Therefore, this review will
focus on reviewing the current advances in molecularly imprinted polymers (MIPs) for
glucose detection and critically assessing which approaches are the most compatible with
the current trend of evolving toward non-invasive glucose monitoring.

1.2. General Background on MIPs

Molecularly imprinted polymers (MIPs) have attracted wide interest over the last few
decades, as these materials can mimic the natural antibody–antigen and enzyme–substrate
systems, but overcome most of the issues that are commonly encountered when using
natural receptors in non-physiological conditions [38]. The general principle behind MIP
synthesis is the interaction between a target molecule, a functional monomer, and a cross-
linking agent. First, the functional monomer(s) and the target molecules form a complex
by interactions between their functional groups [39], then the cross-linker stabilizes the
complex and is responsible for the rigidity of the polymer. After extraction of the template
molecule, nanocavities that are complementary to the extracted molecule are formed
(Figure 2) [40]. This complementarity is both morphological and structural, ensuring
that the target can selectively rebind to the receptor, which is similar to the key-and-lock
mechanism that antibodies and enzymes use to detect their target [41].

Molecularly imprinted polymers can be synthesized using a wide variety of polymer-
ization approaches, including bulk, precipitation, emulsion, photopolymerization, and
electropolymerization [42]. Normally, MIPs do not possess signal output ability, which
means that they need to be coupled to an appropriate transducer technology to translate
the rebinding event into a readable signal [43]. Different works have demonstrated the
successful integration of the polymers with several readout technologies, including, but not
limited to, the heat-transfer method (HTM), quartz crystal microbalance (QCM), surface
plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), chromatographic
techniques and various electrochemical transducers [44–47].
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From a historical perspective, MIPs were reported for the first time in the 1930s [48,49].
However, it was not until the mid-1980s that this technology started to attract wide interest
among the scientific community with the works from K. Mosbach and G. Wulff [50–52].
Around ten years later, the first works focused on the use of MIPs in sensing technologies
started to appear [52]. Since then, with the emergence of computational technologies
and novel methods used to integrate imprinted polymers into readout technologies, MIP-
based sensors have become increasingly popular within the scientific community [53,54].
Nowadays, MIP-based sensors are engineered in such a way that they can serve in a
versatile array of environments, including physiological fluids [55], foodstuffs [56,57], and
wastewater [58].

1.3. Advantages of MIP-Based Sensors in Glucose Sensing

Molecularly imprinted polymers (MIPs) are also known as plastic or synthetic antibod-
ies because they represent a synthetic alternative to biological recognition elements typically
found in biosensors [59]. Due to their synthetic nature, they have several key advantages
over natural receptors, such as enzymes and antibodies, mainly resulting from their high
stability and robustness at different pH and temperatures [60]. The enzyme-based sensors
have low stability, which inevitably results in the short shelf-life of the final product [61].
As a result, the scientific community is increasingly moving toward the realization of novel
enzyme-free sensors [62,63]. As mentioned above, stability is a key feature of imprinted
polymers and consequently of MIP-based sensors; furthermore, their preparation entails a
rather short and cost-effective synthesis process [64]. However, despite all the benefits that
these materials can provide to the field of biosensors, the commercialization of MIP-sensors
has not yet fulfilled its potential [65]. For instance, home test devices for glucose monitoring
are still monopolized by glucose oxidase biometers, which measure the concentration of
glucose in fingertip’s blood [66].

With all the aforementioned assets that MIP-based technologies could provide, they
may bring a new perspective to glucose monitoring. As mentioned earlier, we aim to
categorize and evaluate the different MIP-based technologies for glucose detection devel-
oped in the last few years and assess their advantages and drawbacks in the framework of
moving towards stable, disposable enzyme-free sensors for non-invasive blood glucose
monitoring. We will critically assess which approaches are the most promising and which
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manufacturing and transducer technologies would be ideally suited to bring MIP-based
sensors closer to the commercial glucose monitoring market.

2. Production Methods of MIPs for Glucose Detection

In order to synthesize molecularly imprinted polymers, different reagents are required,
including a functional monomer(s), template, cross-linker, and a polymerization initia-
tor [67,68]. Their ratio with respect to one another greatly influences the specific interaction
between the polymer and the template, and subsequently the binding capacity and imprint-
ing factor of the resulting MIP [69,70]. Depending on the type of polymerization, initiators
and solvents also play a vital role in the whole process [71]. Numerous polymerization
techniques used to synthesize molecularly imprinted polymers have been explored in the
last few decades (Table 1) [72,73], including bulk polymerization, electropolymerization,
and photopolymerization [73–76]. More recently, MIPs have been used in combination with
other materials such as gold nanoparticles to boost the sensitivity of the resulting sensor or
nylon to open up the possibility of creating wearable glucose sensors [77,78]. Inevitably, a
slightly different synthetic pathway needs to be employed for such sensors, often leading
to additional steps in the fabrication process.

