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Abstract: Folic acid (FA) and its other forms known as folates are small molecules vital for humans.
The high demand for increasingly sensitive methods of measuring folate concentrations is due to the
fact that abnormal levels of FA cause severe health disorders. Besides, folates are used as recognition
molecules in targeted drug delivery. The majority of FA measuring techniques are rather expensive,
laborious, sometimes not sufficiently sensitive and specific, and often employ consumables that
are too costly to be single-use for routine medical diagnostics. Here, we present a procedure for
transformation of a simple microscope cover glass slip without deposition of any metal or dielectric
films into a cost-efficient chemosensor chip interrogated by spectral correlation interferometry for
highly sensitive measurements of the concentration of small molecules, as well as a feasibility study
of long-term monitoring of such molecules in a flow mode. The obtained chips were tested for
folate detection. The highly specific and sensitive measurements can be performed in real-time in
a wide dynamic range of 0.9–220,000 pM. The developed method and single-use consumables are
promising for concentration measurements of low molecular weight substances in pharmaceuticals
and in vitro diagnostics.

Keywords: optical chemosensors; label-free interferometry; real-time detection; small molecules;
haptens; competitive assay; immunosensors

1. Introduction

Folic acid (FA), along with its other forms known as vitamins B9, B11, and M, cumu-
latively called folates, are small molecules vital for humans. They are involved in many
key processes in the organism: protein metabolism, DNA/RNA formation, production of
healthy red blood cells, and many others [1–3]. The folate deficiency is associated with
severe diseases such as neural tube defects in newborns, cardiovascular disorders, cognitive
dysfunction in aging, etc. [4–6]. Besides, FAs are often used as recognition molecules for
binding with membrane proteins of cancer cells for development of targeting drug delivery
techniques [7–12]. Thus, there is a need for development of increasingly sensitive methods
for measuring folate concentrations.

Microbiological assays have been the “gold standard” for FA determination since the
1930s [13,14] but now they are mostly replaced by faster and less laborious protein-binding
competitive assays [15]. After identification of the folate-binding protein (FBP), one of the
first developed methods was a radioisotopic assay by Waxman et al. [16]. The FBP-based
assays used today offer rapid analysis at a relatively low cost.

A more comprehensive analysis with better selectivity is provided by techniques based
on gas or liquid chromatography; some of them, combined with mass spectrometry, are
popular for FA measurements, e.g., in formulations containing other water-soluble vitamins
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or nutritional supplements. However, depending on the detection principle, these methods
are either not sensitive enough or too labor-intensive [17–22]. These methods require
expensive equipment and qualified personnel. Other techniques for FA measurements,
such as colorimetric [23], flow injection chemiluminescence [24], and fluorimetric [25,26]
ones, are rather costly and require expertise in operating the equipment.

FA in various samples is often detected by surface plasmon resonance (SPR) transduc-
ers with the use of biorecognition molecules [27–29]. This label-free chemosensing method
features high sensitivity [30–32]. SPR is performed by registration of a spatial or spectral
shift of the minimum of light reflection from a chip that carries a precisely deposited gold
film, on the surface of which specific biomolecular reactions occur [33–35]. The phase SPR
offers a particularly high sensitivity by registration of the stepwise behavior of the reflected
wave phase at the point of minimal reflection of light [36]. At the same time, SPR strongly
depends on the refractive index n of a solution and, therefore, upon n(T) (as ∆n = 10−4 per
1 ◦C), as well as on the solution density related to salt concentration of buffers [37]. Hence,
the method needs bulky hardware for thermal stabilization and compensation of signifi-
cant jumps in sensorgrams caused by changes of buffer solutions. Besides, commercially
available SPR chips are rather expensive for use in routine medical diagnostics that require
single-use consumables. Highly specific and sensitive chemosensors for measurements of
concentration of folic acid based on affordable consumables is still an important task.

