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Abstract: Two methods were proposed and implemented for the fabrication of channel waveguides
in an Er-doped Tellurite glass. In the first method, channel waveguides were fabricated by implanting
1.5 MeV and 3.5 MeV energy N+ ions through a special silicon mask to the glass sample at various
fluences. Those waveguides implanted at a fluence of 1.0 × 1016 ions/cm2 operated up to 980 nm,
and showed green upconversion of the Erbium ions. In the second method, channel waveguides
were directly written in the Er3+: TeO2W2O3 glass using an 11 MeV C4+ ion microbeam with fluences
in the range of 1 · 1014–5 · 1016 ions/cm2. The waveguides worked in single mode regime up
to the 1540 nm telecom wavelength. Propagation losses were reduced from the 14 dB/cm of the
as-irradiated waveguides by stepwise thermal annealing to 1.5 dB/cm at λ = 1400 nm.

Keywords: ion beam implantation; ion microbeam; channel waveguides; integrated optics; rare earth
doped material; optical design and fabrication; microstructure fabrication

1. Introduction

Photonics technology is part of virtually every branch of modern industry, healthcare
and everyday life. One of its first and most important applications is in telecommunications.
Photonics has found its more recent applications in precision instrumentation, defence,
healthcare, sensing, automotive industry and aerospace. The introduction of photonic
integration in optics in the last 20 years was a revolutionary change, similar to that caused
by the invention of integrated circuits in electronics 60 years ago.

The evolution of the optical industry for a long time consisted of the improvement
of the basic components, finding the best materials and developing better techniques for
device fabrication. Photonic technology has largely been standardised by now. Standard
technologies are used in the fabrication of optical chips.

Electronic chip features are now in the order of ten nanometres. The rapid decrease
of feature size has rendered older microelectronic fabrication facilities obsolete. Since the
feature size of photonic components is in the order of a few hundred nanometres, photonic
companies are using modified “old” microelectronic facilities to fabricate photonic chips.

The fabrication of optical integrated circuits, just as that of their electronic counterparts,
involves a number of successive steps.

Integrated optical and optoelectronic devices have two basic components: waveguides
and gratings [1,2]. In-diffusion of metal ions [3], ion exchange [4,5], sol-gel techniques [6],
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ion beam implantations/irradiation [7], epitaxial layer deposition by sputtering [8], molec-
ular beam epitaxy [9], pulsed laser deposition [10] and chemical vapour deposition [11] are
used for waveguide fabrication in optical materials

Ion beam implantation is an outstanding technique for waveguide fabrication, thanks
to its applicability to a wide range of materials, and the very good controllability of the di-
mensions and refractive index profile of the waveguides [12–18]. Ion-beam-implanted optical
waveguides usually either maintain the optical properties, such as the optical luminescence
spectra, of the non-implanted bulk or regain them after an adequate thermal annealing.

Since the first documented application of ion beam implantation to waveguide fabri-
cation in 1968 [19], waveguides in over a hundred optical materials have been produced
using this technique. The energies of the implanted ions were typically between a few
hundred keV and several MeV [20–23].

However, in spite of the extensive research work carried out since the first publi-
cation in this field, about 50 years ago, ion beam implantation is still far from being a
well-established technology. The main drawback of using ion beam techniques for the
fabrication of integrated optical elements–besides of the need of access to a low-energy
particle accelerator–was the fact that fluences in the order of 1015–1017 ions/cm2 needed to
be applied to the sample to cause a refractive index change adequate for the fabrication
of a low propagation loss optical waveguide. This holds true especially when the mass
and energy of the implanting ion are low (e.g., hydrogen or helium ions of energies up to a
few MeV). The use of the so-called swift heavy ions (SHI) about 15 years ago dramatically
reduced the required fluences necessary to produce integrated optical elements down to
1011–1013 ions/cm2, consequently reducing the fabrication time for an element at a given
ion current density. This is due to the fact that, in those cases, electronic interaction among
the implanted ions and the atoms in the sample becomes dominant over nuclear interaction,
the latter being more important at lower ion mass and energy. The first studies on the effects
of swift heavy ion irradiation on the optical properties of materials date back to the 1990s [24].

