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Abstract: In this work, we were able to produce Co2FeSi Heusler alloy glass-covered microwires
with a metallic nucleus diameter of about 4.4 µm and total sample diameter of about 17.6 µm by
the Taylor–Ulitovsky Technique. This low cost and single step fabrication process allowed the
preparation of up to kilometers long glass-coated microwires starting from a few grams of high
purity inexpensive elements (Co, Fe and Si), for a wide range of applications. From the X-ray
diffraction, XRD, analysis of the metallic nucleus, it was shown that the structure consists of a mixture
of crystalline and amorphous phases. The single and wide crystalline peak was attributed to a L21

crystalline structure (5.640 Å), with a possible B2 disorder. In addition, nanocrystalline structure with
an average grain size, Dg = 17.8 nm, and crystalline phase content of about 52% was obtained. The
magnetic measurements indicated a well-defined magnetic anisotropy for all ranges of temperature.
Moreover, soft magnetic behavior was observed for the temperature measuring range of 5–1000 K.
Strong dependence of the magnetic properties on the applied magnetic field and temperature was
observed. Zero field cooling and field cooling magnetization curves showed large irreversibility
magnetic behavior with a blocking temperature (TB = 205 K). The in-plane magnetization remanence
and coercivity showed quite different behavior with temperature, due to the existence of different
magnetic phases induced from the internal stress created by the glass-coated layer. Moreover, a high
Curie temperature was reported (Tc ≈ 1059 K), which predisposes this material to being a suitable
candidate for high temperature spintronic applications.

Keywords: Heusler alloys; glass-coated microwires; magnetic properties; Curie temperature;
X-ray diffraction

1. Introduction

Recently, half-metallic Heusler alloys (HMHSs) have been suggested as promising
candidates for next generation spintronic devices because of their extraordinary magnetic
properties at a wide range of temperatures, as reported and discussed elsewhere [1,2].
This extraordinary magnetic behavior can be explained by the unique structural features
of energy bands for the spin up/down states near to the Fermi energy levels. Whereas
the spin up band indicates the metallic character of HMHS, the spin down band shows
a semiconductor-like gap at the Fermi energy levels [3,4]. Thus, there is a complete spin
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polarization (near to 100%) of the conduction electrons at the Fermi level position, as
confirmed elsewhere [5–10].

Co2-based full/half-Heusler compounds with high Curie temperature (Tc > 1100 K),
high magnetic moment (~6 µB/f.u.), unique electronic structure and low Gilbert damping
constant (α = 0.004) are the most promising materials for multi-function applications [11–13].
Moreover, unique exotic transport properties and a large anomalous Hall effect have been
reported on Co2-based Heusler alloys, due to the large Berry curvature linked with their
band structure [1,2]. Thus, Co2-based Heusler alloys are attracting the attention of the
scientific community.

Generally, the L21 structure determines the physical properties of Co2-based Heusler
alloys [13,14]. Although the L21 structure is a highly ordered structure, the existence of
disordered structure phases, such as B2, A2 and DO3, may arise during the fabrication
process of alloys [9,15]. Therefore, Co2-based Heusler alloys are very sensitive to fabrication
techniques. Thus, these kinds of alloys are widely investigated by using different fabrication
processes [16–23].

The most well-known technique to prepare HMHS in different forms is arc melting for
the primary bulk alloy, followed by thermal treatment under different conditions [24,25].
The physical properties of HMHS can be strongly enhanced by applying the miniaturization
process where an increasing surface-to-volume ratio works to enhance the magnetic cooling
applications and heat-exchange [26]. Thus, there is an urgent demand for novel fabrication
methods allowing the preparation of low-dimensional materials from Heusler alloys, such
as nanoparticles, thin films and thin microwires [17,27–29]. Many of these fabrication tech-
niques are still facing challenges, such as the high cost of preparation techniques, the long
period required for additional thermal treatment, chemical composition inhomogeneity,
lattice mismatch between the alloy and the substrate, easy oxidation and the perspective of
proper atomic ordering [29–31]. To avoid these disadvantages, alternative rapid quenching
production of the Heusler alloys has recently been carried out [4,7].