Here, we present a novel label-free optical chemosensor for specific and sensitive determi-
nation of folic acid. As single-use consumables, we use microscope cover glass slips without
deposition of any metal or dielectric films. The glass slips are transformed into cost-efficient
chemosensor chips interrogated by the spectral correlation interferometry (SCI) [38,39]. The de-
veloped SCI-based real-time chemosensor provides a wide dynamic range of 0.9–220,000 pM
that covers the whole physiological range of FA concentrations [40–43]. An option of long-
term operation of the chemosensor is demonstrated by continuous detection of folic acid
in flow mode. The developed sensor and single-use consumables are promising for mea-
surements of concentrations of low molecular weight substances in pharmaceuticals and
in vitro diagnostics.

2. Materials and Methods
2.1. Materials

Microscope cover glass slips, (3-aminopropyl)triethoxysilane (APTES),
N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC), bovine serum
albumin (BSA), N-hydroxysuccinimide (NHS), succinic anhydride, folic acid (FA), and 2-
(N-morpholino)ethanesulfonic acid (MES) were purchased from Sigma Aldrich (Burlington,
MA, USA); sulfuric acid, methanol, dimethylformamide (DMF), 2-propanol, phosphate-
buffered saline (PBS) buffer (0.1 M, pH 7.4), hydrogen peroxide, gelatin, dimethyl sulfoxide
(DMSO), and borate buffer were products from Chimmed (Moscow, Russian Federation).
FA antibodies were obtained from the Research Center of Molecular Diagnostics and
Therapy (Moscow, Russian Federation).

2.2. Instrument Based on the Spectral Correlation Interferometry

Biosensors based on the spectral correlation interferometry, previously tested for label-
free concentration measurements of autoantibodies in human serum and for development of
new kinetics-based diagnostics of autoimmune diseases [38], were modified in this research
for detection of FA and its monitoring in flow modes by competitive assay formats. The
SCI principle described in detail in [38,39] allows real-time picometer-scale measurements
of changes in the biolayer thickness ∆d caused by biochemical reactions on recognition
spots of a microscope cover glass slip surface, as well as accurate determination of binding
kinetics [44]. The radiation from a superluminescent diode passes through a scanned
Fabry–Pérot interferometer, reflects off a glass sensor chip, which serves as a second plane
parallel interferometer, and is detected with the photodiodes or a CCD array. The optical
thickness of the chip, varied due to biochemical reactions on its surface, is measured by a
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phase change of the correlation signals from the interference patterns between the radiation
transmitted through the interferometer and that reflected from the glass surface. The SCI
signals are independent of the refractive indexes of liquid samples and, therefore, do not
depend on n(T) and salt content or density of buffers. The free space on the sensor chips
is used as a reference channel to eliminate drifts due to possible thermal expansion of the
glass slip [45].

2.3. Preparation of “Folic Acid–Gelatin” Conjugate

A solution of 7 mg of FA in 300 µL of DMSO was mixed with 2.7 mg of EDC and
50 mg of NHS, which were pre-dissolved in 200 µL of 0.1 M MES buffer. The mixture
was kept at room temperature for 20 min, then 200 µL of 0.5 M borate buffer (pH 8.6) was
added followed by addition of 400 µL of a 1% gelatin water solution. The reaction mixture
was kept overnight at +4 ◦C, then the product was precipitated by 8 mL of acetone. The
precipitate was separated by centrifugation (14,000 r.m., 10 min), divided into 4 equal parts,
and each of them was purified as follows: 50 µL of DMSO was added to the precipitate, the
suspension was sonicated, 2 mL of acetone was added, then the mixture was vortexed, and
the product spun down. The procedure was repeated four times. After this, the precipitate
was dissolved in 400 µL of water.