As for the implanted ions, in the first two decades, mainly light and medium mass
ions of moderate energy (up to about 5 MeV) were used, due to the limitations of the
available one-stage Van de Graaff accelerators. The development of the TandetronTM (HVE)
accelerators made it possible to use swift medium mass and heavy ions for the fabrication
of optical waveguides.

Depending on the target material (optical crystal or glass) and the implanted ion, refrac-
tive index changes were produced mainly either by electronic or nuclear interaction [25–29].

The simplest method to produce channel waveguides is via the use of masks to allow
implantation only in the open areas, while ions stop in the mask layer before reaching the
target surface. The development of ion microbeam-forming devices made it possible to
write the channel waveguides directly.

An example of the first method is the work of Vazquez et al. [30]. They produced
channel waveguides in a soda lime (Er3+/Yb3+)-doped glass. As the greatest part of the
researchers in this field, they measured propagation losses of their waveguides only at
visible wavelengths.

As for the early research work on direct microbeam writing of channel waveguides,
the greatest part of them used proton microbeams [31–35].

Microbeam techniques significantly improve the flexibility of the fabrication of components.
An example of proton-beam-written channel waveguides is the work of Roberts and von

Bibra [31]. Their buried waveguides had a very low propagation loss of 0.5 dB/cm at 632.8 nm.
Bettiol et al. obtained propagation losses of 8.3 dB/cm at 632.8 nm in 2 MeV proton-

microbeam-written channel waveguides in Foturan glass [32]. They also fabricated erbium-
doped waveguide amplifiers (EDWAs) in an Er3+/Yb3+ co-doped IOG laser glass material [33].
They obtained low propagation losses (0.8 dB/cm at 1310 nm) and high gain (1.72 dB/cm) in
the C telecom band, with a pump beam of 975 nm, after an additional thermal annealing.

Channel waveguide fabrication by proton beam implantation in chalcogenide glasses
was reported by An et al. [34]. They achieved 2 dB/cm propagation losses at 1064 nm.
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Direct proton beam writing at 1 MeV energy in Nd: YAG laser crystal was reported by
Yao et al., with 4 dB/cm propagation loss in the channel waveguide [35].

As for the fabrication of channel waveguides and other two-dimensional integrated
optical elements, the development of ion microbeam facilities attached to accelerators,
proton and helium microbeams have been extensively used for producing optical channel
waveguides and gratings, as well as other microoptical elements in organic and inorganic
optical materials [27,35].

However, these “traditional” ion microbeam techniques still have not developed into
a reliable routine technology.

It must be noted that this technique (often called proton beam writing or PBW) is
not to be confused with FIB technology. In the case of FIB equipment, very low energy
(1–50 keV) ions, usually coming from liquid metal ion sources (LMIS), especially gallium
ion sources, are used. FIB is a well-established technology in the semiconductor industry,
mainly used to defect analysis, circuit modification, photomask repair, imaging and micro
machining. FIB is completely out of the scope of this project.

Our early research in the second half of the 1990s resulted in high-spatial frequency ion-
implanted transmission optical gratings of acceptable diffraction efficiency, using standard
photoresist masks, and implantation with N ions in the 500–1500 keV energy range [36].

More recently, in the framework of two successive Hungarian research projects (with
international co-operation) we have fabricated planar optical waveguides in various
optical materials, such as sillenite and eulytine type bismuth germanate (BGO), CaF2,
rare-earth ion-doped and undoped LiNbO3 and Er: TeO2-W2O3 glass, using various light-
and medium-mass ions of 1–5 MeV energy. The waveguides proved to be functional at the
telecom C band (1550 nm) [37]. We adapted the method of multi-energy ion beam implanta-
tion for the use of higher energy medium mass ions, to allow for an improved control of the
depth profile of refractive index in the planar waveguides, and hence increasing confinement
of the guided wave. We succeeded in fabricating channel waveguides in an Er: TeO2-W2O3
glass, using 1.5 MeV N+ implantation through masks. Functionality and green upconversion
at 980 nm were demonstrated [38]. This method is illustrated in Figure 1.
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Figure 1. Fabrication of the channel waveguides by ion beam implantation through a silicon mask.