2.1. Reagents for the Production of MIPs
2.1.1. Functional Monomers

The role of the functional monomer is to create a complex with a template molecule
before the polymerization [71]. Therefore, the selected monomer needs to be carefully
chosen in order to maximize interaction with the template and create receptors with a
high rebinding affinity to the target. Monomers that contain free carboxyl groups are of
particular interest for creating non-covalent MIPs, as they can act as both hydrogen donors
and acceptors and favour hydrogen bonding between the polymer and template [79].
Methacrylic acid (MAA), for example, has been extensively used as a monomer for MIP
synthesis, due to its ability to form ionic interactions and hydrogen bonds with a plethora
of functional groups on different template molecules [80]. Other functional monomers
commonly used for the synthesis of MIPs are as follows: acrylamide (AAM), acrylic acid
(AA), 4-vinylphenylboronic acid (VPBA), 4-vinylpyridine (4-VP), and pyrrole (PY) [81].
Additionally, the growing popularity of MIPs has resulted in the synthesis of novel tailor-
made functional monomers, opening up the possibility of producing imprinted materials
with higher rebinding capabilities.

Different functional monomers have also been successfully employed for the synthesis
of glucose-imprinted polymers. The monomer choice is strictly linked to the synthetic
approach undertaken to create the MIPs. For instance, a rational-design study in which
Gaussian 2009 software was used to simulate the interaction between glucose and three
commonly used functional monomers in free-radical polymerization (MAA, AAM, and
4-VP) revealed that MAA provides a stronger interaction with glucose, as well as the lowest
energy value during the self-assembly phase [82]. However, another study conducted
using the same program provided evidence that the reaction with AAM can occur more
spontaneously than with MAA [83]. Different studies have subsequently reported the
successful use of both MAA [82,84,85] and AAM [86,87], as well as its derivative diacetone
acrylamide (DAAM) [88]. Other functional monomers employed in polymer synthesis
included AA, which provided interactions with the hydroxyl groups of glucose [89], VPBA,
which forms a covalent complex with the template [90,91], vinyl acetate [92], and 3-amino-
4-hydroxybenzoic acid [93]. Electropolymerization of pyrrole to create glucose-imprinted
MIPs was demonstrated as an alternative approach in an attempt to automatize the syn-
thesis procedure [77,94]. The obtained MIPs were then coupled with nylon fibers [77] or
nitrogen-rich carbon conductive-coated TNO structures, which opens up the possibility to
integrate electropolymerized glucose MIPs in wearable applications [94].
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2.1.2. Template

The vast majority of the synthetic approaches mentioned above employed D-glucose
as template molecule [77,88–90,94]. However, as glucose lacks functional groups that enable
strong interactions with acidic or basic monomers, more recently, a dummy imprinting
approach was introduced by the authors of this paper, using glucuronic acid as a template
(Figure 3) [87].
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2.1.3. Cross-Linker

The role of the cross-linker is to enable the formation of a rigid polymer network, so
its structure will not be changed by the template removal; hence, the binding sites will
not be damaged. At the same time, this would allow the formation of a porous struc-
ture into which the targets can diffuse when immersing the MIP into the sample under
study [95]. If the amount of cross-linking is too low, the polymer will not be mechanically
stable, while if the cross-linking degree is too high, it may reduce the binding capacity
of the polymer, as the target cannot penetrate into the polymer matrix and there will be
fewer recognition sites available for rebinding [81]. The main drawback related to the
cross-linker molecules employed for MIP fabrication is that while the rational design is
often aimed at selecting functional monomers with appropriate hydrogen donor/acceptor
properties, the cross-linker can also interact with the template and contribute to rebinding,
a process that is hard to control and can lead to non-specific interactions. For the develop-
ment of MIP-based glucose sensors, different cross-linkers were implemented and among
these, the most commonly used is ethylene glycol dimethacrylate (EGDMA) [85,87–89].
Another reported cross-linker commonly used for the production of glucose MIPs is N,N′-
methylenebisacrylamide [82,86,96].

2.2. Polymerization Methods Employed for Glucose-MIP Fabrication
2.2.1. Thermal Polymerization Approaches

One of the most used methods to produce MIPs is the thermally initiated bulk poly-
merization approach [97]. This straightforward technique consists of adding a template,
functional monomer, cross-linker, and initiator in a solvent and allowing the formation of a
pre-polymerization complex through self-assembly. The solution is then polymerized and
the resulting product is a monolithic bulk polymer that needs to be ground and extracted
with solvents. The interesting features of this approach from a commercial point-of-view
are the fact that it is relatively straightforward and allows for the creation of large batches of
material cost-effectively. The major drawbacks are related to the tedious grinding and siev-
ing procedure, which is time-consuming, leads to a large loss of product and the generation
of a heterogeneous mixture of micro-scaled particles, which increases the batch-to-batch
variation and makes it hard to reliably calibrate the resulting sensors [97,98]. The approach
has also been employed in the synthesis of MIPs for glucose detection [85,87]. Within this
method, different initiators can be employed to trigger the polymerization reaction. As
such, molecules such as azobisisobutyronitrile (AIBN) or benzoyl peroxide were used to
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initiate the polymerization process. Another approach used to produce bulk MIPs included
the oxidation of pyrrole by FeCl3·6H2O, which initiated the formation of polypyrrole [77].

Thermally initiated polymerization can also be used to form thin polymer films; this
approach allows the formation of MIP films directly onto the substrate. The approach has
been used for the production of glucose MIP films on substrates such as Petri dishes [99] or
Ni foam [82,96].

2.2.2. Precipitation and Emulsion Polymerization

To overcome the problems associated with free-radical monolithic bulk polymerization,
research on more controllable polymerization methods used to create homogenous particles
has intensified over the past decade. Precipitation polymerization is a popular approach
in which the reagents are soluble in a solvent that is chosen in such a way that after the
polymerization reaction is completed, the resulting polymer is insoluble, and therefore
precipitates in the form of small particles [100].