2.4. Chemical Modifications of the Sensor Chip Surface

A scheme of chemical modifications of the sensor chip surface is shown in Figure 1.
Briefly, the procedure was as follows. First, we washed microscope glass cover slips with
methanol followed by their 40 min treatment with a mixture of 30% hydrogen peroxide and
95% sulfuric acid (1:3 v/v) at 70 ◦C. Then the slips were cooled down, washed thrice with
triple distilled water, and two times with methanol [46]. After that, to covalently attach
to the glass surface free aliphatic amino groups, the cleaned slips were kept overnight at
room temperature in a 3% solution of APTES in methanol, washed thrice with propanol-2,
and dried. Then, the glass slips were kept for 2 h in a 15 mM solution of succinic anhy-
dride in DMF at room temperature, washed three times with DMF, and dried. The thus
prepared sensor chips were stored at room temperature before use. The results of SEM-
based morphological characterization of the sensor chip surface are shown in Figure S1 of
Supplementary Materials. Earlier, Vaughn M.W. and Wang W. showed that the APTES-
based aqueous-phase deposition method produces dense flat films without visible pores
with a maximum domain height of about 2 nm [47].

2.5. Immobilization of the “Folic Acid–Gelatin” Conjugate onto the Sensor Chip Surface

The sensor chip surface obtained as described in Section 2.4 contains free carboxyl
groups. The procedure of immobilization of the “folic acid–gelatin” (FA–G) conjugate was
as follows. The free carboxyl groups on the sensor chip surface were activated by passing
a 6% EDC solution in 0.1 M MES buffer along it for 20 min followed by 5 min passing
of 0.1 M MES buffer. After that, the FA–G conjugate was applied as a 1 mg/mL solution
in PBS buffer until biolayer saturation was observed by measurements of its thickness
(until the recorded sensorgram plateaued). The procedure took about 15 min. Finally, the
surface was washed with a PBS-BSA buffer (10 mg/mL) for 10 min. It should be noted
that the immobilization can be implemented either inside or outside the biosensor. The
former is convenient for easy adjustment of the assay conditions. The latter can be done
preliminarily to reduce the assay time; it also supports the method’s potential for scaling-up
the production of such sensor chips.
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specific interaction of FA–gelatin conjugate with the FA antibodies. 
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Figure 1. Chemical modifications of the glass chip surface for measuring folic acid: (a) attachment of
aliphatic amino groups by APTES onto a glass surface preliminarily cleaned with a piranha solution,
(b) carboxylation of the aminated glass chip by means of succinic anhydride, (c) EDC-mediated
activation of the carboxyl groups, (d) attachment of NH2-containing FA–gelatin conjugate to the
carboxylated glass surface, (e) assembly of the “antibody–antigen” biolayer by a specific interaction
of FA–gelatin conjugate with the FA antibodies.

2.6. Assay Procedure

50 µL of FA antibody at different concentrations (4.66, 7, 17.5, 35, 30 µg/mL) in
PBS-BSA buffer was added to the analyzed 50 µL samples, which contained different FA
concentrations (22,650 pM, 4500 pM, 900 pM, 180 pM, 36 pM, 7.2 pM, 1.4 pM) or did
not contain folic acid (Figure 2a,c). After 10 min incubation, the obtained solution was
pumped along the sensor chip surface having immobilized FA–G conjugate (Figure 2b,d)
with recording of a sensorgram ∆d(t) until the biolayer thickness became stable according
to the measurements by the spectral correlation interference (Figure 2e,f).

The biolayer assembly took about 15 min and was followed by washing of the surface
with a 10 mg/mL BSA solution in PBS. The calibration curve for such competitive assay was
obtained using a standard five-parameter logistic regression model [48]. As the negative
control, we used samples without FA antibody. For the experiments with the positive
control, the samples containing FA antibody but no FA antigen were applied. The assay
specificity was verified using the samples, which contained, instead of folic acid, other
small molecules, such as antibiotics (chloramphenicol), hormones (thyroxine), mycotoxins
(ochratoxin A), or large protein molecules (PSA, cTnI, HBsAg).
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Figure 2. Scheme of the assay procedure for real-time detection of folic acid with spectral correlation
interferometry: (a) FA antibodies are added to the analyzed sample that contains FA antigen; (b) FA
antibodies do not bind via the occupied antigen-binding sites with the surface of the glass sensor
chip, on which FA−gelatin conjugate is immobilized; (c) FA antibodies are added to the analyzed
sample that does not contain FA antigen; (d) FA antibodies bind via free antigen-binding sites with
the surface of the glass sensor chip, on which FA−gelatin conjugate is immobilized; (e) schematic of
the operation principle of the chemosensor based on the spectral correlation interferometry: a phase
shift between the beam reflected from the bottom surface of the sensor chip and the beam reflected
from the interface “biolayer−liquid sample”; (f) sensorgrams that show the typical responses in
real-time from the SCI chemosensor during analyses of the samples which contain (lower red line)
and do not contain FA antigen (upper blue curve).