We also present our results in direct ion microbeam writing of channel waveguides in
an Er-doped tungsten tellurite glass, using medium mass high-energy ions. Additional step-
wise thermal annealing was also applied to the implanted sample. The channel waveguides
underwent thorough structural and functional tests.

The main advantage of this method compared to previous methods is the significantly
reduced fabrication time enabled by reducing the necessary fluence values to achieve high
refractive index modulation.
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These channel waveguides proved to be of single mode at the C telecom band. After the
thermal annealing, their propagation losses were equal to or lower than of those fabricated
by MeV energy focussed proton or He ion beam writing. Besides, of the fabrication of
simple channel waveguides, we succeeded in producing more complicated structures, as
well. Those results are to be published elsewhere soon.

2. Waveguide Design and Fabrication
2.1. First Method: Implantation through a Silicon Mask

Channel waveguides were fabricated using the 5 MV Van de Graaff accelerator of the
Wigner Research Centre for Physics (former Research Institute for Particle and Nuclear
Physics) of Budapest. Implantation was carried out through a silicon membrane mask with
25 µm wide slits, with 1.5 MeV energy (E) N+ ions (as shown in Figure 1), and later with
3.5 MeV energy N ions, using difference fluences (F), namely 0.5, 1, 2 and 4 · 1016 ions/cm2.

2.2. Second Method: Direct Writing by an 11 MeV Carbon Ion Microbeam

Fabrication of the channel waveguides was carried out at the 3 MV Tandetron 4130 MC
of the Nuclear Physics Institute AV CR, Řež, Czech Republic. Channel waveguides were
directly written in the sample with a microbeam of 11 MeV C4+ ions.

Microbeam size for the channel waveguides in was 8 µm × 12 µm, the shorter size
side of the rectangle being the width of the channel waveguides. The length of the channel
waveguides was 9 mm. Irradiated fluences ranged from 1 · 1014 to 5 · 1016 ions/cm2. When
irradiating a sample with medium- or heavier weight ions of high energies (Swift Heavy
Ions) the predominant interaction with the target becomes the electronic one, instead of the
nuclear one.

3. SRIM Simulation to Predict Waveguide Structure
3.1. Implantation through a Silicon Mask

The depth of the waveguides was defined by the depth distribution of the implanted
nitrogen and carbon ions in the glass sample. It was calculated with the Stopping and Range
of Ions in Matters (SRIM) code [39]. The results for E = 1.5 MeV nitrogen ions are presented
in Figure 2A. N+ ions penetrate down to around 2 µm below the surface, and the maximum
of the distribution is at 1.5 µm. The depth structure of the waveguide (distribution of
the index of refraction) has been calculated from the results of spectroscopic ellipsometry
measurements performed on a planar waveguide implanted with the same 1.5 MeV energy
N+ ion beam at the same fluence. The two blue bars in the figure represent the boundaries
of the barrier layer. The thickness of the well of that waveguide was 1.6 µm, and that of
the barrier was about 0.1 µm. Details of the spectroscopic ellipsometry experiments are
presented in Section 6.
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Another series of channel waveguides was fabricated by the above method, but using
N+ ions of 3.5 MeV energy. Due to the higher longitudinal range of the 3.5 MeV N+ ions,
those channel waveguides had deeper wells and wider barriers. This is demonstrated in
Figure 2B. The calculated distribution of the implanted N+ ions (black line in Figure 2B)
is centred at 2.6 µm below the sample surface. The depth structure of the waveguide has
been calculated from the results of spectroscopic ellipsometry measurements performed on
a planar waveguide implanted with the same 3.5 MeV energy N+ ion beam at the same
fluence. The two green bars in the figure represent the boundaries of the barrier layer. The
thickness of the well of that waveguide was 2.4 µm, and that of the barrier was about 0.4 µm.