Another popular approach is emulsion polymerization, a technique used to create
spherical MIP beads of various dimensions that can be stringently controlled by opti-
mizing the reaction conditions. In this method, surfactant molecules are added to the
pre-polymerization mixture, resulting in the formation of spherical beads of surfactant that
contain the reagents. The monomers act as oil phases that are shielded from the water phase
(the solvent) by the surfactant and undergo cross-linking inside a microreactor, leading to
more homogenous spherical particles with a tunable shape [100]. Both techniques have
been used for the synthesis of MIP particles that were incorporated into sensing devices for
glucose detection [84,92].

Although precipitation and emulsion polymerization have been demonstrated on an
industrial scale for various other polymer applications, the creation of MIPs for glucose
detection on a large scale is not particularly appealing. Emulsion polymerization would
require extra purification steps to remove remnant surfactant and although the particles are
more homogenous in size, research has shown that the binding affinity of the MIPs is highly
heterogenic, as the formation of an emulsion affects the stability of template–monomer
interactions during imprinting. Likewise, the very diluted medium in which precipitation
polymerization takes place not only results in a low reaction yield, but also leads to an
imprinting effect that is mainly based on several low-affinity interactions, leading to MIPs
with limited binding affinity and significant batch-to-batch variance [101].

2.2.3. Electropolymerization

An interesting approach to synthesize molecularly imprinted polymer films that has
gained increasing attention from researchers worldwide is electropolymerization. The
technique is particularly interesting, as it allows the growth of polymer films in situ onto
electrodes by applying electrochemical energy to the system [74]. The advantages over other
methods are the high control of the layer thickness and the direct grafting onto the electrode
surface [102,103], resulting in a homogeneous and highly reproducible MIP-functionalized
substrate that can be used in electroanalysis [74]. This set of features means that they
are serious alternatives to commercial enzyme-based electrodes for glucose sensing, as it
would also be relatively straightforward to create large batches of MIP-covered chips in
an automated manner. Several papers reported this polymerization technique to obtain
electropolymerized MIPs for glucose sensing [94,104–106]. In a recent work, Bossard
et al. synthesized a glucose MIP on laser-pyrolyzed paper electrodes using 3-amino-4-
hydroxybenzoic acid (3,4-AHBA) as a functional monomer [93]. In another published
work, Diouf et al. were able to fabricate a MIP-based screen-printed gold electrode by
electropolymerizing AAM/N,N′-methylene bis(acrylamide) (NNMBA) in the presence of
glucose (Figure 4). Selectivity analyses of the electropolymerized MIP sensor were carried
out using two interfering analytes that coexist in physiological saliva samples, lactose and
sucrose [86].
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Electropolymerization can also be used to generate gold nanoparticle-decorated
MIPs, and the benefits of such a method were reported to be ultra-high sensitivity, cost-
effectiveness, and fast fabrication [78]. Another innovation that stems from this production
method is the modification of MIPs with carbon dots and chitosan, with Zheng et al. and
Wu et al. proposing this modification and yielding highly sensitive and selective MIP-based
electrochemical sensors [83,107]. The main drawbacks associated with electropolymer-
ization are the possible low degree of cross-linking (which hinders the rigidity of the
polymeric structure [108]), the limited choice of electro-active monomers (leading to the
troublesome rational design of MIPs for certain specific targets) and the difficult up-scaling
of the fabrication process (which inevitably results in a diminished commercial potential
for such technologies) [65].

2.2.4. Electrospinning

Electrospinning is a method used to create matrices of micro- to nanoscopic fibers [109]
that offer a very high surface-to-volume ratio, leading to MIPs with relatively high sensi-
tivity in comparison to other approaches [110]. The technique also offers the possibility of
creating wearable textiles into which MIPs can easily be integrated for continuous sens-
ing [111]. In 2021 for instance, Crapnell et al. employed electrospinning to incorporate
glucose MIPs into a nylon-based fiber (Figure 5). The findings of this study illustrate a
two-step production method (MIP synthesis and electrospinning) for the development of
MIP-based wearable glucose sensors that can monitor the amount of glucose in sweat as
a marker for blood glucose levels [77]. In this work, Crapnell et al. assessed the sensor’s
selectivity by exposing the platform to a solution that contained similar molecules (fructose,
galactose, and sucrose), in addition to some common constituents of sweat, including urea
and L-lactate. The approach is also interesting, as it is possible to mass-produce batches of
fibers in a relatively straightforward, fast, and low-cost manner. The MIPs, however, still
need to be made via a separate polymerization approach; in this case, via the oxidation of
pyrrole and pluronic P123 in bulk.
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2.2.5. Photopolymerization

Photopolymerization is a technique that uses the energy of a light source to initiate
a polymerization reaction. Although the approach is often similar to thermally induced
polymerization techniques, it requires the use of different reagents. Depending on the
specific approach applied, photoinitiators, photosensitive functional polymers, photo-cross-
linkable polymers, and RAFT agents need to be employed in the process [112].

Similar to thermally induced bulk free-radical polymerization, photoinitiated free-
radical polymerization is a widely used technique for MIP production. This approach
requires a photoinitiator able to initiate the polymerization reaction when exposed to
irradiation [113]. The technique has been reported for the synthesis of MIP films/coating
for glucose recognition on various substrates, such as QCM electrodes [114], ITO glass
plates [90], and stainless-steel wires [91].