2.7. Investigation of the FA Antibody Biolayer Regeneration

After assembly of the biolayer of FA antibody on the sensor chip coated with the
FA–gelatin conjugate as described in Section 2.6, a solution of folic acid in PBS-BSA buffer
was passed inside the SCI-based chemosensor along the sensor chip for 10 min. A decrease
in the biolayer thickness was registered at each of the tested FA concentrations: 2.2 pM,
22 pM, 226 pM, 2200 pM, and 22,000 pM. After measuring at any of the concentrations,
the glass chip was washed with a PBS-BSA buffer, and then the biolayer was reassembled
inside the chemosensor by application for 10 min of a 10 mg/mL solution of BSA in PBS
containing 70 µg/mL of FA antibody.

3. Results and Discussion
3.1. Adjustment of the Protocol of a Biolayer Assembly on the Sensor Chip Surface

At first, a standard protocol was employed for antigen attachment to the glass sensor
chip surface (Figure 1a–d). All steps were carried out inside the SCI-based chemosensing
system. That allowed for careful monitoring of the kinetics of each stage during the
biolayer assembly. The typical sensorgram of the biolayer thickness dynamics recorded in
real-time is shown in Figure 3. Such sensorgrams can be used for early identification of
problems and/or inappropriate actions to correct them in further experiments. As follows
from Figure 3, the procedure can be substantially shortened as soon as the signal on the
experimental graph reaches a plateau. The sensorgram in Figure 3 demonstrates that after
activation of carboxylic functions on the glass, the chip surface was saturated with the
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FA–gelatin conjugate within 10 min. The results of measurements of the contact angles of
the sensor chip surface at each stage of the optimized protocol of surface functionalization
are given in Table S1 of Supplementary Materials.
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Figure 3. Complete cycle of assembly of the FA–gelatin conjugate layer on the sensor chip inside the
SCI-based chemosensing system: EDS-MES—carboxyl group activator, FA–G—conjugate of folic acid
with gelatin, PBS-BSA—blocking buffer.

After the protocol adjustment, we studied the procedures of glass surface activation
and FA–gelatin conjugate attachment outside the chemosensor followed by the chip conser-
vation. In this case, the reagents were incubated directly on the chip surface. To achieve
better saturation of the layer without the reagent flow along the chip surface, the total
duration of incubation was increased up to 1 h. The sensor chips with thus assembled
FA–gelatin conjugate on the surface were stored in a fridge at +4 ◦C till further analyses of
the samples.

A preliminarily prepared sensor chip was installed into the SCI chemosensor, and a
PBS-BSA washing buffer was passed for 5 min to register the sensorgram baseline. Then,
an FA antibody solution was passed for 15 min. Figure 4 illustrates a real-time assembly of
a biolayer formed by specific binding of a high-concentration (70 µg/mL) solution of FA
antibody passed along the glass chip coated by the FA–gelatin conjugate.
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3.2. Dependence of the Biolayer Parameters on FA Antibody Concentration

The next series of experiments was devoted to determining the relationship between
FA antibody concentration in a solution passed along the sensor chip and thickness of the
resulting biolayer. The respective sensorgrams are presented in Figure 5.
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Figure 5. Comparative analysis of the biolayer thickness and the rate of its formation depending on
FA antibody concentration. The solutions of FA antibody in concentrations of 4.66, 7, 17.5, 35, and
70 µg/mL were pumped along the sensor chips that had FA–gelatin immobilized on their surface.

The sensorgrams demonstrate an evident correlation between the rate of biolayer
formation, its thickness, and concentration of FA antibody in the passing solutions. These
data indicate that maximal antibody concentrations are desirable for larger signals but
it negatively affects the limit of FA detection by decreasing the competition rate while
incubation with samples having low concentration of free FA. Besides, that leads to high
consumption of reagents. Therefore, an optimal compromise should be sought.