3.2. Direct Writing by an 11 MeV Carbon Ion Microbeam

According to the SRIM simulations, the maximum of the energy loss due to electronic
interaction was at 3.8 µm below the surface, and that due to the nuclear interaction was
at 6.9 µm, as can be seen in Figure 3. The maximum electronic energy loss was about
14 times higher than the nuclear one. Although the range of the 11 MeV C4+ ions is much
longer than that of the 1.5 MeV and 3.5 MeV N+ ions, the thickness of the well of the planar
waveguide in the first case will be determined by the amorphised barrier layer that will
be created around the maximum of the energy loss. Thus, depending on the implanted
fluence, the well thickness will be between about 3.5 and 0 µm. (The latter refers to a fully
amorphised layer extending from the maximum of the electronic energy loss up to the
sample surface.)
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Figure 3. Electronic (red line) and nuclear (dotted blue line) energy loss vs. depth in an Er: tungsten-
tellurite glass irradiated with 11 MeV C4+ ions. Note that nuclear energy loss was multiplied by 10
for better visibility [40].

4. Microscopic Measurements of the Ion-Beam-Implanted Channel Waveguides

Microscopic study of the ion-beam-implanted channel waveguides made it possible
to check their quality. Since polarisation and interference phase contrast microscopy
were used, variations in the optical path across the channel waveguides could also be
qualitatively assessed.

4.1. Implantation through a Silicon Mask

The implanted channel waveguides were examined using a Nikon reflection po-
larisation microscope. Optical path variations were transformed into hue variations of
interference colours. Microscopic images of all channel waveguides implanted at all the
fluences are presented in Figure 4. One can see that higher implanted fluences created
larger optical path modifications in the channel waveguides. It must be noted that this
kind of microscopy, when using only dry objectives, shows the total optical path varia-
tion, including changes in both the refractive index and the surface height. To separately
measure the two effects, either the use of an immersion objective with an immersion oil
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with refractive index well matched to that of the implanted channel waveguide, or surface
profilometry are needed.
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Figure 4. Polarisation microscopic photos of channel waveguides implanted through a silicon mask
using 1.5 MeV N+ ions at fluences of 0.5, 1, 2 and 4 · 1016 ions/cm2 (A–D). Width of the channel
waveguides is 25 µm.

4.2. Direct Writing by an 11 MeV Carbon Ion Microbeam

The 11 MeV carbon-microbeam-implanted channel waveguides were also examined
using the same Nikon reflexion polarisation microscope. Four channel waveguides can be
seen in Figure 5. Implanted fluence decreases from top to bottom.
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Figure 5. Polarisation microscopic photos of channel waveguides using a microbeam of
11 MeV C4+ ions at fluences of 2, 1.4, 1.4 and 0.46 · 1015 ions/cm2 (from top to bottom). Width
of the channel waveguides is 15 µm.

The same sample was also studied by an interference phase contrast (INTERPAHKO)
microscope. A microphoto with details of four channel waveguides can be seen in Figure 6.

It was found that performing transmission INTERPHAKO microscopy on the well-
polished edge of the sample could yield very clear and well-defined images of the end faces
of the implanted channel waveguides. An example is shown in Figure 7. The width of the
channel waveguide was 15 µm and its depth was about 3.3 µm.
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Figure 6. Interference phase contrast microphoto of parts of four channel waveguides written in an
Er: tungsten-tellurite glass with a microbeam of 11 MeV C4+ ions. Irradiated fluence of the lowermost
channel was 4.6 · 1014 ions/cm2, and 1.4 · 1014 ions/cm2 for the others.
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Figure 7. Interference phase contrast microphoto of the end face (in the centre of the image) of a
channel waveguide written in an Er: tungsten-tellurite glass with a focused beam of 11 MeV C4+ ions.
Irradiated fluence was 4.6 · 1014 ions/cm2. Width of the rectangular channel waveguide is 15 µm.
Depth of channel waveguide is about 3.3 µm, which agrees well with the predicitons made from the
SRIM simulations presented in Figure 3. A Zeiss Peraval microscope was used.

5. Measurements of the Surface Profiles of the Ion-Beam-Implanted
Channel Waveguides
5.1. Implantation through a Silicon Mask

Both AFM and Dectac Profilometer measurements were performed on the channel
waveguides fabricated in the Er-Te glass by 1.5 MeV N+ ion implantation through a special
silicon mask. A typical AFM image is presented in Figure 8. Note that the profile is
asymmetric and there is a compaction across the channel waveguide, as well as sharp
expansions at both edges.