The Taylor-Ulitovsky technique, involving rapid melt quenching, is suitable for prepa-
ration of thin glass-coated magnetic microwires (G-CMMWs). This technique offers low
cost and fast production of thin metallic microwires, without the need for additional di-
mensionality reduction processes or long thermal treatments [32–38]. Recently, rapidly
quenched low-dimensional nanocrystalline and amorphous materials gained special in-
terest, due to their promising mechanical properties, excellent magnetic properties and
magneto-transport properties [35,36,39–42].

Amorphous and nanocrystalline rapidly quenched materials can present unique com-
binations of magnetic properties, such as extremely fast domain wall propagation or giant
magnetoimpedance effect [36,37,39–44]. One of the most relevant factors of these rapid
quenching materials is the possibility to tailor the microstructure of the quenched alloys by
controlling different parameters, such as the quenching rate, the chemical composition and
the melting temperature of the selected alloy, and its phase diagram [35]. One of the main
advantages of this technology is that it is suitable for fast (hundreds of meters per minute)
fabrication of rather long and continuous metallic microwires (up to several kilometers
long) with the widest possible diameter range (by four orders of magnitude, i.e., from
0.1 to 100 µm), covered with insulating and flexible glass-coating [28,31,33–36,43–45]. In
addition, the existence of flexible, thin, highly transparent and insulating glass coating
works on improving mechanical and biocompatibility properties, which opens the door for
the biomedical application of the G-CMMWs [46–48]. Finally, by the single-step method,
with a high quenching rate, it is possible to produce microwires from Heusler alloys with
single crystalline phase and well-defined magnetic anisotropy [4,7,33–36,49,50]. There-
fore, the Co2-based Heusler G-CMMWs represent a promising smart metamaterial for
multi-functional application for a new generation of spintronic devices.

In the current study we present the basic structural and magnetic characterization of
Co2FeSi G-CMMWs fabricated by the Taylor-Utilovsky method to illustrate their possible
application in advanced spintronic devices.
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2. Materials and Methods

Full Heusler alloy with nominal composition of Co50Fe25Si25 was prepared by the
arc melting technique from pure metals, Co (99.99%), Fe (99.99%) and Si (99.9%), in argon
atmosphere to prevent oxide formation during the melting process. The repetition of the
melting process was done several times to improve homogeneity of the alloy. Magnetic
glass-coated microwires were fabricated by the Taylor-Ulitovsky technique, which consisted
of drawing and casting directly from the melted Co50Fe25Si25 alloy, as described in detail
elsewhere [33,36–38,51–56]. Briefly, an ingot was heated above its melting point by a
high frequency inductor, then a glass capillary was formed, which was filled with molten
alloy, drawn out and wound onto a rotating pick-up bobbin [33,35,36]. The diameter of
the metallic nucleus, d, could be controlled by the speed at which the wire was drawn
and the velocity of the rotation of the pick-up bobbin [35,36]. Rapid melt quenching was
achieved by a stream of coolant when the formed microwire passed through a coolant
stream [35,36]. The metallic nucleus diameter, d, of prepared Co50Fe25Si25 microwire was
about 4 (d = 4.4 ± 0.1) µm, while the total diameter was D = 17.6 ± 0.1 µm.

One of the peculiarities of the glass-coated microwire fabrication process is that the
metallic nucleus is surrounded by the glass coating during the rapid solidification process.
Such a process is associated with elevated internal stresses arising from rapid quenching
itself, drawing and from the different thermal expansion coefficients of the glass and the
metallic nucleus [33,34,36,38].

We checked the chemical composition and the homogeneity of the Co2FeSi G-CMWs by
using Energy Dispersive X-ray/Scanning Electron Microscopy (EDX/SEM). By analyzing
the EDX data of Co2FeSi G-CMWs in different parts of the microwire we found that the
alloy showed a perfect chemical composition wherein Co, Si, and Fe elements were well
distributed with the same nominal percentage at the different parts of the microwire, as
illustrated in Figure 1.

Figure 1. The cross section of Co2FeSi G-CMMWs images (a) and the chemical composition spectra
of EDX at one of the points (b).
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The microstructure and its possible induced phase analysis were investigated by
means of X-ray diffraction (XRD) BRUKER (D8 Advance, Bruker AXS GmbH, Karlsruhe,
Germany). Cu Kα (λ = 1.54 Å) radiation was used in all the patterns.

