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Abstract: At present, food quality is of utmost importance, not only to comply with commercial
regulations, but also to meet the expectations of consumers; this aspect includes sensory features
capable of triggering emotions through the citizen’s perception. To date, key parameters for food
quality assessment have been sought through analytical methods alone or in combination with a
panel test, but the evaluation of panelists’ reactions via psychophysiological markers is now becoming
increasingly popular. As such, the present review investigates recent applications of traditional and
novel methods to the specific field. These include electronic senses (e-nose, e-tongue, and e-eye),
sensory analysis, and wearables for emotion recognition. Given the advantages and limitations
highlighted throughout the review for each approach (both traditional and innovative ones), it was
possible to conclude that a synergy between traditional and innovative approaches could be the best
way to optimally manage the trade-off between the accuracy of the information and feasibility of
the investigation. This evidence could help in better planning future investigations in the field of
food sciences, providing more reliable, objective, and unbiased results, but it also has important
implications in the field of neuromarketing related to edible compounds.

Keywords: chemosensory analysis; e-senses; emotions; food choice; neuromarketing; wearables;
panel test

1. Introduction

Nowadays, the monitoring of food to ensure an acceptable level of quality and safety
is still pivotal [1], particularly when considering the growing consumers’ requests for
safe and high-quality food; traits that influence the price that consumers are willing to
pay. Therefore, food industries must be sure to meet consumers’ expectations to be effec-
tively competitive in the market. Furthermore, it has been demonstrated that the sensory
features of the products, such as color, shape, flavor, and taste, play important roles in
the consumer’s perception and are therefore primary drivers for the acceptability of the
food products [2]. For instance, specific sensory traits, including excessive bitterness or
acidity, presence of off-flavor, or color changes due to reduced freshness, may constitute
a barrier to the consumption of food products [2]. The quality is generally described in
relation to nutritional, microbiological, and physicochemical characteristics, but none of
these parameters serve as a fully comprehensive descriptor of quality. These parameters
can be analyzed by traditional analytical approaches; however, the precise quantification of
specific compounds inside a product does not always reflect the final perception returned
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by the human senses. Therefore, another technique applied to assess the quality from
a consumer point of view is represented by sensory analysis [3], which is based on the
evaluation of the products through the five sense organs [4].

According to this view, there is a tradition in food sensory science in which the sensory
features measured are considered as properties of the food itself [5]. While attributing
sensory properties to the food rather than the person was meant to be a convenient way of
conceptualizing those aspects of the food perception being measured [5], this widespread
approach has consequences on the knowledge of human–food interactions.

Generally speaking, during both panel tests or a generic tasting experience, in higher-
order brain areas, all the food’s sensory attributes combine together with the context
(environmental, social and cultural contexts, individual traits, etc.) to produce a global rep-
resentation of their sensory experience. The total information is elaborated in order to create
a decision-making process [6,7]. The perceived quality as well as the desirability of foods
and beverages mainly rely on signals other than the food itself, such as cultural background
and social environment, together with emotions and memories from past experiences.
Furthermore, according to Plassman and co-workers [8], any action capable of creating
expectations about product quality would be able to modulate experienced pleasantness.

In this context, while it is widely accepted that emotions are a cardinal step in sensory
evaluation and are associated with how consumers make purchase decisions or give pref-
erence for specific foodstuffs, it is still far to be understood if, when, and how emotions
should be used as a strategy to evaluate food quality and preference [9]. Perceptual theories
posit that emotions carry important information about the world and that “they inform us
about our internal physiological and psychological reactions to external events and situa-
tions” [10] (see [11] for discussion), thus stimuli—such as food flavor—are firstly capable
of activating internal processes in the body, and the signals evoked can be further detected
and/or quantified. As such, in order to investigate the processes underlying emotions
in humans, different approaches and instruments are employed. Such instruments are
capable of detecting either explicit or implicit methods. As such, explicit methods, more
widely used until recently, include verbal or visual, self-reported procedures, or asking
individuals to report their feelings faced with a given scenario or product. Although quick,
affordable, and easy to administer, explicit methods can be affected by cognitive biases,
making their use always more debated [12]. In this scenario, implicit methods gained
importance, fostered by the continuous advances in Information and Communication
Technologies. Indeed, they make use of indirect, non-self-reported measures to continu-
ously register emotions during a given action, including while smelling, eating, or looking
at food. Usually, they rely on several kinds of biological responses, including cerebral,
cardiovascular, electrodermal, respiratory, and other responses.

Taken together, experimental evidence allows us to conclude that the only way to try
to understand the basic principles related to both food’s sensory characterization and con-
sumer’s behavior in terms of food choice, is to apply a multidisciplinary approach in which
Sensory sciences, Food technology, and Information and Communication Technologies,
particularly those relying on Bioengineering principles, are considered as complementary
tools to describe the same cognitive process.

In this context, a critical review of recent literature about the three above-mentioned
main topics was provided to highlight the main issues related to food quality assess-
ment also in order to predict consumers’ food choices. Furthermore, the question of
“if/when/how it’s possible to manage the role of emotions on trained panel performances
and consumer’s behavior” was also addressed.

To improve the clarity, the entire manuscript has been divided into three main sections:
(a) Food technology—e-senses to measure main chemical/physical features of food; (b) Sen-
sory analysis—direct interaction human/food and explicit methods to measure emotions
during tasting; and (c) Bioengineering—implicit methods to measure emotions during
the tasting. According to Figure 1, the three sections cannot be classified into different
hierarchical levels as they address distinct aspects of the same overall picture.
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2. Review Methodology

To provide the highest coverage for relevant papers published between January 2016
and April 2022, the main electronic bibliographic databases (e.g., Web of Science, ScienceDi-
rect, and PubMed) were consulted. Only the last six years were considered due to the
recent improvements in technology solutions and methods of sensory assessment. Initially,
authors focused their attention on the available reviews, in order to critically select the
main documents recently published on the topic. Then, older literature sources suitable to
improve and widen the topic description were also included, starting from the literature
of the documents selected in the predetermined time period. By means of predefined
eligibility criteria, the available papers were evaluated independently by six investigators
(two for each sub-topic). Any disagreement was addressed and resolved when necessary by
discussion during a consensus panel including all the six investigators involved in the se-
lection. For each sub-topic (Food technology—e-senses to measure main chemical/physical
features of food; Sensory analysis—direct interaction human/food and explicit methods
to measure emotions during tasting; and Bioengineering—implicit methods to measure
emotions during tasting) the first inclusion criterion was represented by the relevance of
the topic to our discussion about the specific state of the art. In the case of papers dealing
with the effect of different factors, we utilized hierarchic approaches to opt for the fitting
sections of discussion.