Besides of the AFM study, systematic profilometry using a Dectac Profilometer was
also performed. The results are shown in Figure 9. At the second lowest implanted
fluence (1 · 1016 ions/cm2), the profile a rectangular ridge was obtained with a height of
about 25 nm (250 Å). However, at higher fluences, the surface of the implanted channel
waveguides forms an asymmetric wedge-shaped compaction. Its depth increases with the
implanted fluence. As will be shown later in the results of the functional studies of the
waveguides, the waveguide with the regular rectangular surface profile is the best one.
It is rather common that, depending on the combinations of the parameters of ion beam
implantation and the target, either expansion or compaction of the same target at various
implanted fluences occurs [12].
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Fluences were 1 · 1016 (A), 2 · 1016 (B) and 4 · 1016 ions/cm2 (C).

5.2. Direct Writing by an 11 MeV Carbon Ion Microbeam

The ion microbeam written channel waveguides were also studied by profilometry
(Bruker Dektak XT, tip radius: 5 µm) to check for possible surface relief structures. Indeed,
it was found that the irradiation by focused carbon ions produced considerable swelling of
the glass sample. The surface profiles of five as-implanted channel waveguides are shown
in Figure 10A. The amplitude of the ridges increases with the irradiated fluence. Even a
fluence of 1.07 · 1014 ions/cm2 produced a ridge of a height of 215 nm ± 20 nm. Increasing
the fluence of one decade (1.0 · 1015 ions/cm2) resulted in a ridge height of ca. 1 µm. Note
that the only exception is channel No. 3 (F = 5.0 · 1014 ions/cm2), since its ridge amplitude
is lower than that of channel No. 2, irradiated with half of that fluence. Moreover, the
ridge over channel No. 3 is wider than the other four. This can be attributed to vibrations
during irradiation. However, thermal annealing greatly reduced the height of the ridges, as
can be seen in Figure 10B. The height of the ridge of over the studied channel waveguide
(F = 4.6 · 1014 ions/cm2), after the complete stepwise thermal annealing (as described
below), was about 100 nm. In principle, such surface ridges located over the channel
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waveguides could either enhance or deteriorate vertical confinement in the core, but are not
capable of guiding at the designed working wavelength range of these channel waveguides.
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Figure 10. Surface profile of channel waveguides (A): As implanted. E = 11 MeV. Irradiated fluences
from left to right: 1.0 · 1014 ions/cm2, 2.54 · 1014 ions/cm2, 5.0 · 1014 ions/cm2, 1.0 · 1015 ions/cm2

and 1.5 · 1015 ions/cm2. (B): After stepwise thermal annealing up to 300 ◦C. E = 11 MeV. Irradiated
fluences from left to right: 1.4 · 1014 ions/cm2, 1.4 · 1014 ions/cm2 (the fluence was the same)
and 4.6 · 1014 ions/cm2 [40].

6. Spectroscopic Ellipsometry Measurements

To reveal the refractive index profile of the ion-beam-implanted channel waveguides,
planar waveguides fabricated in the same material by implantation of the same ions at
identical energy and fluence were studied by spectroscopic ellipsometry.

A Woollam M-2000DI spectroscopic ellipsometer was used. The parameters of the
implanted planar waveguides were: implanted ions: 1.5 and 3.5 MeV N+, wavelength
range: 400–1000 nm.