The investigation of the magnetic properties of Co2FeSi G-CMWs was performed by
using the Physical Property Magnetic System, PPMS (Quantum Design Inc., San Diego,
CA, USA) for the field cooling, field heating and zero-field cooling magnetization curves
for a temperature range from 5–400 K, with an applied external magnetic field of 50 Oe and
50 kOe. For the Curie temperature evaluation, we used a Vibrating Sample Magnetometer
(VSM) at temperatures from 400 K to 1000 K, with applied low magnetic field (H = 50 Oe).

3. Results and Discussion

The morphological characterization of Co2FeSi G-CMMWs was performed using the
scanning electron microscopy technique (SEM). Figure 1a shows the perfect cylindrical cross
section and homogeneous elements distribution of the Co2FeSi G-CMMWs. To confirm the
nominal composition of Co50Fe25Si25 G-CMMWs, an analysis of the chemical composition
of the metallic nucleus was performed using EDX, as shown in Figure 1b. From the EDX
data obtained from Figure 1b the composition of the metallic nucleus was observed to be
slightly different from the stoichiometric one (Co2FeSi). This small difference was related to
the peculiarities of the preparation method involving alloy melting and casting. To estimate
the amount of difference we checked the nominal composition for 10 points as illustrated
in Figure 1a. For all points a 2:1 ratio was confirmed for Co and Fe, respectively, with an
atomic average Co45Fe22Si33. A high ratio of Si was observed, due to the interfacial layer
between the glass coating and the metallic nucleus. The origin of such an interfacial layer
was related to the peculiarities of the preparation method involving alloy melting inside
the glass tube and subsequent casting. As previously reported [45], typically the thickness
of such an interfacial layer is about 0.5 µm. Accordingly, for the present case (d ≈ 4 µm) the
contribution of such an interfacial layer reflected in elevated Si-content might be relevant.
Thus, this explains the high signal of Si that appeared on the EDX spectra (see Figure 1b).

Figure 2 illustrates the X-ray diffraction (XRD) analysis of Co2FeSi G-CMMWs showing
a wide plateau centered on 2θ ≈ 22.5◦. That peak corresponds to the amorphous phase of
the glass, as we expected from the Taylor-Ulitovsky method. Along with the amorphous
pattern, another peak appeared at 2θ≈ 45.6◦ related to the crystalline pattern of the Co2FeSi
metallic nucleus and corresponding to the B2 phase, which agrees with our previous work
on Co2FeSi G-CMMWs [14].

For estimation of the average of the crystalline grain size, Dg, we performed an
analysis of the width and the crystalline peak position using the Debye Scherrer equation
as follows [35,41,44]:

Dg = K λ/β cos 2θ (1)

where (K = 0.9), λ is the wave length of XRD (Cu Kα (λ = 1.54 Å)), β is the total width at
half maximum of the peak and 2θ is the angular position of the peak.

The XRD pattern of the Co2FeSi G-CMMWs sample fitted best to a mixture of cubic
phase (lattice parameter a = 5.640 Å, Dg = 17.8 nm) and an amorphous phase.

After evaluation of the nanocrystalline grain size we could estimate the crystalline
phase content, S, from the diffraction scan where the sum of the total peak area consisted of
crystalline and amorphous diffractograms together. The crystalline phase content could be
calculated from the following equation [57,58]:

S (%) =

∫
q2 Ic dq∫
q2 I dq

≈
∫

Ic d(2θ)∫
I d(2θ)

(2)

where q = 4πsinθ
λ and I = Iam +Ic, where Iam and Ic are the integrated intensity of the

amorphous and the crystalline components, respectively. By calculating the total area
under the peak, we could easily estimate S ≈ 64% of the Co2FeSi G-CMMWs samples,
which was related to the distribution of the grains inside the crystal.
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Figure 2. X-ray diffraction pattern of Co2FeSi G-CMMWs (a) and focusing on the crystalline part of
Co2FeSi G-CMMWs with a Gauss fitting (b).

The XRD and its analysis matched with our previous studies of similar alloys, together
with the chemical composition of the studied sample; which indicated the presence of
the cubic Co2FeSi phase [14,59]. According to theoretical calculations obtained from the
materialsproyect.org [60], the signal (220) peak represented a highly ordered L21 cubic
structure (space group: Fm-3m). The lattice parameter of Co2FeSi was found to be 5.640 Å,
which is in agreement with similar compositions [14,59].