3.3. Determination of the Detection Limit and Demonstration of Long-Term
Chemosensor Operation

The limit of detection (LOD) of free FA in a solution was determined as follows. Free
folic acid samples (a series of several different dilutions to obtain the concentrations of
22,650 pM, 4500 pM, 900 pM, 180 pM, 36 pM, 7.2 pM, and 1.4 pM) were incubated with
FA antibody (7 µg/mL) for 10 min. Then, the resulting solution was passed along the
sensor chip with attached FA–gelatin conjugate. The results obtained in these experiments
were used for plotting the calibration curve and determination of the minimal detectable
concentration of free folic acid (by 2σ criterion), which was equal to 0.9 pM (Figure 6).
The 5-parameter logistic regression model [48], commonly used for curve-fitting analysis
in bioassays, immunoassays, and other dose-response curves, was used for plotting the
calibration curve. It should be noted that the clinically significant range of folic acid
concentrations is admitted to be 4500–34,000 pM in terms of the physiological content [6]; it
can considerably change due to pharmaceutical formulations and nutritional supplements.
Therefore, the wide dynamic range shown of 0.9–220,000 pM covers the whole physiological
range of folic acid concentrations.

Thus, the developed method of FA detection features excellent analytic characteristics
that are not inferior to the most advanced sensitive techniques, which employ various
labels, or to the approach of liquid chromatography (Table 1). Moreover, since the proposed
method is based on direct optical registration of inter-molecular interactions, it offers all
the advantages of label-free techniques, namely: quantitative registration in real-time of all
assay stages, an option to analyze kinetic characteristics of interactions, and detection of
the unlabeled forms of analytes.
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Table 1. Comparison of different methods for FA detection.

Detection Method Dynamic Range, nM Assay Time LOD, nM Ref.

SCI 0.0009–220 20–30 min 0.0009 this work

Spectrophotometry 2265–56,600 25 min 24.9 [49]

ELISA 0.71–45.4 ~3 h 0.272 [50]

Photochemical-
fluorimetric 227–90,702 2–10 min 227 [51]

LC-MS/MS 0.226–227 10–30 min 0.226 [52]

Chemiluminescence 8.4–120 60 min 1.1 [53]

Electrochemiluminescence
immunoassay 272–1407 27 min 45 [54]

It should be noted that the proposed method offers important advantages over tradi-
tional label-free approaches. These include (i) no additional thermal stabilization is needed
for the sensing unit; (ii) affordable cost of consumables—glass sensor chips; and (iii) great
potential for multiplex analysis using multi-channel optical registration by, for example, a
CCD array.

A separate series of experiments was devoted to verification of the sensor performance
for the long-lasting experiments exceeding 200 min. Figure 7 demonstrates the stepwise
filling of free FA sites on the sensor chip surface by FA antibody applied at growing
concentrations. The FA antibody solutions were prepared as mixtures with free folic acid.
The FA concentrations gradually reduced (4500 pM; 900 pM; 180 pM; 36 pM; 7.2 pM, and
1.4 pM), so the content of free FA antibody grew accordingly. One can see in the figure that
the sensor response to the variations in the analyte concentration was correct during the
whole experiment. That indicates the stability of the developed assay, as well as the sensor
capacity for registration in real-time of longer experiments.
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of free FA: I—22,650 pM, II—4500 pM, III—900 pM, IV—180 pM, V—36 pM, VI—7.2 pM, and
VII—1.4 pM).