3. Food Technology—E-Senses to Measure Main Chemical/Physical Features of Food

In food quality assessment, the sensory approach gives an immediate measurement
of perceived attributes and returns information, which helps to better understand human
responses. However, sensory analysis is often time-consuming and expensive, and the
training of the sensory panelist can be tricky. Therefore, research has focused for a long
time on how to substitute human sensory organs with artificial senses (electronic nose,
tongue, and eye), which are innovative devices based on chemical and physical sensors
able to mimic the complex mechanisms of human senses [13]. E-senses have been used to
characterize food features associated with sensory and compositional profiles, in a rapid
and objective way. The use of E-senses for food quality evaluation has recently been
reviewed many times [1,14,15]. This section focuses on the recent applications of E-senses
for food evaluation, especially considering traits that influence humans’ perception of
food quality.
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3.1. E-Nose

An electronic nose (E-nose) is a tool that works through a series of sensors able to
detect volatile organic compounds (VOCs) in different types of samples. It is composed
of three main parts: sample delivery system, chemical sensors, and pattern recognition
system [16]. Gas sensors can be classified into different types, based on the materials:
conducting polymers (CP), metal-oxide semiconductors (MOS), metal-oxide semiconductor
field-effect transistors (MOSFET), and mass-sensitive (such as quartz microbalance), and
acoustic and optical sensors [16,17]. The VOCs emitted by the samples react with the
sensors, causing reversible electrical signals, which are properly analyzed to extrapolate
a possible pattern of some significance for the given analysis [17]. The intensity of the
sensor’s signal depends on specific parameters, such as the nature of the VOC (type and
concentration), reaction between VOCs and sensors, type of sensor, and environmental and
sampling conditions [16]. After the processing, what is obtained is an aromatic fingerprint.
The E-nose can be trained to interpret the results differentially depending on the food
industry needs, and the sensors can be customized based on the desired application [15].
As being able to mimic the human smell, the E-nose has been largely tested in the food
industry to identify specific aromatic fingerprints associated with food quality, especially
considering that different aspects influence the intensity and composition of food aroma
profile. Hence, the food aroma plays a crucial role in assessing food quality and internal
composition, as well as consumers’ expectations. Consequently, the aromatic evaluation has
become part and parcel of the food production process for quality inspection purposes [18].
An e-nose finds application in different steps of the agri-food production chain, such as
ripening stages and harvesting time evaluation, storage conditions, and shelf-life evaluation,
including the assessment of freshness or decay degree, microbial contamination, and off-
flavor formation [17]. This appears particularly important considering that food pathogens
and off-flavor production can lead to important economic loss and consumer rejection. For
instance, Viejo et al. [19] proposed an integrated artificial intelligence system to detect off-
flavors in beer using a low-cost, portable e-nose coupled with machine learning modeling.
The Authors were able to build three highly accurate models able to predict beer faults with
95, 96, and 97% accuracy. Moreover, Fuentes and colleagues [20] evaluated the potential of a
low-cost e-nose to assess the smoke-taint fault in wines. Using the e-nose measurements as
input in the machine learning model, it was possible to assess the number of smoke-related
compounds in wines, such as 20 glycoconjugates and 10 volatile phenols with high accuracy
(with R2 ranging from 0.95 to 0.99). Some examples of e-nose applications for food quality
evaluation are shown in Table 1. The e-nose shows to be a rapid, reliable, and low-cost
technology to assess food and beverages quality [21]. Moreover, the e-noses can be installed
at different production stages for quality monitoring during the whole production process,
which can help in taking fast corrective actions before obtaining the final product [22].
Besides the considerable advantages of the e-noses, there is still a great difference with
the human olfactory system. Hence, the technological approach has a certain type of
limitation due to sensor structure and analytical methods. For instance, sensor poisoning,
calibration, and sensitivity can represent important drawbacks [18]. Additionally, even
though the analysis is cheap and fast, a large number of samples is often required. Gas
sensors are very sensitive to external environmental conditions, especially to temperature,
humidity, and pressure. Therefore, an external condition during sampling strongly affects
the response of the sensor. As such, controlled conditions are required during the analysis,
which makes it difficult to use E-noses in outdoor settings [17]. Considering the obvious
limitations of the e-nose systems, a valuable approach to make key decisions in the food
production chain could be the combination of e-nose with sensory analysis approaches
discussed above. In this sense, it would make it possible to combine the ability of the
e-nose to perceive chemical compounds with the ability of the human nose to perceive the
synergic interaction of chemical compounds mixture. Moreover, the combined use of e-
and human senses would reduce the necessary resources (in terms of times and samples)
of both approaches [3,16–18].
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Table 1. Examples of E-Nose application for Food Analysis. MOS: metal-oxide semiconductors.
ANN: artificial neural network; CDA: Critical discourse analysis; CT classification and regression tree;
HCA: hierarchical cluster analysis; LDA: linear discriminant analysis; MARS: multivariate adaptive
regression splines; PCA: principal component analysis; PLS: and partial least square; RBFNNs: radial
basis function neural networks; SVM: support vector machine; SNV: standard normal variate.

Food Category Sample Application Sensor Chemometric
Approach Reference

Agri food

Rice Detection of fungal
infection during storage MOS PCA, LDA,

and PLS [23]

Peach Fruit decay MOS PLS and SVM [24]

Apple Detection of pathogen
contamination MOS PCA and HCA [25]

Dragon fruit, pear,
kiwi fruit, apple Fruit deterioration MOS PCA [26]

Potato Soft-rot infection MOS LDA, MARS, CT [27]
Broccoli Freshness evaluation MOS PCA, HCA, CDA [28]

Citrus Early detection of
Bactrocera dorsalis infection MOS PCA and LDA [29]

Bell pepper Freshness MOS PCA and PLS [30]

Mushrooms Early detection of
contamination MOS PCA and PLS [31]

Apple

Detection of pathogens
(Salmonella, Erwinia,

Streptococcus, and
Staphylococcus)
contamination

MOS PCA and HCA [25]

Grapes Identification of
smoke-related volatiles MOS PCA [32]

Oils and Dairy
products

Olive oil Evaluation of rancidity
and oxidation MOS PCA and LDA [33]

Olive oil Presence of defects MOS PCA [34]
Peony seed oil Adulteration MOS PCA and LDA [35]

Edible oils Adulteration MOS HCA, PCA, PCR,
LDA, and ANN [36]