Figure 3 shows the magnetic properties (dependencies of magnetic moment, M, versus
magnetic field, H) of Co2FeSi G-CMMWs at different temperatures, measured in an applied
magnetic field between ±50 kOe, at a temperature range from 5 to 400 K. As plotted
in Figure 3a,b, all M-H loops showed ferromagnetic behavior over the entire measured
temperature range. The maximum values of the magnetic parameters, such as magnetic
moment and magnetic remanence, Mr, were detected at 5 K and the lowest values were
observed at 400 K. Additionally, all the hysteresis loops showed rectangular M-H loop
shapes, similar to the behavior observed in Co2FeSi alloys deposited by different techniques
and in different forms [12,14,17,29,61]. For the temperature range from 200 K to 400 K the
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hysteresis loops showed low saturation field, Hs, anisotropy field, Hk, Mr and Hc values,
as indicated in Figure 3b.

Figure 3. (a) Hysteresis loops, measured in magnetic field applied parallel to the axis of microwires in
the temperature range from 5 to 400 K for as prepared Co2FeSi G-CMMWs, and measured magnetic
field between ±50 kOe and (b) hysteresis loops with low scale magnetic field. (c,d) temperature
dependence of the coercivity and anisotropy field and normalized remanence, respectively, for
Co2FeSi G-CMMWs (lines for eye guide).

The structure consisted of a mixture of the amorphous and the crystalline phases.
Accordingly, in such kinds of samples with mixed structure it was very difficult to evaluate
the anisotropy constant. In the present case, we evaluated the magnetic anisotropy field, Hk
(provided in Figure 3c together with Hc) from the hysteresis loops presented in Figure 3a,b.

It is worth noting that such almost rectangular hysteresis loops have been previously
reported, not only in completely amorphous microwires and thin films [36,62], but also
in microwires with mixed amorphous-crystalline and nanocrystalline microwires [41,55].
Such hysteresis loops can be related to shape magnetic anisotropy, as well as to the axial
character of internal stresses induced by the difference in the thermal expansion coefficients
of the metallic nucleus and glass-coating.

As discussed above, there are three main sources of internal stresses, σi, in glass-coated
microwires: the difference in thermal expansion coefficients of the metallic alloy and glass,
the quenching internal stresses, related to the rapid solidification of metallic alloy, and draw-
ing stresses [33,34,36–38,49]. The origin of the quenching internal stresses in microwires
is related to the solidification of the metallic alloy from the surface towards the wire axis.
The common approach for evaluation of such internal stress components, consists of con-
sideration of the successive concentric cylindrical shells solidifying consecutively, starting
from outside, due to the temperature gradient at the glass transition temperature [34,38,43].
We theoretically predicted and experimentally confirmed that the largest internal stresses
were those related to the difference in thermal expansion coefficients of the metallic alloy
and glass: the σi value up to 4 GPa [33,34,36–38,49]. Additionally, the axial σi component,
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σz, was the largest one, affected by the ρ-ratio given as d/D, as followed from the most
simplified approximation, σi given as [36–38]:

σϕ = σr = P = εEk∆/(k/3 + 1)∆ + 4/3; σz = P(k + 1)∆ + 2/(k∆ + 1) (3)

where σϕ and σr are circular and radial stresses respectively, ∆ = (1 − ρ2)/ρ2, k =Eg/Em,
Em, Eg—Young modulus of metallic nucleus and glass, respectively, ε = (αm − αg)(Tm −
Troom), αm, αg are thermal expansion coefficients of metallic nucleus and glass, respectively,
and Tm, Troom are melting and room temperatures.

Accordingly, the axial magnetic anisotropy observed in the studied microwire must
have been related to the axial character of the internal stresses together with the high and
positive magnetostriction coefficient, λs, of Co-Fe based alloys [36–38].

Generally, Co2-based Heusler alloy thin wires and thin films with L21 cubic structure
have cubic magnetiocrystalline anisotropy besides the uniaxial magnetic anisotropy in-
duced by the wire shape [14,62]. Therefore, the reduced Mr, Hc, Hk and Hs values could be
attributed to competition between the two kinds of magnetic anisotropy for T range from
200 K to 400 K. By decreasing the temperature, the enhancement in the magnetocrystalline
anisotropy is supposed to be due to increase in the saturation magnetization and degree of
the ferromagnetic order [62].