The optical model consisted of three layers: the stopping range (barrier), the well and
the surface roughness layer. The effective medium approximation was applied [41]. The
Cauchy dispersion relation was used for the description of the layers. The free parameters
were the parameters of the Cauchy relation and the thickness of the layers. The WVASE32
code of Woollam Inc. was used for the evaluation of the measured spectroellipsometric
(SE) data [42]. The evaluation for the planar optical waveguide implanted with 1.5 MeV
N+ at a fluence of 2 · 1016 ions/cm2 yielded 4.2 ± 1.4 nm for the thickness of the surface
roughness layer and 2.094 ± 0.002 for the refractive index of the non-implanted glass
substrate at λ = 500 nm. The thickness of the ion stopping layer (lower layer, next to the
Substrate) is 980 ± 50 nm, while the thickness of the upper layer is 1600 ± 70 nm. The
refractive indices (at λ = 500 nm) are 2.15 or 2.16 (±0.01), respectively. The agreement
between the ellipsometric results and the SRIM simulation are good, as can be seen in
Figure 2A. Note that the ellipsometric optical model is a simplified model, containing
homogeneous layers without depth inhomogeneity. (The Cauchy parameters are the fol-
lowings: An1 = 1.94 ± 0.15, Bn1 = 0.09 ± 0.15, Cn1 = −0.009 ± 0.036, Ak1 = 0.023 ± 0.095,
Bk1 = 0 ± 2; An2 = 1.93 ± 0.04, Bn2 = 0.086 ± 0.025, Cn2 = −0.0078 ± 0.0039,
Ak2 = 0.47 ± 0.09, Bk.2 = 1.6 ± 0.3, where An, Bn and Cn are the polynomial (linear,
quadratic and fourth-order) coefficients in the real part, while Ak is the amplitude and Bk
is the exponent of the imaginary part of the Cauchy-formula). Results of the ellipsometric
simulations for both the planar waveguides implanted with 1.5 MeV N+ at a fluence of
2 · 1016 ions/cm2 and 3.5 MeV N+ at a fluence of 4 · 1016 ions/cm2 are presented in Table 1.
Note, that the modulation (the difference between the refractive index of the implanted
layers and the substrate) is small, so the uncertainty of the fitted optical parameters is
relatively high, see Figure 11.
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Table 1. Optical parameters from the SE evaluation.

Implant
Energy
[MeV]

Thlower
[nm] An1 Bn1 Cn1 Ak1 Bk1 Thupper

[nm] An2 Bn2 Cn2 Ak2 Bk2 Thsr
[nm]

1.5 79 ± 6 2.005 ± 0.01 0.016 ± 0.007 0.0011 ± 0.001 3.9 ± 1.4 2.1 ± 0.3 1620 ± 3 2.00 ± 0.003 0.0056 ± 0.001 0.002 ± 0.0001 0.31 ± 0.04 1.5 ± 0.15 7.6 ± 0.1
3.5 489 ± 10 1.931 ± 0.001 0.078 ± 0.001 −0.0041 ± 0.0002 0.4 ± 0.01 1.36 ± 0.04 2381 ± 6 1.926 ± 0.008 0.09 ± 0.02 −0.023 ± 0.007 0.019 ± 0.018 0 ± 0.4 0 ± 0.3
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Figure 11. Measured (dotted) and fitted (solid lines) ellipsometric spectra (left column); refractive
index (solid line) and extinction coefficient (dotted) depth-profile at λ = 500 nm (right column),
calculated from the measured ellipsometric spectra of the left column. Ions: 1.5 MeV (upper row)
and 3.5 MeV (lower row) N+ ions in Er-Te glass. Position and width of barrier layers, shown in
Figure 2A,B were taken from the depth profile of refractive index in the right column of Figure 11.

Spectroscopic ellipsometry is a powerful tool for the determination of the depth
distribution of refractive index in stacks of transparent thin layers. As it can see from
this two examples, it can provide information on the structure and guiding capabilities
of planar optical waveguides. It must be noted that m-line spectroscopy is the commonly
used method to study planar waveguides [1]. In m-line spectroscopy propagation modes
supported by the planar waveguide at various wavelengths are detected. Then depth
distribution of the planar waveguide is determined from the detected modes. However,
determination of the waveguide structure by this method is not always unambiguous.
Thus, spectroscopic ellipsometric measurement of the same planar waveguide can be used
to confirm the validity of the structure obtained from the m-line spectra.

7. Micro Raman Spectroscopy
7.1. Implantation through a Silicon Mask

Raman spectroscopic measurements were performed with a Renishaw 1000 micro-
Raman spectrometer at an excitation wavelength of 785 nm in order to detect the structural
changes caused by the ion implantation in the channel waveguides. The Raman spectra
recorded on the tellurite glass inside and outside the waveguide are shown in Figure 12.
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Figure 12. Raman spectra of the tungsten-tellurite glass recorded inside (red squares) and outside
(blue line) the waveguide.