Parmigiano
Reggiano cheese Adulteration MOS PLS and ANN [37]

Butter Adulteration MOS PCA and ANN [38]

Meat and fish

Fish Spoilage monitoring MOS - [39]
Tuna Process development MOS PCA [40]

Salmon Freshness evaluation
during storage MOS RBFNNs and PCA [41]

Squid Formaldehyde
identification MOS PLS [42]

Processed food

Grape syrup Adulteration MOS PCA, HCA, SVM,
and LDA [43]

Tomato paste Adulteration MOS PCA, PLS, SVM,
and LDA [44]

Chicken Evaluation of roasted
chicken deterioration MOS PCA [45]

Beverages

Vinegar Classification MOS PCA, SNV,
and LDA [46]

Orange juice Adulteration MOS HCA, ANN,
and CT [47]

Beer Off-flavor identification MOS ANN [48]
Wine Smoke taint evaluation MOS ANN [20]
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3.2. E-Tongue

The human sense of taste involves identifying basic flavors, namely, sweetness, acidity,
bitterness, salinity, and umami. Many researchers have introduced the electronic tongue
(E-tongue) as a rapid and objective method to replace the human tongue [1]. The e-tongue
is the analytical device based on the principles of functioning of the human sense of taste
able to classify the tastes of various chemical compounds in liquid phase samples. Like
the e-nose system, it allows the identification, classification, and analysis (both qualitative
and quantitative) of the multicomponent mixtures, returning a taste fingerprint. Overall,
it is based on a multi-channel taste sensor, composed of three parts: a sample-dispensing
chamber, a sensory array with different selectivity, and software for data processing. The
interaction between the sensors and the analytes gives a primary chemical energy output,
which is a function of components’ structure and concentration, and it is transformed into
electrical output [49]. These measurable electrical signals are used to recognize and classify
the pattern. Most of the e-tongue instruments are based on electrochemical techniques,
namely, conductometry, voltammetry, and potentiometry [50]; the latter representing the
most common and versatile one. These sensors are able to measure a great number of
different compounds in different solutions. In several studies, voltammetric e-tongues
have been used to identify sweeteners and acids (such as glucose, lactate, sucrose, lactic,
and acetic acid) in different food products. In the agri-food sector, potentiometric sensors
have been used to classify beers and wines [51]. Specifically, the e-tongue, based on
potentiometric electrodes sensitive to sodium, calcium, ammonia, and anion was able
to discriminate 34 types of beers from different brands and types. Moreover, it was
able to discriminate the presence of stabilizers and antioxidants, unmalted cereals, and
carbohydrates added during fermentation. The same system was used to analyze wines and
was able to discriminate the different wines based on the varieties used for the winemaking
(Chardonnay, Americanas, Malbec, and Merlot). In Table 2 are reported some examples of
e-tongues used for food analysis.

Table 2. Examples of E-tongue application for Food Analysis. ANN: artificial neural network; CDA:
Critical discourse analysis; CT classification and regression tree; ELM: extreme learning machine;
HCA: hierarchical cluster analysis; LDA: linear discriminant analysis; MARS: multivariate adaptive
regression splines; PCA: principal component analysis; PLS: and partial least square; RA: regressive
analysis; RBFNNs: radial basis function neural networks; SNV: standard normal variate; SVM:
support vector machine.

Food Category Sample Application Sensor Chemometric
Approach Reference

Agri food

Coffee beans Evaluation of bitterness Potentiometric RA [52]

Melon Evaluation of
storage condition Potentiometric PLS and LDA [53]

Corn seeds Aflatoxin detection Potentiometric PLS [54]

Oils and Dairy
products

Vegetable oil Adulteration with
low-grade oils

Solid-state
electrodes RA [55]

Olive oil Rancidity evaluation Potentiometric LDA [56]

Milk Discrimination based on
storage days Voltammetric ANN [57]

Paneer cheese Evaluation of
capsaicin content Potentiometric PCA [58]
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Table 2. Cont.

Food Category Sample Application Sensor Chemometric
Approach Reference

Meat and fish

Fish Presence of
heavy metals Colorimetric PLS and ELM [59]

Mutton Adulteration with pork
or chicken meat Potentiometric PCA, LDA, CDA,

and BAD [60]

Fish Freshness evaluation
during storage Potentiometric PCA-RBFNNs [61]

Carp
Evaluation of flavor

changes during
steam cooking

Potentiometric PCA [62]

Processed products

Tomato soup

Comparison of
consumer perception

and e-tongue of
different salts

Potentiometric PCA [63]

Soy sauce Identification of
rare sugars Potentiometric PCA [64]

Surimi Flavor after different
processing methods Potentiometric PCA [65]

Beverages

Wine Evaluation of
phenols content Voltammetric PLS [66]

Wine Adulteration of tokaj Potentiometric PCA, LDA,
and PLS [67]

Wine Off-flavor identification Potentiometric PCA [68]

Apple juice Evaluation of sweetness Impedance
spectroscopy PCA [69]

Liquor
Comparison of human

perception and e-tongue
in differentiating liquors

Potentiometric PCA [70]

Coconut water Taste deterioration
during time Potentiometric PCA [71]

As such, the e-tongue represents a powerful tool to characterize sensory properties of
different food products; however, like the e-nose, it still has some important limitations. One
of the main disadvantages of e-tongue sensors is that they can be sensitive to temperature
and, therefore, sensors’ temperature control is often required. Furthermore, the sensors
are often characterized by a relatively short lifespan and a frequent and careful check of
e-tongue performance and reliability is pivotal; in this case, a large number of samples is
also required to have a solid and reliable result [15]. Lastly, considering that human taste
also perceives astringency, viscosity, heat, spicy, and so on, a complete description of the
overall taste with the e-tongue alone is not possible. Again, and even more important than
in the case of the e-nose, the combined approach of e- and human tongue would bypass
these limitations.