Photosensitive functional polymers provide an opportunity to achieve a polymer-
ization reaction without using an initiator reagent by using a photosensitive monomer.
This approach has been implemented for the development of a MIP-based glucose electro-
chemical sensor, by exposing a gold electrode covered with a solution of photosensitive
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monomers and target to UV irradiation [108]. In two different works, photo-cross-linkable
polymers were used to obtain MIP micelles [115] or nanoparticles [116], which were then
electrodeposited onto a bare gold electrode, and finally photo-cross-linked to obtain MIP-
functionalized gold electrodes. The specific advantages of each imprinting approach are
similar to those in thermally induced methods, allowing the detection of different targets
as different polymers can be used, as well as targets that cannot withstand high temper-
atures. On the other hand, they suffer the same disadvantages that are described above
for each polymerization approach and are not compatible with targets that are sensitive to
irradiation with high-energy light sources.

Reversible addition–fragmentation chain transfer (RAFT) living polymerization is a
photopolymerization approach that allows us to stringently control the polymerization
parameters and can be achieved under mild conditions at room temperature in aqueous
solutions [117]. RAFT polymerization has been utilized by Zhu et al. for the synthesis of
glucose-imprinted polymer particles, with sizes ranging from 200 to 400 nm. The produced
MIPs have proven to be effective in detecting glucose in complex matrices, such as human
urine samples [88].

2.2.6. Novel Synthetic Approaches for Glucose MIPs

The above-mentioned techniques represent the most used techniques for the produc-
tion of molecularly imprinted polymers. However, in recent years, novel approaches for
MIP synthesis have been developed. Between these, the most promising approach is un-
doubtedly the so-called solid-phase synthesis of nanoMIPs proposed by the group of Prof.
Piletsky [118]. This technique has proven its high industrial potential, as it has been utilized
in the successful imprinting of a wide variety of targets by using an automated synthesis
protocol [118]. The method has also been employed for the fabrication of electroresponsive
nanoMIPs for glucose recognition [119].

Additionally, another approach employed for producing MIP-based glucose sensors
involves the production of cross-linked MIP micelles, which were then coupled to glucose
oxidase to develop a novel synergistic enzyme MIP detection system [120].

Table 1. Fabrication methods and modifications employed for the production of MIP-based sensing
materials for glucose recognition.

Production Method Approach Modification Real-Life Sample LoD Reference

Thermal polymerization MIP particles immobilized
onto Al-PVC substrate Urine PBS: 19.4 µM

Urine: 44.4 µM [87]

Thermal polymerization MIP-based working electrode - 43.7 ± 1.6 mV/mmol L−1 [85]

Thermal polymerization
and electrospinning

MIP particles electrospun into
nylon 6,6 fiber Artificial sweat

PBS: 0.10 ± 0.01 mM
Artif. sweat:

0.12 ± 0.01 mM
[77]

Thermal polymerization MIP particles drop-casted
onto an Au electrode - 4.4 mg L−1 [89]

Thermal polymerization - Artificial tear fluid 10 µg mL−1 [99]
Thermal polymerization MIP@Ni foam - -; 0.45 mM [82,96]

Precipitation
polymerization GO-MIP sensor Blood PBS: 0.02 µm [84]

Suspension
polymerization MIP-based working electrode - 53 µM [92]

Electropolymerization AuNP-MIP fabricated directly
on the gold wire Blood PBS and blood: 1.25 nM [78]

Electropolymerization MIP-based Au-SPE Saliva PBS: 0.59 µg mL−1

Saliva: 3.32 µM
[86]
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Table 1. Cont.

Production Method Approach Modification Real-Life Sample LoD Reference

Electropolymerization MIP-based SPCE Saliva and blood PBS: 0.19 ± 0.015 µM
Saliva and blood: - [104]

Electropolymerization MIP/CuCo/SPCE Artificial and whole
blood

PBS: 0.65 ± 0.10 µM
Art. blood:

12.02 ± 0.6 mg dL−1

Whole blood: -

[105]

Electropolymerization Electrode modified with
chitosan and carbon dots Blood PBS: 0.09 µM

Blood: 0.11 µM [107]

Electropolymerization Laser-pyrolyzed paper
substrate - 1.77 mmol dm−3 [93]

Electropolymerization Electrode modified with
chitosan and carbon dots Blood and rice wine

PBS: 4.6 nM
Blood: 6.41 nM

Rice wine: -
[83]

Electropolymerization CS (MIP)-NiO electrode - 2.0 µM [106]
Electropolymerization TNO substrate - 1.0 µM [94]

Photopolymerization MIP layer onto Au QCM
electrode - 0.07 mM [114]

Photopolymerization MIP layer onto ITO glass plate - - [90]

Photopolymerization MIP coating onto
stainless-steel wire

Bovine serum, human
urine and plant tissues

PBS: 0.7 µM
Real-life samples: - [91]

Photopolymerization
RAFT polymerized MIPs

coating onto GO/GCE
substrate

Urine PBS: 5.88 µM
Urine: - [88]

Photopolymerization MIP micelles electrodeposited
onto the electrode surface Simulative serum Buffer: 0.05 mM

Sim. serum: - [115]

Photopolymerization Photo-cross-linkable polymer Simulative serum Buffer: 0.2 µg mL−1

Sim. serum: -
[108]