By analyzing the M-H curves of Co2FeSi G-CMMWs the coercivity, Hc, showed quite
soft magnetic behavior where the lowest values of Hc = 9 Oe were detected below the room
temperature (RT) at 200 K. Meanwhile, the highest value of Hc = 25 Oe was observed at
T = 5 K with a difference around 16 Oe. In addition, the anisotropy field, Hk, showed the
lowest value at 200 K and the highest value at 5 K. Quite unusual behavior of Hc and Hk
was detected (see Figure 3c). Where Hc and Hk first increased with decreasing temperature
from 400 K to 300 K, they then started decreasing over the range of T from 300 K to 200 K.
Finally, Hc and Hk increased with decreasing T and reached a maximum at T = 5 K. Such
anomalous magnetic behavior of Hc and Hk has not been reported in Co2FeSi with different
forms. This behavior of Hc and Hk was due to the internal stresses, originating in the glass
coating. Such stresses are strongly affected by the temperature and change in the magnetic
phase with T. As reported in previous studies, and discussed above, the internal stresses,
induced during the preparation of the microwires, are mostly related to the difference in
the thermal expansion of the metallic nucleus and the glass layer [38–43,52]. The presence
of such stresses can induce a modification in the micromagnetic, and even crystalline,
structure of glass-coated microwires, and this strongly effects the values and behavior of
Hc and Hk [38,49]. The normalized values of Mr to the highest values of magnetic moment
at 5 K (i.e., Mr = M/M5K) showed a regular magnetic behavior with temperature, as plotted
in Figure 3d. The Mr sharply increased from 0.28 to 0.81 by decreasing the temperature
from 400 K to 200 K, respectively. Then, semi stable values of Mr were observed at T range
from 200 K to 100 K. Finally, below 100 K the Mr started to increase with decreasing T until
it reached a maximum at 5 K. The behavior of Mr and Hc with temperature confirmed the
sensitivity of the magnetic behavior of Co2FeSi G-CMMWs to temperature. The anomalous
magnetic behavior of Hc and Hk, beside the usual behavior of Mr with temperature,
confirmed the sensitivity of these micro magnetic systems and could open the door for
alternative studies investigating the impact of annealing and the geometric parameters
which pave the way for using Co2FeSi G-CMMWs in designing spintronic devices based
on thermo-magnetic switching.

It is important to understand that the thermal stability of the ferromagnetic materials is
an extremely important property concerning its potential use in spintronic devices in order
to operate at/below or above RT. Thus, we measured the magnetization dependence on
temperature (M vs. T), i.e., zero field cooling, ZFC, field cooling, FC, and field heating, FH,
at low magnetic field (H = 50 Oe) and high magnetic field (H = 50 kOe) and temperature
range from 4 to 1000 K, as indicated in Figure 4. We normalized the M vs. T curves to
the maximum values of magnetic moment at 5 K to better compare. In FC protocol, the
Co2FeSi G-CMMWs was cooled down to 4 K under an applied magnetic field, which
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caused the random magnetic moment vectors to freeze parallel to the applied field at low
temperatures. The magnetic moments show random orientation in the ZFC system at
equilibrium. By increasing the temperature in a low static magnetic field, the magnetic
moments follow the direction of applied external magnetic field and the magnetization
increases if the relaxation phenomena are neglected. Moreover, for further increase of
temperature, the relaxation becomes progressively more prominent and, as a result, above
a certain temperature, ZFC decreases and finally equals FC [63]. In our current study the
ZFC and FC magnetic curve showed large magnetic irreversibility at low magnetic field
i.e., H = 50 Oe, with a blocking temperature, TB, of about 205 K, as shown in Figure 4a.
Such irreversibility behavior disappeared by applying a high magnetic field (see Figure 4b),
i.e., this behavior strongly depends on the magnitude of the applied magnetic field. The
mentioned irreversibility behavior in magnetic materials at applied low magnetic field is
due to the coexistence of typical re-entrant ferromagnetism and spin glass-type behavior,
as reported elsewhere [64]. In addition, the disordered structure and chemical composition
of Co2FeSi G-CMMWs affects the irreversibility behavior where the magnetic ground state
is not purely ferromagnetic and random spin disorder (B2 phase) is also found with the
ferromagnetic order (L21 phase) [63,64]. This behavior is related to the internal stress of
glass coating during the fabrication process which induces a disordered structure phase
(B2) beside the ordered one (L21), and amorphous one (as described in the XRD analysis).
By increasing the applied magnetic field (50 kOe) the B2 phase was frustrated and the
irreversibility behavior disappeared.