3.3. E-Eye

Contrary to smell and taste, visual perception is not a chemical sense. Eye photorecep-
tors are capable of reacting to light and, therefore, collecting information from the external
environment, which will be transformed into electrical signals. In this sense, this section
may sound inconsistent with the other topics presented in the review. However, it must be
highlighted that the visual appearance of food products is a critical aspect of consumers’
quality expectations, and it plays a crucial role in the decision to purchase—or consume—or
not a specific product. Appearance, color, lightness, and texture are the first sensory factors
that the consumers perceive, and they determine products’ success. As such, careful and
reliable monitoring of food visual traits is crucial and cannot be ignored [72]. In this context,
the electronic eye (E-eye) has proven to give a fast, accurate, and cheap evaluation of food
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shape, size, color, lightness, morphology, and texture. Moreover, it can measure changes
in appearance over time at each step of the production chain [73]. The e-eye system is
based on different elements: light source, camera (in the case of an analog camera, a frame
grabber to convert the analog to a digital signal is necessary), computer with software, and
high-resolution monitor. As for the human eye, the main factors influencing the operation
of vision are the intensity and the type of light. As such, properly designed lights should be
considered in order to improve the precision and reliability of the analysis [74]. Generally,
the most used light sources include fluorescent and incandescent bulbs, but also LED,
quartz halogen, metal halide, and high-pressure sodium lamps are quite popular. The lamp
system can be arranged in a circular layout, which is used for flat samples, or scattered
layout, used for round-shaped products. The other crucial component of the system is
the camera (analog or digital), which is needed to record the image of the samples that
are then sent to the computer [73]. Analysis with e-eye is fast and extremely easy: it is
non-destructive, it does not require sample preparation and it allows multiple samples
and different parameters (i.e., color and shape) in just one run [75]. Among the multiple
applications, the e-eye is widespread in the food industry: it is used for the classification of
fruits and vegetables, to monitor specific production processes such as aging, fermentation,
or roasting, to detect defects and imperfections, and to verify color changes during food
storage or processing [76]. Hence, color is strictly linked with food freshness evaluation,
especially in perishable food products or with processed food quality. For instance, the
maturity level of grapes strongly influences the quality traits of the resulting wines. Among
the different parameters generally used to monitor the ripening, such as sugar and acidity,
polyphenol content plays a crucial role in the color, structure, astringency, and body of the
final wine. As such, Orlandi and colleagues [77] tested an e-eye to predict the ripening
stages of wine grapes based on their polyphenol content. With e-eye output and modeling
approaches, the system was able to predict some important parameters related to grape
phenolic ripening, such as color index, tonality, anthocyanins content, and specifically,
malvidin-3-O-glucoside and petunidin-3-O-glucoside. The visual parameters detected
with the e-eye allow the exclusion of faulty, substandard, or deteriorated products. Some
proposed applications are summarized in Table 3. However, an important point is that
poor and inadequate working conditions, such as scarce illumination, can dramatically
change the quality of the images, therefore returning unreliable information. Additionally,
the characteristic of the sample surface can scatter or reflect the light and, consequently, the
quality of the image. As such, an accurate choice of light sources and intensity based on the
environmental conditions and food properties is crucial to obtaining satisfactory results.

Table 3. Examples of E-Eye application for Food Analysis. CCD: Charge-Coupled Device; NIR:
near-infrared; CMOS: complementary metal-oxide semiconductor. ANN: artificial neural network;
CNN: convolutional neural networks; DFA: discriminant factor analysis; PCA: principal component
analysis; PLS: and partial least square; RA: regressive analysis; RF: random forest; SVM: support
vector machine; RA: regressive analysis; RF: random forest.

Food Category Sample Application Sensor Chemometric
Approach Reference

Agri food

Wine grapes Color changes
during ripening Colorimetric PLS and PCA [77]

Climacteric fruits Identification of
artificially ripened fruits Colorimetric CNN [78]

Corni Fructus Discrimination based on
color graduation Colorimetric DA, PCA, PLS,

SVM, and DA [79]

Tomato Quality monitoring
during storage CCD camera PLS [80]

Strawberries Evaluation of Fungal
Contamination

Vis–NIR
hyperspectral

imaging system
- [81]
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Table 3. Cont.

Food Category Sample Application Sensor Chemometric
Approach Reference

Oils and Dairy
products

Citrus oil Measure the
color difference Colorimetric DFA [82]

Olive oil Characterization Colorimetric PCA [13]

Meat and fish Meat Freshness evaluation
Vis–NIR

hyperspectral
imaging system

PLS [83]

Processed products

Dried tangerine
peel

Quality evaluation
after different

processing methods
Colorimetric DFA [84]

Carasau Bread Monitoring
manufacturing process Colorimetric ANN [85]

Beverages Tea Quality evaluation CMOS camera PLS, SVM, and RF [86]

4. Sensory Science—Direct Interaction Human/Food and Explicit Methods to Measure
Emotions during Tasting

Generally speaking, during a panel test, the data collected by the five senses of trained
judges (sight, touch, smell, taste, and hearing) can be interpreted and statistically analyzed
to fully characterize a food product during the whole production process as well as during
storage. As previously reported [87–91], over the last decades, this analytical approach has
been suitably applied alone or in combination with specific e-senses [17] in the Food tech-
nology field for several main purposes, such as the development of new processes and/or
products, quality control, consumer acceptability, flavor, and taste characterization, etc.

To improve the reliability of sensory results as well as to manage the main possible
biases derived from external conditioning, new official methods for sensory analysis of
specific categories of products have been developed and validated over time. However, in
spite of such efforts, the possibility to reliably predict food choice or purchase behavior still
appears far to be achieved [92]. Liking the sensory properties of a food’s appearance, indeed,
is mandatory, but not sufficient to explain food choice [93]. As a consequence, nowadays,
sensory laboratory tests or consumer trials are excellent at rejecting bad products, but not
very efficient at predicting which acceptable products will still maintain their appeal in
5 years’ time [94]. There are many reasons for this failure, which has persisted even as
research has become more sophisticated by taking into consideration the complex context
in which food choice occurs [95–97].

To solve this gap, the past decade has seen a dramatic increase in interest toward the
evaluation of emotions in consumer and sensory science [12,98]. In particular, valence
(degree to which an emotion is favorable or negative) is at the core of the current hedonic
measures in sensory science (under the assumption that good products provide pleasure). In
addition, while the measurement of the arousal (intensity, or the power of the accompanying
emotional state) is not always routine, it is nevertheless a key variable underlying the impact
of stimulus complexity on hedonic responses [99]. Therefore, to deepen our understanding
about the role of emotions in shaping perceived food quality, it seems of utmost importance
to use a combination of explicit methods (self-reported ratings) to measure “valence” and
implicit methods (measurement of physiological reactions) to better evaluate “arousal” [9].

In this context, the recent research outlined above strongly points to the importance of
a variety of factors that need to be considered when the measure of emotions is addressed
in food-related studies, involving both trained judges and consumers [94]. Among others,
in the following subsections of this paragraph, the importance of the development of an
emotion lexicon specific for each foodstuff to be characterized, the influence of the context
in which the tasting occurs, as well as the role played by the main features determining the
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taster’s attitudes toward foods, will be addressed and discussed. The main issues affecting
the performances of trained panelists will also be considered.