Photopolymerization
Au@MIP NPs

electrodeposited onto the
electrode surface

Urine Buffer: 0.003 nM
Urine: - [116]

Solid-phase synthesis - - 0.43 mM [119]
Cross-linked MIP

micelles
Fe3O4@Au-GOx-MIPs

catalytic system - 5.0 µM [120]

3. Readout Technologies Employed for MIP-Based Glucose Detection

In order to convert the binding event between the MIP and target into a readable
signal, the imprinted polymer needs to be integrated into a sensor platform, by coupling
it to an appropriate readout technology [121]. The choice of the transducer employed for
signal conversion is crucial for the development of affordable and reliable biosensors; in
fact, many examples of very sensitive MIP-based sensors can be found in the literature,
but some of them are coupled with highly specialized and costly lab equipment. These
sensor technologies are interesting for high-end detection purposes in analytical labs but
are less suited for application in point-of-care diagnosis. The great commercial success of
glucometers is due to the fact that they are based on simple conductio- or amperometric
transduction principles that can be integrated into handheld applications. Furthermore,
they are easily calibrated and lead to a very simple concentration reading that enables
end-users to measure their blood glucose levels in a fast, relatively low-cost, and user-
friendly manner [10,122]. Since the introduction of the first generation of glucose biosensors,
remarkable progress in the development of miniaturized and low-cost glucose sensing
technologies, both in terms of substrates (e.g., test strips) and transducers (glucometers),
has been made [123,124]. Despite different works reporting novel MIP-based sensors for
glucose and many other analytes, the field seems to struggle in the last steps toward the
commerciality of such technologies [65]. One of the main explanations for this is the greater
interest of the scientific community in fabricating more and more sensitive biosensors,
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rather than trying to engineer promising technologies to develop more affordable and
versatile instruments that offer a commercial benefit to the end-users. In this sense, the
most sensitive MIP-based sensors in real-life samples have a limit of detection (LoD) of
1.25 nM in blood [78], 0.12 mM in artificial sweat [77], 3.32 µM in saliva [86], 44.4 µM
in urine [87], and 55.5 µM in artificial tear fluids [99]. Although the most sensitive MIP-
based glucose sensor found in the literature demonstrates a much lower LoD in buffer
solutions [116] (0.003 nM) when compared to the above-mentioned works, the fabrication
of an ultrasensitive device for glucose detection represents an academic exercise rather
than a useful development in health diagnostics. In fact, the concentrations of the sugar in
physiological fluids are in the millimolar or micromolar range.

The majority of readout technologies employed for glucose detection using MIPs con-
tinued on the tradition of using electrochemical transducer principles to create user-friendly
readout technology [125]. The specific techniques that were used include amperometry,
voltammetry, potentiometry, and electrochemical impedance spectroscopy. Although elec-
trochemical readouts represent the most validated transducer in the glucose sensing field,
in the last few years, different alternative technologies have been successfully coupled to
MIP-based platforms for the detection of sugars [126]. Therefore, MIP sensors for glucose
that use transducers such as QCM [114], HTM [87], SPR [127], GC-MS [91], and fluorescence
spectroscopy [99] have started to appear in the last two decades.

3.1. MIP-Based Electrochemical Glucose Sensors

Electroanalytical techniques are a collection of different methods that use electrical stimu-
lation to study surface changes upon rebinding of an analyte or the presence of the analyte in
solution. As mentioned, the classic glucometers employ amperometry coupled with an en-
zyme that is able to selectively oxidize glucose; the techniques have also proven their efficacy
when coupled to a MIP-based platform [128,129]. In particular, MIP-based amperometric
glucose sensors have been fabricated by preparing molecularly imprinted polymer layers
onto different types of electrodes [93,105,106]. Cho et al. have reported the fabrication of
a selective MIP glucose sensor based on the direct oxidation of the molecule on a bimetal
catalyst with a MIP (Figure 6). In this work, the sensor proved to be highly sensitive and
demonstrated excellent performance in artificial and whole blood samples using chronoam-
perometry analysis. Moreover, the selectivity of the MIP-based platform was thoroughly
evaluated by the exposure of the sensor to a wide variety of possible interferences (uric acid,
acetaminophen, dopamine, ascorbic acid and L-cysteine), other monosaccharides (galactose,
mannose, fructose, and xylose) and disaccharides (sucrose, lactose, and maltose) [105].
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In MIP-based potentiometric sensors, generally, the MIP is incorporated into a poly-
meric membrane and then functions as a conventional ionophore of ion-sensitive elec-
trodes [130]. As such, many works about potentiometric MIP sensors have been re-
ported [130,131]. Between these, some research groups have demonstrated the applicability
of potentiometric MIP sensors for glucose detection in buffer solutions [85], as well as in
physiological samples, such as saliva and blood [104].