The two spectra are very similar and resemble the Raman spectrum of tungsten-
tellurite glasses. These structures are composed of tellurium-oxygen and tungsten-oxygen
groups and the observed peaks can be assigned to these structural units–at 490, 645 and
725 cm−1 to the tellurite (TeO3/TeO4), and at 850 and 922 cm−1 to the tungsten oxide
(WO4/WO6) [43].

The ion bombardment during the channel waveguide preparation induces only minor
changes in the Raman spectrum. The most significant is the increase of the overall intensity
below 300 cm−1.

A detailed Raman mapping performed perpendicular to the waveguide (Figure 13)
showed, however, that more significant changes occur in the 50–300 cm−1 region. The
appearance of two new Raman peaks has been observed in the implanted region at 120 and
135 cm−1. Based on their small FWHM values, these bands can be attributed to ordered
(crystalline) structural units, namely, to α-TeO2 paratellurite [44] that was formed upon the
ion irradiation.
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Figure 13. Micro-Raman spectra (A) taken across a channel waveguide (B) fabricated in an
Er3+- doped Tellurite glass with 3.5 MeV N3+ ion irradiation through a silicon mask. Length of
the blue bar in (B) is 8 µm. The red arrows show the direction of the Raman mapping along a line
perpendicular to the waveguide (B) and the order of the corresponding Raman spectra (A). Note the
appearance of two new Raman peaks in the implanted region, i.e., across the channel waveguide.
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7.2. Direct Writing by an 11 MeV Carbon Ion Microbeam

The Raman spectra recorded on the channel waveguides implanted with the 11 MeV
carbon microbeam were very similar to those shown in Figure 12. However, new peak
formation was not observed in the spectra. In contrast, changes were observed in the
parameters of the peak at around 920 cm−1. Namely, the width of the band was found
to decrease both in channel waveguides implanted with fluences of 4.16 · 1015 ions/cm2

(as implanted) and 4.6 · 1015 ions/cm2 (annealed) (Figure 14). This change can be attributed
to an ion-beam-induced transformation (ordering) of the tungsten oxide structural units in
the glass matrix. This effect is more remarkable in the annealed sample (about 3.5 cm−1

annealed vs. 1.5 cm−1 as implanted), where the heat treatment caused further relaxation
(and so ordering) of the structure.
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ing at 980 nm are shown in Figure 15. Our first results on fabrication of channel wave-
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= 1.5 MeV and F = 1 · 1016 ions/cm2 [38]. 
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Figure 14. Full width at half maximum of the 922.3 cm−1 Raman line across an as-implanted
(dashed line) channel waveguide, irradiated with a carbon microbeam of E = 11 MeV at a fluence of
4.16 · 1015 ion/cm2, and a thermally annealed (continuous line) channel waveguide, irradiated with
a carbon microbeam of E = 11 MeV at a fluence of 4.6 × 1015 ion/cm2. Note that the widths of the
two channel waveguides are different [40].

8. Functional Tests of the Channel Waveguides
8.1. Implantation through a Silicon Mask

The guiding properties of each channel waveguide were tested. The best waveguide
for E = 1.5 MeV proved to be that implanted at a fluence of 1 · 1016/cm2. Near field
image emerging from the waveguide at 633 nm and green upconversion of Er3+ ions after
pumping at 980 nm are shown in Figure 15. Our first results on fabrication of channel
waveguides in an Er-doped Tellurite glass were published in a letter in 2007 [38].
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Figure 15. (Left): channel waveguide near field image taken at 633 nm. (Right): Green upconversion
at 980 nm observed in the same waveguide. The channel waveguide is fabricated with N3+ ion at
E = 1.5 MeV and F = 1 · 1016 ions/cm2 [38].