4.1. Emotion Lexicon

As widely reported in the literature [9–12], emotions have been defined as a patterned
collection of chemical and neuronal responses that are produced by the brain when it
detects the presence of an emotionally competent stimulus, such as an object or situation.
Perceptual theories posit that emotions carry important information about the world and
that “they inform us about our internal physiological and psychological reactions to external
events and situations”. In other words, emotions can be defined as physical signals of the
body reacting to external stimuli.

According to Pedroza and collaborators [9], in a recent review in the specific context
of wine consumption, the interest in characterizing emotions elicited by external stimuli
strives from the evidence that they have been linked to affective behavior and decision
making involving mood, motivation, drive, desire, preference, attitude, passion, and
arousal [11,100]. In addition, three postulates can be stated [11]: (i) evolution has played an
important role in shaping emotions features and function, (ii) they differ significantly from
one another, and (iii) basic emotions can be blended to obtain non-basic ones.

In this context, creating specific lexicons adapted for different populations is at the
base of the development of explicit methods to measure the emotions elicited by food.
Concerning wine, for example, after the crucial work of Ferrarini et al. [101], four further
studies have proposed the wine emotion lexicon [102–105], based on different method-
ological approaches and, remarkably, including the tasting of real wine samples. Figure 2
presents a compilation of the 72 unique terms (not repeated) used to describe emotions
evoked by wine from these studies as reviewed by Pedroza et al. [9]. Neutral/ambiguous
terms were arbitrarily classified by the authors.
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4.2. Context

Context plays a key role in sensory and consumer science, as in any evaluation of a
product, everyone provides their own experience, along with its emotional aspects [94].
Using structural equation modeling, Calvo-Porral et al. [106] deduced that the “occasion
of consumption contributes to modify and shape the emotional experience in product
consumption”. Regarding emotions aroused by wine, Ristic and colleagues [107] defined a
link between consumption occasion and sensory descriptors. Consuming wine in restau-
rants or in social environments, indeed, turned out to produce better positive emotions
in comparison with the same evaluation performed in a laboratory testing context [108].
Moreover, Silva and colleagues [109] highlighted the preference for consuming wine with
meals at home, parties, restaurants, and together with family and friends. The question
to be answered from these findings then seems to be how to separate the contribution of
context to experienced emotions. In this sense, Sinesio and co-authors [110] found that
context, more than wine, influenced the rating of emotions and sensory terms.

4.3. Taster Profile

As with any other measurement in consumer research and sensory analysis, the
measuring of emotion is affected by individual differences, which contribute to a large
extent to the variance. According to Calvo-Porral and colleagues [102], in the specific
and emblematic case of wine consumption, “the average consumer does not exist” and
consumer groups could be hypothetically distinguished according to emotional descriptors
aroused by tasting wines. Different product involvement analysis is then characterized by
the classification of participants according to the frequency of wine consumption, and the
knowledge and the appreciation of wine [102,103,106,108,111].

Some people discriminate between different emotional states in a more detailed way
than others (granularity), and this appears to go beyond having a richer emotional vocab-
ulary. As a fundamental consequence of variations in granularity in the use of emotion
profiles, the choice of a small or large number of emotion words (EWs) will depend not
necessarily on differences in response to a food, but on this characteristic of the cognition
of an individual [94].

As the outcome of the numerous evidence showing that language modifies both
our own expression of emotions and their interpretation by others, facilitating also the
discrimination of emotions in cases of a higher ability to use emotional languages, taster
profiling involves language ability as well as the level of education and other relevant
indicators of socio-economic status that are justified in emotion studies. Moreover, not only
context is needed to correctly identify expressions of so-called basic emotions, but also a
reliable one-to-one relationship between a given expression and an internal feeling cannot
be identified [94].

Finally, according to recent studies, even the determinants of individual differences in
emotional responses to odors, culture, gender, and ability to accurately label, resulted in all
being influential factors, depending on the emotion evaluated [94,112].

4.4. The Specific Case of Trained Panelist

A significant gap in the literature exists between the methods used to measure sensory
attributes in consumers and professionals; consumer methods seem to rely primarily on
liking or hedonic ratings, which precludes understanding of the sensory attributes behind it,
while expert methods generally focus on descriptive attributes, disregarding or minimizing
the subjective nature of hedonic judgments. On the other hand, trained panelists provide
a description of the food, granting that the individual perception contributing to the
information given is, to the greatest extent possible, suppressed as a consequence of the
training [113], in an effort to capture direct sensory effects. According to a traditional model
of food sensory science, consumers’ decisions are assumed to be based on information that
comes from the environment into their bodies. In this context, food scientists might assume
that the influence of thinking processes on sensory evaluation could not be considered,
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focusing on “bottom-up” (stimulus-dependent) techniques, such as scaling and triangle
tests, for the evaluation of taste, smell, and flavor [114]. This kind of evaluation is largely
employed for the characterization of mean sensory aspects of a food for a given observation
group (i.e., culture or age group). These techniques successfully permit to explain the
basic processing of sensory analysis, such as how genetic variations could influence the
perception of sweetness or bitterness, but as a consequence, little or no regard has been
paid to higher cognitive processes—attention, learning, metacognition, language, and
memory—which are integral components of the process of perception. In this context, the
emotions eventually elicited by the trained panelists during the tasting are not generally
considered as part of the process. This emphasis on bottom-up processes is due to the
origin of the food science/marketing tradition of sensory science, focused on product, while
the study of perception and cognition is strongly ingrained in psychology. According to
this latter tradition, perception is intrinsically a consequence of “higher” mental processes,
in that sensory information is shaped by cognitive processes, such as those involving
past experiences, memories, and the subsequent expectations [115]. Therefore, from the
role of “top-down” (model-dependent) influences [114] in the processing of food, such as
information from other sensory systems or expectations based on prior experiences, food
sensory science might raise new awareness about consumer behavior [5].

Classic wine tasting protocols, usually those practiced in wine-tasting rooms and used
by professionals, include a sequence evaluation of olfactory, visual, taste, and mouthfeel
attributes rated using scales. Nevertheless, including emotional attributes in this process
could permit our understanding of fine wine quality to be extended [115]. In this sense,
some authors have even started embedding emotional terms in tasting protocols from the
International Organization of Vine and Wine [116]. Malfeito-Ferreira et al. [115] showed that
wine appraisal begins with the olfactory attributes (nose), then the “Initial impression” and
“expectations for the mouth” occur as emotional features. Secondarily, the mouth produces
the attribute “Relation to smell”, in order to catch the congruence of expectations related to
nose features. Finally, an overall emotional trait rating wines by means of a valence scale
ranking from disagreeable to exciting is needed. Authors considered these expectations
and congruence as part of the emotional traits of wine. Although the connection between
emotions and sensory expectations/consistency needs a deeper explanation, the concept
of integrating emotional features into conventional tasting procedures can innovatively
improve our knowledge of hedonic processes in tasters.