Many MIP-based electrochemical biosensors use voltammetry as an electroanalytical
method to detect a specific analyte [132–134]. Voltammetric sensors can recognize a target
by analyzing the current change as a function of the potential applied. Voltammetry can
then be subdivided into many different types of techniques, depending on the mode of po-
tential control. As such, techniques such as cyclic voltammetry (CV) [84,90,92,107,115,120],
linear sweep voltammetry (LSV) [105], square wave voltammetry (SWV) [78,88,108], differ-
ential pulse voltammetry (DPV) [83,86,94,107,119] and differential pulse stripping voltam-
metry (DPSV) [116] have been successfully applied in combination with MIP-based tech-
nologies for glucose analysis. In these sensors, the MIP acts as a recognition element
that is able to selectively bind to the functionalized surface, resulting in a current change
when a potential is applied. An unusual approach using a voltammetric MIP sensor has
been employed by Cheng et al. (Figure 7); in this work, a synergistic enzyme–enzyme
mimic (represented by the imprinted polymer) system has been developed and the sensor’s
performance was thoroughly evaluated using CV voltammetry. The fabricated sensor has
proven to be highly selective towards D-glucose over three other structural analogues of
the sugar (mannose, galactose and D-xylose).
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Another electrochemical method used in MIP biosensors that has gained attention in
the last few years is electrochemical impedance spectroscopy (EIS) [135]. Impedimetric
MIP biosensors allow the direct detection of a target without using any enzyme labels by



Chemosensors 2023, 11, 32 14 of 24

measuring changes in charge conductance and capacitance at the sensor surface when the
binding event occurs [135,136]. Thus, different impedimetric sensors for non-enzymatic
glucose recognition have been developed in the last five years [82,86,96]. Even though
several MIP-based electrochemical sensors for glucose detection have demonstrated to be
a promising and reliable alternative to enzymatic devices (Table 2), factors such as their
reproducibility in relevant environments and application in different physiological matrices
still need to be addressed. In general, electrochemical MIP-based glucose sensors can build
on the knowledge obtained in the decades of development in electrochemical enzyme-based
glucose sensing. Furthermore, by coupling electrochemical readouts to electrodeposition
techniques or electrospinning, there is the potential to use them for continuous monitoring.
With this in mind, MIPs function in a different manner than enzymes and no ions are
created during binding. Therefore, the effects are usually capacitive and require a reference
electrode to distinguish rebinding effects from solvent exchange effects. This makes data
interpretation and calibration more difficult. In addition, they require some instrumentation
and can only be combined with electrically conducting chip substrates. Therefore, in
contrast to enzyme-based glucose monitoring, where electrochemical approaches have
shown to be the most suitable tool, in MIP-based glucose sensing, other non-electrochemical
approaches might offer certain benefits from a commercial perspective that allow them to
become the most predominantly used technology.

Table 2. MIP-based glucose sensors using electrochemical readout technologies.

Readout Technology Real-Life Sample LoD Reference

Chronoamperometry - 1.77 mmol dm−3; 2.0 µM [93,106]

Chronoamperometry Artificial and whole blood Art. blood: 12.02 ± 0.6 mg dL−1

Whole blood: -
[105]

Potentiometry - 43.7 ± 1.6 mV/mmol L−1 [85]

Potentiometry Saliva and blood PBS: 0.19 ± 0.015 µM
Saliva and blood: - [104]

CV - 0.02 µM;–; 53 µM; 0.09 µM; 5.0 µM [84,90,92,107,120]

CV Simulative serum Buffer: 0.05 mM
Sim. serum: - [115]

SWV Simulative serum Buffer: 0.2 µg mL−1

Sim. serum: -
[108]

SWV Human urine PBS: 5.88 µM
Urine: - [88]

SWV Blood 1.25 nM [78]
DPV - 1.0 µM; 0.43 mM [94,119]

DPV Blood PBS: 0.09 µM
Blood: 0.11 µM [107]

DPV Blood and rice wine Blood: 6.41 nM
Rice wine: - [83]

DPV Saliva PBS: 0.59 µg mL−1

Saliva: 3.32 µM
[86]

DPSV Human urine Buffer: 0.003 nM
Urine: - [116]

EIS - -; PBS: 0.59 µg mL−1

Saliva: 3.32 µM; 0.45 mM
[82,86,96]

3.2. Other MIP-Sensing Readout Technologies for Glucose Detection

Molecularly imprinted polymers are versatile materials that could be integrated into
a wide array of non-electrochemical transducers [52,137]. In fact, different works have
shown the potential of MIP-based sensors associated with readout technologies that rely
on optical, thermal and mass-sensitive methodologies (Table 3) [137].

The first MIP for glucose recognition was developed more than a decade ago by
Parmpi et al.; in this work, molecularly imprinted hydrogels were synthesized and their
rebinding capabilities were analyzed colorimetrically by using a spectrophotometer [138].
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Another colorimetric method (DNS assay) was successfully employed to evaluate the sepa-
ration of different sugars from urine samples using imprinted polymers [139]. Although
these early applications of colorimetric assays gave a deeper understanding of the binding
characteristics of the synthesized polymers, they are not suited for diagnostic applications
and, in the case of the latter, were mainly used as separation materials rather than sensing
elements [140]. Other optical-based technologies have been effectively employed in combi-
nation with imprinted polymers, where the MIP film was directly analyzed via different
techniques. In two different works, MIP films selective for glucose recognition were pre-
pared onto a gold layer and proof-of-applications in plant tissues or urine were achieved
by Raman spectroscopy [141] and surface plasmon resonance (SPR) [127], respectively.
Another example of optical readout coupled with MIPs for glucose detection was reported
by Manju et al. In this work, a fluorescent MIP film was found to proportionally emit
reduced fluorescence with increasing concentrations of glucose in synthetic tear fluids [99].
Optical transducers offer the benefit that they have been used extensively over the past few
decades for the highly sensitive detection of numerous compounds in the most advanced
analytical applications. For glucose detection, however, they are not suited due to their
non-portable and expensive nature. On the other hand, very cheap lateral flow assays,
which have also demonstrated great commercial biosensor success, in addition to glucome-
ters (COVID-19 self-tests, pregnancy tests, etc.), have limited application in glucose sensing
as they are often qualitative (providing a positive/negative result), while diabetics need to
quantify the result. Therefore, the only approach that seems commercially interesting is
to work with colorimetric detection principles that allow for quantification by means of a
simple handheld spectrophotometer, or even a smartphone camera with an appropriate
software package.