3.4. Investigation of Binding Specificity and Control Experiments

The specificity of antibody-antigen binding was confirmed by experiments with a neg-
ative control. The measurements were carried out at the standard conditions, and PBS-BSA
buffer without antibodies was used as the negative control. The results exhibited in Figure 8
illustrate that there were no noticeable changes in the biolayer thickness when the FA anti-
body was not present in the sample and, consequently, non-specific interactions were not
registered. Besides, non-specific signals were not registered when using the samples, which
contained only one of the following substances: chloramphenicol, thyroxine, ochratoxin
A, or large protein molecules—HBsAg, PSA, or cTnI. Besides, control experiments were
carried out for: (i) demonstration of absence of FA antibody binding with the surface if the
FA–gelatin conjugate immobilization step is omitted (Figure S2); (ii) investigation with an
ELISA-based technique of the effect of presence of FA–gelatin conjugates on the glass sensor
chip surface onto immune complexes formation (Figure S3); (iii) demonstration of absence
of binding of anti-mouse antibody with the surface if the FA-antibody immobilization step
is omitted (Figure S4); (iv) study of the effect of FA-antibody presence on formation of
complexes on the surface of a glass sensor chip with an ELISA-based technique (Figure S5);
(v) demonstration of the absence of FA–gelatin conjugate binding with the sensor chip
surface that was not pre-activated by cardiimide (Figure S6); and (vi) studies on selectivity
of the developed chemosensor in the presence of non-target analytes (Figure S7). Remark-
ably, the developed method shows excellent reproducibility: intra- and inter-assay relative
coefficients of variation equal 7.3% and 9.6%, respectively.

3.5. Investigation of the Biolayer Reconstruction

The reconstruction of biolayer formed by the FA antibody on the sensor chip surface
was studied in the experiments, in which low concentration solutions of folic acid were
passed along the layer of surface-attached antibody. A decrease in the biolayer thickness
was detected during several passes of the solutions containing FA at the following con-
centrations: 2.2 pM, 22 pM, 226 pM, 2200 pM, and 22,000 pM (Figure 9). Remarkably, the
antibody layer could be reconstructed by a simple addition of the antibody solution to the
sensor chip. The reconstructed biolayer was less stable than the initial one, nevertheless,
it was suitable for further measurements. The procedure of biolayer reconstruction is
attractive for multiple use of the biochip with the attached FA–gelatin conjugate.
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Figure 9. Investigation of stability of the biolayer formed on the sensor chip surface. The sensorgram
demonstrates a gradual decrease in the biolayer thickness according to the FA concentration in the
solution: I—2.2 pM, II—22 pM, III—226 pM, IV—2200 pM, and V—22,000 pM. Step VI shows an
option of rapid reconstruction of the biolayer by application of the FA antibody solution.

4. Conclusions

A method has been developed for preparation of inexpensive single-use sensor chips
from standard microscope cover glass slips. The method enables real-time adjustments of
the procedure parameters. The demonstrated performance of the obtained sensor chips for
highly-sensitive and specific measuring of folic acid concentrations using a label-free SCI
chemosensor indicates the method prospects for FA determination in pharmaceutical sam-
ples and directly in biological liquids. The developed technique does not involve expensive
equipment, consumables, or labor-intensive operating procedures. The employment of
SCI chemosensor makes the method competitive with the most modern methods of FA
measurements, such as electrochemical sensors. The method can be further extended to
real-time determination of other low-molecular-weight biomarkers with high specificity
and accuracy.
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acterization of the sensor chip surface by contact angle measurement; Figure S1: SEM-based mor-
phological characterizations of the sensor chip surface at different functionalization stages: ami-
nated surface (left), carboxilated surface (center), and surface after FA-gelatin conjugate immobi-
lization (right); Figure S2: Absence of FA antibody binding with the surface if the FA–gelatin conju-
gate immobilization step is omitted (verified by the label-free spectral correlation interferometry);
Figure S3: Effect of presence of FA–gelatin conjugates on the glass sensor chip surface on immune
complexes formation studied with an ELISA-based technique; Figure S4: Absence of binding of
anti-mouse antibody with the surface if the FA-antibody immobilization step is omitted (verified
by the label-free technique of spectral correlation interferometry); Figure S5: Study of the effect
of FA-antibody presence on formation of complexes on the surface of a glass sensor chip with an
ELISA-based technique; Figure S6: Demonstration of the absence of FA–gelatin conjugate binding
with the sensor chip surface that was not pre-activated by cardiimide; Figure S7: Studies on selectivity
of the developed chemosensor in the presence of non-target analytes.
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