5. Bioengineering—Implicit Methods to Measure Emotions during Tasting

In recent times, emotions have grown in popularity within scientific research related
to marketing in order to capture the consumer’s wishes and interests. Implicit methods,
making use of indirect, non-self-reported measures, has gained importance, fostered by the
continuous advances in Information and Communication Technologies. Usually, they rely
on several kinds of biological responses, including cerebral, cardiovascular, electrodermal,
respiratory, and other responses.

Given the promising perspective of implicit methods to continuously measure emo-
tions during a given action, including while smelling, eating, and looking at food, and
taking into account their lower tendency towards biases and subjective judgments, this
section of the review includes studies relying on this latter approach, dividing the literature
evidence into sub-paragraphs depending on the biomedical signals investigated.

5.1. EEG Signal, Chemical Senses, and Related Emotions

Electroencephalography (EEG) is a neurophysiological technique that uses electrodes
applied on the scalp to measure electrical field activity in the brain region underneath. In
particular, wearable EEG are devices that cause little to no discomfort for those examined
and do not disturb consumers during evaluations, thus allowing the collection of a good
deal of data without limits due to the observation context and longer period of exposure to
the stimulus.
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The EEG is increasingly applied in food research as a tool for understanding psy-
chological and emotional states through the observation of brain waves [117]. Indeed,
when the brain is subjected to a stimulus, i.e., olfactory or gustatory stimuli, it produces
electric currents that have different patterns of frequencies associated with different states
of arousal. The prefrontal cortex is of particular interest for emotional processing [118] due
to its function as a convergence zone of other interconnected structures (anterior cingulate,
amygdala, hippocampus, and insula). Two emotional systems participate in emotional
processing: the approach system, which facilitates appetitive behavior and is described as
a generator of positive affect, and the withdrawal system, which facilitates moving away
from aversive stimuli. According to the brain lateralization hypothesis, the left hemisphere
is specialized in the approach function, while the right hemisphere intervenes mostly in
the withdrawal response [119].

Most of the studies using EEG have analyzed the effect of smelling/tasting drinks on
brain activity.

Mignani et al. [120] used EEG to record brain activity in reaction to four different wines
(Verdicchio di Matelica DOC, Verdicchio dei Castelli di Jesi DOC, Pecorino Offida DOC,
and Soave DOC). The test consisted of three different phases: (i) blind phase, i.e., testing the
wine without knowing any information about it; (ii) expectation, i.e., receiving information
about the wine (reading labels) without testing it; and (iii) labeled, i.e., reading labels while
testing the wine. The two Verdicchio wines were the ones that elicited the highest emotional
response in particular during the labeled phase, suggesting the important role of label
design in the emotional process. Another study [121] evaluated the effect on brain activity,
specifically frontal beta activity, while testing four red wines: two expensive Italian and
two expensive Chilean wines, and two cheap Italian and two cheap Chilean wines. EEG
recording was performed while watching, smelling, and tasting the wines. Beta activity
well discriminated the brain response for the different wines; however, it was not possible
to correlate changes in beta activity with wine preferences, as scored by the consumers.

The effect of beer tasting on brain activity was also assessed. In a very recent study,
Hinojosa-Aguayo and collaborators [122] evaluated brain response to the visual inspection,
smelling, and tasting of four types of beer (two Lager and two extra dry). After each
session, the participant had to give a hedonic judgment regarding the beer. Subjects with
different levels of experience in tasting beers were enrolled. Beer experts activated more
brain components related to recognition memory and fewer brain components related to
working memory and attention compared to general consumers. In addition, in expert
consumers, the correlation between brain activation and hedonic judgment was higher,
suggesting that the experience strongly influences the emotional perception of the products.
Implicit response to beers was also tested in a multimodal approach by Viejo et al. [48]. EEG,
together with heart rate, temperature, and facial expressions, were recorded while subjects
tested nine different types of beer. Results showed that the EEG was able to differentiate
between the different beers with spontaneous fermentation beers generating the highest
level of attention and liking. In addition, there was a significant correlation between brain
measures and the attributes used in the sensory evaluation, in particular, with the level
of bitterness.

The study by Lagast and colleagues [123] attempted to evaluate how the degree of
acceptance of a particular drink influences brain activity and, thus, emotional response. In
a multimodal assessment, the Authors analyzed ECG, GSR, and brain signals in response to
the testing of accepted and unaccepted drinks. A universally accepted drink (sweet sucrose
solution) and a universally non-accepted (bitter caffeine solution) solution were used
together with one personally accepted and one personally non-accepted drink, individually
assessed by a questionnaire. Although there was a trend toward a higher emotional
response for accepted drinks compared to non-accepted ones, a huge variability emerged
among subjects, and thus the results were not significant.

Fewer studies have analyzed brain activity in response to food tasting. In the study
by di Flumeri and colleagues [124], EEG was recorded while subjects tasted five savory
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creams (cheese, bacon, salmon, caviar, and peppers) and two sweet ones (orange chocolate
and vanilla chocolate), and frontal alpha asymmetry was calculated. The subjects were
also asked to evaluate the taste, in terms of perceived pleasantness (1–10 scale). Sweet
flavors produced a pleasantness significantly higher than the savory ones (higher left
hemisphere activity). In addition, there is a significant agreement between explicit and
implicit measures of pleasantness. Phothisuwan et al. [125] investigated the effect of
covering salacca fruit with orange oil on brain activity. Brain activity was recorded while
smelling and eating treated and untreated salacca fruits. Treated salacca fruit elicited more
brain alpha and beta activity compared to the untreated one both while smelling and
eating it, indicating an increased alertness state of the brain. Interestingly, this effect was
observed in women, but not in men, probably due to the better sense of smell of the female
population. In the study by Brouwer and collaborators [126], the tasting phase was also
associated with a cooking experience. Participants were asked to cook and taste two stir-fry
dishes, one containing chicken as the main ingredient and the other mealworms. These two
products were chosen as they are supposed to elicit opposite emotions in Western cultures.
Brain activity was recorded together with ECG and GSR during the different phases of the
test. Regarding brain activity, it was observed that during all the phases (exposure, frying,
cooling, and eating), there was a higher leftward asymmetry for the chicken dish compared
to the mealworm dish, consistently with the approach/avoidance model.