Recently, a thermal readout principle that is similar to electrochemical approaches
but requires less expensive machinery and offers straightforward data interpretation has
been demonstrated for glucose detection (Figure 8). Two studies performed by two dif-
ferent research groups have shown different MIP synthesis approaches and have coupled
them to the so-called heat-transfer method (HTM) for the detection of the sugar in artifi-
cial [77], as well as physiological, samples [87]. In one of these works, selectivity analyses
were performed by analyzing the thermal response of the sensor to three different saccha-
rides (fructose, lactose and sucrose) and demonstrated the sensor’s ability to discriminate
between these small molecules [87]. The approach is very simple, as glucose MIPs are im-
mobilized onto a cheap chip substrate, and a temperature gradient is applied over the chip
using two thermometers and a heat source. Rebinding of glucose leads to a concentration-
dependent change in this gradient. The method is extremely low-cost, requiring little to no
equipment and data interpretation is very simple, leading to facile calibration. The main
problem with HTM as readout technology resides in the difficult miniaturization of the
transducer and the need to equilibrate the signal, which, therefore, limits its application in
wearable applications for continuous monitoring.
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(aloe leaf) [91]. Although the work demonstrates the successful application of the probe
in different matrices, the coupling with a technology such as GC-MS highly limits the
possibilities of the sensors, due to the costs and the need for trained professionals to operate
the instrument. Another non-electrochemical readout technology effectively employed in
recent years in the field of MIP-based sensing is quartz crystal microbalance (QCM) [44].
Mass-sensitive devices have been used by two different research groups in combination
with MIP-coated QCM chips for glucose detection [89,114]. Although linear dose–response
curves were obtained with increasing sugar levels, a real-life sample application is needed to
accurately evaluate the sensor’s performance in a relevant environment. Moreover, QCMs
are hard to miniaturize and mass produce, require gold-coated quartz substrates, which are
relatively costly, and it is hard to distinguish specific rebinding from non-specific adsorption
and medium change, making this approach a little less attractive from a commercial point
of view.

Table 3. MIP-based sensors coupled with non-electrochemical readout technologies.

Readout Technology Real-Life Sample LoD Reference

Raman Apple PBS: 1 µg mL−1

Apple: -
[141]

SPR Urine - [127]
Fluorescence spectroscopy Artificial tear fluid 10 µg mL−1 [99]

HTM Artificial sweat PBS: 0.10 ± 0.01 mM
Artif. sweat: 0.12 ± 0.01 mM [77]

HTM Urine PBS: 19.4 µM
Urine: 44.4 µM [87]

GC-MS Bovine serum, human urine
and plant tissues

PBS: 0.7 µM
Real-life samples: - [91]

QCM - 4.4 mg L−1; 0.07 mM [89,114]

4. Promising MIP-Based Technologies for Glucose Sensing

The success of enzyme-based home glucose monitoring can be explained by the fact
that there was a large market need, as diabetics previously had no means of routinely
assessing their blood glucose levels. This has led to a significant improvement in diabetic
treatment and, as a result, the life quality of patients. Since their conception, electrochemical
enzymatic glucose sensors have evolved tremendously and have dominated the market.
Nonetheless, as the need for continuous monitoring devices and cheaper handheld solu-
tions will continue to increase in the coming years, research towards new and improved
ways of measuring glucose will also continue. Therefore, some of the MIP-based glucose
sensors developed in the last few years could offer a valid alternative, especially in certain
subfields that require specific device characteristics. Although MIPs and MIP sensors are
still considered by many as a niche research area, mainly because of the absence of MIP
sensors on the market, we conclude that some promising studies on MIP glucose sensors are
present in the literature and should be further evaluated to reduce the gap with traditional
enzymatic sensors (Table 4).

The different characteristics of the sensor should be taken into account when analyzing
the valorization potential of a sensing device. The major bottleneck in terms of commercial-
ization in MIP-based glucose sensing lies in the synthesis approach of the receptors. Mass
production is still largely missing with regard to MIPs, although several methods could
offer a solution in the future. Bulk polymerization could be an interesting approach if the
heterogeneity can be addressed or accounted for through calibration. However, the process
of grinding, sieving, and extraction should be optimized and automated. More controlled
approaches of photo- and thermal polymerization might overcome the heterogeneity issue
in the future, but at this point, the yield of these approaches needs to be approved to make
these approaches commercially viable. A potential solution might be to integrate the MIPs
directly into a sensing substrate. This can be achieved by directly immobilizing the MIPs
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onto an electrically conducting surface through electropolymerization or by impregnating
MIPs into fibers by, e.g., electrospinning or electrodepositions. Both methods are currently
not scalable and additional research has to be conducted, but one can envision that it should
be possible to automate the production process and produce large batches of homogenous
MIP-covered chips. For now, the synthesis approach that appears to be the most mature in
terms of commercialization is the solid-phase approach that can be automated in a reactor.
The reaction yield needs to be improved, but significant progress has been made in this
respect in recent years.