Figure 4. (a,b) Zero field cooling (ZFC), field cooling (FC) of Co2FeSi G-CMMWs at temperature range
400 K to 5 K with different applied magnetic field low field 50 Oe and high magnetic field 50 kOe,
respectively. (c,d) FC from 400 K to 5 K and field heating (FH) from 5 K to 400 K of Co2FeSi G-CMMWs
with different applied magnetic field low field 50 Oe and high magnetic field 50 kOe, respectively.

To check the possible magnetic phase transition with changes of temperature, the FC
and FH curves were measured at low and high magnetic field. As described in Figure 4c,
the FC and FH curves with applied low magnetic field (H = 50 Oe) were perfectly matching
in the temperature range from 400 to 190 K, which indicated a perfectly stable ferromagnetic
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state in this range of T. Below T = 190 K a small spacing between FC and FH was detected
and FC ascended the FH curves then matched again at T = 15 K. This behavior is due
to a magnetic phase transition, as described and reported elsewhere [4,29,65–67]. Such
behavior was not observed when the FC and FH were measured at high magnetic fields, as
illustrated in Figure 4d. It is noteworthy, that the changing of magnetic behavior of Hc and
Mr occurred for the temperature below 200 K i.e., below TB. Thus, the behavior of Hc and
Mr was strongly related to the changing of the magnetic phase transition where a different
magnetic response was found.

To examine the magnetic behavior of Co2FeSi G-CMMWs at high temperature, FC
and FH at low magnetic field (H = 50 Oe) and temperature range from 400 to 1000 K was
performed, as indicated in Figure 5.

Figure 5. Temperature dependence of magnetization measured for Co2FeSi G-CMMWs at applied
magnetic field (50 Oe) and temperature range from 400 to 1000 K. Dashed black and red lines refer to
the TC fitting curves.

As shown in Figure 5, FC and FH magnetization curves showed the ordinary ferro-
magnetic behavior—magnetization decreased with increase of temperature. FC and FH
magnetic curves showed different behavior for the temperature range from 400 to 900 K.
Above T = 900 K the two magnetic curves were perfectly matching. Below the blocking
temperature a magnetic phase transition was found. Unfortunately, we were not able to
observe the TC of Co2FeSi G-CMMWs, as it is expected to be more than 1100 K for the
bulk alloy. Therefore, a fitting of FC and FH magnetic curves was performed by using the
following equation (M(H, T) = M0

Tc−T
Tc

) and the estimation of TC = 1040 K and 1059 K for
FC and FH magnetic curves, respectively, and it corresponded well with the value from
the literature [13]. The differences in the TC values must be related to different magnetic
phases where the magnetic responses are different.

4. Conclusions

We have reported fabrication and magneto-structural characterization of Co2FeSi
G-CMMWs prepared by the Taylor-Ulitovsky technique. From the XRD analysis, it was
found that the studied microwires had mixed amorphous-crystalline structure. The XRD
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analysis illustrated the formation of ordered (L21) and disordered (B2) structure phases.
Well-defined magnetic anisotropy parallel to the axis of the Co2FeSi G-CMMWs was ob-
served. The thermo-magnetic behavior of Co2FeSi G-CMMWs, with temperature ranging
from 5 to 1000 K, was investigated. ZFC-FC magnetic curves showed a large irreversibility
magnetic behavior with a blocking temperature at 205 K. A strong dependence of the
thermo-magnetic properties, as a function of magnetic field and temperature, was con-
firmed. Different tendencies of Hc, Hk and Mr were detected below and above the blocking
temperature. Finally, a high Curie temperature (1059 K) was reported. Future research is
necessary to explain the effects of annealing conditions and geometrical parameters on
the magneto-structural and thermoelectric properties. These observations will open an
approach to the use of Co2FeSi G-CMMWs with unusual magnetization behavior, especially
in terms of changing the micromagnetic and magnetic phase and structure for the design
of spintronic devices based on thermo-magnetic switching.
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