Finally, Maeda and colleagues [127] investigated the odor–taste relationship; in par-
ticular, how odor stimulation affects taste perception. Brain activity was recorded in two
different conditions: (1) matched condition, i.e., subjects tasted milk chocolate and smelled
chocolate paste; and (2) unmatched condition, i.e., subjects tasted milk chocolate and
smelled garlic paste. The results of the study showed an increase in theta band activity in
the unmatched conditions; theta activity was also negatively correlated with the sweetness
score provided by the subject. Since the theta band is correlated to memory-based decision
making, it is possible that the perturbation caused by the odor–taste unmatching increased
the concentration level of the subjects.

5.2. ECG Signal and Chemosensory-Related Emotions

Among the most popular implicit methods to assess the emotional reactions to odorous
stimuli, the ECG signal is normally selected for its reliability and broad information load.
Indeed, from the study of the Heart Rate (HR) and its variability (Heart Rate Variability,
HRV), several aspects can be derived, including the activity of the Autonomic Nervous
System (ANS) that, with its Sympathetic (SNS) and Parasympathetic (PNS) branches,
basically supervises emotional reactions of avoidance and relaxation, respectively.

Among the studies investigating HR as the surrogate of the ECG signal, the assessment
of emotions generated by different beer samples was studied by two groups [48,128]. The
results obtained in both cases led to no differences in the emotional reactions to the various
kinds of stimuli; although, subtle changes were detected by the explicit measurements conducted.

On the other hand, an experiment conducted in Mexico [129] aimed to predict con-
sumers’ acceptance towards food and odors through facial expressions and biomedical
signals. In the study, sweet gums embedding the flavor of mint, pineapple, strawberry,
clam, and Gouda cheese were created, whereas partially overlapping odors, referring to
pineapple, mint, vinegar, Gouda cheese, and smoke, were administered. According to the
authors, facial emotion recognition was not enough to predict the attitude of consumers
towards such compounds, whereas the use of Skin Conductance and, to a lesser extent,
pulse signals, improves such prediction, highlighting a key role for biomedical signals in
this specific domain.

Several levels of sugar concentrations within a chocolate pudding were tested in an Ital-
ian research study related to physiological measurements concerned with emotions. In the
study, researchers found positive effects on HR variation for increased liking, for perceived
bitterness, and for perceived astringent, with variations in sucrose concentrations [130].
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As hypothesized, the study about the emotional effects of chemosensory stimulations
related to edible substances can fruitfully lead to a deeper knowledge about the intrinsic
effects that healthy or unhealthy habits towards food can have on individuals. A study by
Finch and colleagues [131] shed light on this topic, highlighting the absence of an effect
due to food healthiness on stress and on physiological parameters, including HRV and
pre-ejection period, in a broad cohort of women individuals. This fact can have deep
consequences in the selection of specific dietary components in presence of unhealthy
habits towards food, at least in some individuals.

The act of cooking also represents a very important scenario where chemosensory
stimuli are conveyed to an individual. According to the authors, thanks to biomedical
signals, it was possible to distinguish between the cooked chicken and mealworms, dishes
normally eliciting very different perceptions, and, in this task, the ECG signal plays an
important part, given that the extracted variables somewhat interact with the order of
cooking of the proposed dishes [126].

When taking into account the attitude towards novel, unexpected food, HR changes
demonstrated that it is sensitive to valence, particularly increasing its value under sweet,
positively-judged samples (conversely to what was noticed by Lagast and colleagues [123]),
whereas significant decreases were noticed when tastes disconfirmed expectations, in a
different way with respect to other signals, including Skin Conductance [132]. Under longer
periods, ECG signals displayed higher parasympathetically mediated results after training
on odorous compounds related to food diluted into white wine, highlighting the significant
contribution intrinsic measurements can bring to research concerned with chemosensory
training [113].

5.3. GSR and Chemical Sensory Stimuli Emotional Reactions

The Galvanic Skin Response (GSR) obtained from the skin conductance signal is
nowadays extensively used in the psychophysiological characterization of an individual. It
is then widely also used to check for eventual responses to sensory stimulation in a variety
of paradigms. It is often applied in conjunction with other methods and signals, but also
as a standalone method for this specific characterization. In the work by Álvarez-Pato
and colleagues previously mentioned [129], skin conductance seems to be more sensitive
than cardiovascular features to predict the attitude towards the edible compounds tested,
conversely to what happened in the study by Martinez-Levy and co-authors [130], where
the tonic-only component of the GSR was not enough to characterize the attitude towards
food likelihood of the panelists.

As mentioned above, GSR is also used as the elective, standalone method to assess
autonomic activity. GSR was seen to decrease with increasing pleasantness, regardless
of intensity, in a protocol conducted over a set of four fragrances, two of which elicited
positive effect and two negatively judged [133].

In addition, during cooking, GSR was higher when asking participants to deal with
unpleasant food with respect to pleasant stimuli; even if in this scenario, the ECG signal
was seen to be more sensitive to such stimulation [126], as occurred in a pilot study [134].
These same dynamics were seen in an investigation by Verastegui-Tena and collaborators,
where the cardiac signal was seen to be modified by several occurrences, whereas skin
conductance changed with respect to novelty and valence, but failed to change with regard
to the disconfirmation of expectations. Concerning the types of stimuli, it increased for the
bitter sample and decreased for the sweet tastes [132].

A perspective upon acceptability with respect to expected or unexpected stimuli was
drafted by Lagast and colleagues, finding a lower latency of the electrodermal response
during the tasting of the non-accepted solution [123]. Finally, the administration of familiar
stimuli, after training, was seen to decrease the skin response slightly, but significantly, in a
cohort of young students [113].
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5.4. Other Methods

In some studies, other techniques have been applied to investigate emotional responses
associated with food/drink tasting, mostly in combination with the methods described in
the previous sections.

In the study by Viejo and co-authors [48], EEG acquisition was coupled with video
recording for assessing facial expression and infrared thermal imaging to measure facial
temperature. Although facial expression and temperature could not discriminate between
beers, there was a significant correlation between disgusted face and body temperature.
Notably, the integration of the different modalities was able to classify the emotional
response to the beers with about 80% accuracy using a machine learning approach.