Table 4. Overview of promising MIP technologies for glucose sensing.

Readout Technology MIPs Production Method Real-Life Sample LoD Reference

Chronoamperometry Electropolymerization Artificial and whole
blood

Art. blood: 12.02 ± 0.6 mg
dL−1

Whole blood: -
[105]

Potentiometry Electropolymerization Saliva and blood PBS: 0.19 ± 0.015 µM
Saliva and blood: - [104]

CV Photopol. +
electrodeposition Simulative serum Buffer: 0.05 mM

Sim. serum: - [115]

SWV Photopolymerization Simulative serum Buffer: 0.2 µg mL−1

Sim. serum: -
[108]

SWV Photopolymerization
(RAFT) Human urine PBS: 5.88 µM

Urine: - [88]

SWV Electropolymerization Blood 1.25 nM [78]

DPV Electropolymerization Blood PBS: 0.09 µM
Blood: 0.11 µM [107]

DPV Electropolymerization Blood and rice wine Blood: 6.41 nM
Rice wine: - [83]

DPV Electropolymerization Saliva PBS: 0.59 µg mL−1

Saliva: 3.32 µM
[86]

DPV Solid-phase synthesis - 0.43 mM [119]

DPSV Photopol. +
electrodeposition Human urine Buffer: 0.003 nM

Urine: - [116]

Fluorescence
spectroscopy Thermal polymerization Artificial tear fluid 10 µg mL−1 [99]

HTM Thermal polym. +
electrospinning Artificial sweat PBS: 0.10 ± 0.01 mM

Artif. sweat: 0.12 ± 0.01 mM [77]

HTM Bulk polymerization Urine PBS: 19.4 µM
Urine: 44.4 µM [87]

Although the scalability of the MIP synthesis procedure entails the largest bottleneck
concerning their commercialization, transducers undoubtedly play a key role in the de-
velopment of competitive glucose sensors. Expensive and inaccessible transducers (e.g.,
GC-MS, Raman spectrometers, SPR systems, etc.) are greatly disadvantaged in the de-
velopment of PoC sensors, which is the main application for glucose sensors. Therefore,
affordable and miniaturized readout technologies represent the election choice and between
these, electrochemical readout technologies have made astonishing improvements in terms
of affordability, miniaturization, and reliability. They profit from the commercial advances
made in enzyme-based sensing and are compatible with some of the most promising MIP
synthesis approaches, allowing for continuous monitoring approaches. Optical readout
techniques, as mentioned before, are typically either very sensitive and used for lab-based
sample analysis or extremely low-cost and user-friendly and used for qualitative diagnosis.
However, as illustrated in the study mentioned in the table above, it would also be possible
to use a handheld optical detector. In this case, a fluorescent spectroscopy approach was
tested, which technically could be used for handheld sensing, but the requirement of an
excitation source and fluorescent labels/monomers makes the technology more sensitive
and also probably more expensive than electrochemical alternatives. A colorimetric alterna-
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tive could offer a solution to this problem in the future. The relatively new HTM approach
also has its benefits, mainly laying in the minimum amount of instrumentation required
and the straightforward data interpretation, but miniaturization still has to be achieved
and researched.

Despite the fact that none of the MIP-based glucose sensors are at the stage of com-
mercialization yet due to the bottlenecks discussed above, the performance of these sensors
is rapidly increasing. Some of them reach sensitivities that are superior to those of enzyme-
based platforms at a much lower cost, not only achieving detection in blood, but also in
other matrices such as urine and sweat. As we move towards the non-invasive monitoring
of glucose, these bodily fluids offer several advantages. The concentration in these samples
is typically lower, but the MIP-based sensors have proven to have linear ranges in relevant
concentration regimes, which offers a commercial advantage over the traditional glucometers.

5. Conclusions and Future Outlook

Recent advances in MIP-based sensor technology published in academic studies
demonstrate that these devices are rapidly approaching real-life applications. Their long
shelf-life, chemical stability, and low cost make them advantageous over enzymes. In
addition, these devices have proven to work in challenging environments such as urine
and sweat that contain lower concentrations of glucose. This illustrates their potential
application in non-invasive and continuous monitoring tools. However, the main bottleneck
that must be addressed remains in the synthesis of large batches of homogenous MIPs. This
facet of MIP technology has long been neglected, while enzymatic biosensors, as well as
immunosensors, have benefited from decades to even centuries of research on the function,
synthesis, and immobilization of these natural receptors.

Slowly, MIP technology is trying to close this gap, with scholars devoting attention to
MIP synthesis procedures that not only lead to highly performant MIPs from an academic
perspective, but also take the potential scalability and possibility for mass production into
account. Technologies such as solid-phase synthesis that takes place in automated reac-
tors or fully automated electrospinning or electropolymerization approaches are rapidly
evolving in this direction and multiple research groups are investigating ways to improve
the more traditional approaches in this respect. Thus, we believe that MIP-based tech-
nologies may be a strong alternative to traditional enzymatic devices in the future and, by
addressing the aforementioned obstacles to their commercialization, may finally reach the
market. In combination with the continuously growing need for personalized medicine
and non-invasive sampling, MIP-based glucose sensors could profit from the momentum
and academic know-how in the coming decade or two, to achieve the next step towards
commercialization, and therefore real-life application.
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