8.2. Direct Writing by an 11 MeV Carbon Ion Microbeam

We tested wave propagation modes in each waveguide at λ = 635 nm and λ = 1540 nm.
We used a special setup for propagation loss measurements. Light from tuneable diode
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laser sources was coupled into the channel waveguides using bare single-mode optical
fibers. Thus mode size matching could be accomplished. Magnified near field images
of the laser beam emerging from the channel waveguides were taken by the use of the
microscope objective and a NIR sensitive Vidicon camera. Intensity of the transmitted light
was measured by coupling it into another single-mode fiber and then fed into a detector.
Propagation losses in both fibres, as well as insertion losses at the input and output of the
channel waveguides were also measured, so that the net propagation loss could be precisely
calculated. Propagation losses were measured at λ = 1400 nm. As-implanted propagation
losses were rather high, between 14 and 20 dB/cm. The best channel waveguide was that
implanted with a fluence of 4.6 · 1014 ions/cm2, with a propagation loss of 14 dB/cm. A
stepwise annealing up to 300 ◦C was applied to the sample to reduce propagation losses.
Results are presented in Figure 16 [40]. Propagation loss has a deep minimum around
125 ◦C. The lowest measured loss was 1.5 dB/cm at 150 ◦C, i.e., a tenfold decrease of the
propagation loss was achieved.
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Width and depth of the guided modes vs. annealing temperature were also measured
and are presented in Figure 17. Mode depth slightly increases with temperature while the
mode width does not change significantly until the 300 ◦C step.
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In conclusion, direct writing with energetic ion microbeams proved to be a viable
method for channel waveguide fabrication in tellurite glasses [40].

9. Discussion

We have demonstrated the possibility to fabricate channel waveguides in TeO2 erbium-
doped glass using two methods. The first one is low-energy ion beam irradiation through a
silicon mask. The second one is direct writing by microbeams of high-energy medium-mass
ions The latter method allowed for lower fluences, and hence, reduced fabrication time.
Besides the reduction in the necessary implanted fluence, ion microbeams also deliver
very high current densities into the target, compared to those achieved by macrobeams. A
region of positive refractive index change (∆n > 0) has been formed in the ion-implanted
waveguide, permitting light confinement laterally and transversely. From the results
obtained, it seems that ionization is the major contributing factor to the refractive index
change when high-energy medium-mass ions are used.

To get a better understanding of the waveguide formation mechanism in tellurite glass,
further work using FT-Raman and RNF measurements would be required.

Besides of the changes in the refractive index of the implanted regions, ridges and
grooves of variable amplitude were also formed over the channel waveguides due to
the ion-beam-induced expansion or compaction of the sample. Those amplitudes of the
ridge and grooves were very low, between 20 and 200 nm, in the case of the 1.5 MeV N+

ion-implanted channel waveguides. In the case of 11 MeV C4+ microbeam written channel
waveguides, ridge height varied between 200 and 1000 nm. However, those ridges were
still not able to support guided modes, and did not affect light propagation in the channel
waveguides. The large difference can be attributed to the fact that the current density in the
11 MeV C4+ microbeam was 8.70 · 10−4 A/cm2, while only 5.00 · 10−6 A/cm2 in the case of
1.5 MeV N+ ion-implanted channel waveguides.

It was found that micro Raman spectroscopy was also useful for the visualisation
of structural changes in the ion-beam-implanted channel waveguides. Changes in some
suitable Raman lines (line position and FWHM) correlate well with changes in the refractive
index in the channel waveguides.

10. Conclusions

We have devised and realised a novel method for channel waveguide fabrication. We
used high-energy microbeams of medium-mass ions for direct writing of such microstructures.

After adding a stepwise thermal annealing to the fabrication process, we achieved
propagation losses down to 1.5 dB/cm, using only an implanted fluence as low as
4.6 · 1014 ions/cm2, thanks to the predominant electronic interaction at implantation.

Because of the shorter stopping range of those ions compared to MeV energy protons
or He ions, we obtained channel waveguides immediately below the sample surface, in
contrast to the deeply buried ones produced by the light ions. This technique hopefully
makes it possible to fabricate low-loss, high-gain planar and channel-guided optical ampli-
fiers and lasers in materials like tellurite glasses, in which it is difficult or impossible to use
other techniques such as ion exchange. Such integrated optical elements could be combined
with other necessary elements (possibly also fabricated using one of the here-presented ion
beam techniques) to fabricate label-free optical biochemical sensors.
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