Facial expression was also assessed [129] together with GSR and cardiac pulse in
response to tasting and smelling different products. Sweet gums with five different flavors
(pleasant: mint, pineapple, and strawberry; unpleasant: clam and Gouda cheese) were
used as tasters while five odors were prepared for the smelling test (pineapple, mint,
vinegar, Gouda cheese, and smoke). All the acquired data were used in a convolutional
neural network model to classify the different products. Facial expression alone was
not able to classify accurately, while the integration with physiological signals increased
the performance.

In the study by Beyts et al. [128], temperature, respiration, and facial electromyography
(EMG) recordings were added to the HR registration. These signals were acquired while
exposing subjects to different beer aromas. In particular, facial EMG recording was obtained
by measuring corrugator supercilii and zygomatic major muscle activity. While temperature
and respiration did not discriminate among the different samples, facial expressions showed
a significant response to aroma valence. In particular, more corrugator activity, indicative
of frowning, was observed in response to the unpleasant aromas.

Finally, a relatively novel neurophysiological technique, the functional near-infrared
spectroscopy (fNIRS), was applied in one study by Park and colleagues [135]. In particular,
the Authors analyzed cerebral response while chewing two types of apples and a dummy.
Food preference was determined by measuring the determination rate, i.e., the difference
in brain activity while chewing the preferred and nonpreferred food. First, the brain
oxygenation signal significantly changed while chewing apples compared to a dummy.
Second, it was observed that brain activation could differentiate between the preferred and
unpreferred apple with a high discrimination rate, suggesting that the fNIRS technique
could be effective in the psychophysiological monitoring of food stimuli.

6. Discussion

As discussed in Table 4, each different technique suitable for food quality assessment
(i.e., panel test; consumer test; e-sensors such as e-nose, e-tongue, and e-eye) shows some
potential and limits that need to be considered for the choice of the best analytical approach
as a function of the context together with the technological issues to be achieved from time
to time.

Among the techniques useful for food quality assessment, the panel test [136] occupies
a prominent place, thanks also to the recent development of effective methods for the
statistical analysis of data. In particular, the main advantage shown by the use of sensory
analysis is to have a complete and reliable description of the main sensory features of a
product, even with the aim to measure its overall quality.

On the contrary, given that sensory analysis is time-consuming and expensive, when
the aim is to determine the presence of some specific compounds, or to follow the change in
some well-identified food’s features during production and/or storage, the use of e-senses
can be a valuable alternative.
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Table 4. Application, potential, and limits of the methods discussed in Sections 3 and 4.

Method Main Field of
Applicability Potential Limits Bias Sources Tools for Bias

Reduction

Panel test Food quality
assessment

Sensory shelf life

New
products/new
processes
development

Overall
characterization of
food’s features given
by the integration of
the stimuli from all the
five senses

Time-consuming
and expensive

Individual
differences

Physiological bias

Psychological bias

Panel selection
and training

Taster profiling

Official method
for assessing

Statistical
analysis of
results

Consumer test Food quality
assessment

Acceptability test

Overall
characterization of
food’s features aimed
at evaluation of
consumer’s
acceptability and
marketing studies.

Time-consuming
and expensive

Very high number
of consumers to be
recruited

Context

Consumer profile

Past experiences

Socio-cultural
background

Taster profiling

Statistical
analysis of
results

E-senses
(i.e., e-nose,
e-tongue, and
e-eye)

New
products/new
processes
development

Food
quality/safety

Assessment during
storage

Food ori-
gin/certification/
adulteration

Precise and immediate
quantification of
specific substances
inside a product

No match with the
final perception
given by the
human senses

Calibration and
algorithm
development time
consuming

Matrix effect

Operating
conditions adopted

Sampling method

Statistical
analysis

Chemometric
approach

Calibration and
algorithm
improvement

In addition, when human perceptions represent the main tool for food characterization
(both in panel tests and in consumer studies), considering that emotions elicited by foods
influence the output of the sensory analysis, emotions themselves should be always taken
into account and measured when possible or necessary. The measurement of emotions is
not straightforward and many different methods are available (see Table 5 for the most
popular ones among implicit ones). As such, a deep analysis of the potential and limits of
the different methods, also in relation to the specific context and goals, is surely necessary.
In general terms, it is notable that implicit methods are less subjected to biases related to a
person’s judgment towards a given stimulus with respect to explicit methods, which, in
turn, completely rely on such principles. However, as seen in Table 5, implicit methods
have also significant drawbacks that should be taken into account when selecting the most
useful approach to be eventually adopted.
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Table 5. Application, potential, and limits of the bioengineering methods. EEG: electroencephalogram;
ECG: electrocardiogram: ANS: autonomic nervous system.

Method Main Field of
Applicability Potential Limits Bias Sources

EEG Study of
the emotional
reactions elicited
at cortical level

Direct
evaluation of
the emotional,
cognitive
processes

Complexity of the
instrumentation,
artifacts
characterizing the
signal, cost

Electrodes
placement,
discomfort for
the subject tested

ECG Study of the
ANS activation
in response to
emotional
stimuli

Assessment of
the indirect
effects of sensory
stimulation in
an easy,
understandable,
cost-affordable
manner

Indirect method,
not suitable to
directly study
cortical effects of
stimuli

Model between
central and
peripheral
response not
always available

Skin
Conductance

Study of the
ANS activation
in response to
emotional
stimuli, mainly
related to
sympathetic
activation

Assessment of
the indirect
effects of sensory
stimulation in
an easy,
cost-affordable
manner

Indirect method,
not suitable to
directly study
cortical effects
of stimuli

Model between
central and
peripheral
response not
always available

7. Conclusions

The mechanisms beyond the whole cognitive process that obtains a food sensory
characterization by trained judges during a panel test and/or that drives a consumer’s food
choice or rejection involves individual differences at both physiological and psychological
levels. In particular, the latter is mainly based on context, socio-cultural background, past
experiences, memory, emotions, etc.

Starting from a critical review of the recent literature on the topic, the main conclu-
sion that we can provide is that a multidisciplinary approach including Food Technology,
Sensory analysis, and Bioengineering can represent the principal topic for future trends
in the field to obtain the final goal of improving food quality and/or meeting consumers’
expectations. In this context, the merging between intrinsic and extrinsic approaches could
represent an innovative way to optimally manage the trade-off between accuracy of the
information and feasibility of investigation, also allowing for a sort of validation of physio-
logical reactions versus subjective perception and attitude towards a particular sensation.

To the best of our knowledge, recent literature related to research projects aimed at
investigating the feasibility of a synergy strategy, and then comparing it with the use of
single approaches, is still lacking. Future studies should take into account this aspect and
make the best use of both approaches to solve the problems characterizing the majority of
the studies published up to now.
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