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Abstract: Various species of the Brassicaceae family are known to hyperaccumulate metals. Lunaria annua L.,
a plant from the Brassicaceae family, is an oilseed crop known for its pharmaceutical and nutraceutical
applications. In this work, Lunaria annua L. was investigated for its accumulation potential in copper
and lead-contaminated soil. Concentrations of copper and lead were measured before planting (in
seeds and soils) and after the plant was harvested (in soils and plant). Two types of soils were used: a
soil sample collected from the Botanical Garden of the Faculty of Science, University of Split (soil 1,
S1) and a commercially available organic mineral substrate (soil 2, S2). Measured pH values showed
that the S1 (pH = 8.58) was moderately alkaline soil. On the other hand, the purchased organic soil,
S2 (pH = 6.35), was poorly acidic to neutral. For the determination of copper (Cu) and lead (Pb),
square wave anodic stripping voltammetry (SWASV), using a glassy carbon electrode modified with
mercury film, was applied. The concentrations of Pb and Cu were determined and calculated in
the sample using the standard addition method. Obtained results have shown that Lunaria annua L.
is a lead hyperaccumulator (4116.2 mg/kg in S1 and 3314.7 mg/kg in S2) and a potential copper
accumulator (624.2 mg/kg in S1 and 498.9 mg/kg in S2). Likewise, the results have shown that the
higher the pH is, the lower the possibility that metal accumulation exists.

Keywords: Lunaria annua L.; accumulation; lead; copper; square wave anodic stripping voltammetry;
standard addition method

1. Introduction

Heavy metals are pollutants that significantly affect the environment and their toxicity
has been a problem of increasing significance for ecological, evolutionary, nutritional and
environmental reasons [1]. Due to human activity and consequent environmental pollution,
heavy metals enter the biosphere, where, due to their toxicity, they lead to certain changes in
specific metabolic pathways in living organisms. In addition to the organisms, heavy metals
reach the soil. Technological operations that are a part of everyday industrial workflows
are the main cause of soil contamination by deposition of harmful substances. Further,
agricultural processes and waste disposal sites, as well as air pollution and pollutant
deposition by wastewater treatment, account for a large portion of soil contamination
causative factors [2]. Interestingly, growing plants on soils that contained increased levels
of heavy metals led to the discovery of the metal-accumulating properties of many species
known today. However, not all heavy metals have a toxic effect on plants. In other words,
normal plant growth requires the presence of heavy metals, which is why it up to the type
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of metal, its chemical form, pH, the composition of soil or sole plant species whether a
metal will have deleterious effects on a particular plant or not [1].

The majority of metals cannot be eliminated from the environment by chemical or
biological transformation. They cause a state of oxidative stress in the plant and it is
necessary to better understand the mechanisms of their harmful effects, as well as the
tolerance of certain species and the specific reaction of their varieties to the increased
availability of heavy metals in the environment.

Lead, as a non-essential trace metal, is a strong environmental pollutant that is toxic
in very low concentrations and accumulates in various parts of the plant. Copper is a
micronutrient highly important for plants because of its ability to maintain vital plant
activity. Any deficiency of a nutrient affects plant growth and decreases crop yields [3].
There are different sources of lead and copper in the environment, such as natural sources
(geologic parent material or sedimentary rock, volcanoes, marine sources) and industrial
sources (energy supplying power stations, metallurgy and electroplating, chemical industry,
pharmaceuticals). Other sources of heavy metals include waste incineration, landfills and
transportation (cars, diesel-powered vehicles and aircraft) [1]. For copper to be biologically
available, the pH should optimally be between 4.5 and 6, while the mobility of lead does
not depend on the pH value of the soil and is quite small due to its tendency to bind to the
organic matter [4].

Crop plants have been used to extract heavy metals from soil and sediments, followed
by translocation of contaminants to the harvestable stalks and leaves of the plants [2].
As many metals that are being stockpiled by plants are essential nutrients, there is great
potential for their use in food fortification and phytoremediation. Thus, analysis of metal
accumulation capacity represents a promising aspect of plant use [5]. Over 700 metal-
hyperaccumulating and tolerant plant species are known, particularly in the context of
affinity towards Nickel (over 500) [6]. Species associated with storing cobalt, copper or
zinc in higher amounts are second in rank, although much smaller in number, with those
hyperaccumulating arsenic, cadmium, gold, lead, manganese and thallium being in the
third place [7].

According to Baker and Brooks [8], the largest numbers of hyperaccumulating species
belong to the Brassicaceae family. Likewise, Sarma emphasizes in his paper [9] that
metal hyperaccumulation is a property widespread among the representatives of the
Brassicaceae family. Ni and Zn hyperaccumulation, the former being first discovered
in 1948 in Alyssum bertolonii/Brassicaceae, and later in 1865 in Noccaea caerulescens
(formerly, Thlaspi caerulescens)/Brassicaceae, began to attract increasing attention in the
early 1990s as incidences of the alternative metal accumulating strategies [10].

A hyperaccumulator has been defined as a plant that can accumulate cadmium
(>100 mg/kg), copper and lead (>1000 mg/kg), zinc (>10.000 mg/kg) in its shoot dry
matter. Further, in these plants, metal concentrations in shoots are greater than in roots,
showing a peculiar ability of a plant to absorb and transport metals, and store them in their
above-ground parts [8]. A plethora of factors affect hyperaccumulation, and some of them
are described in the work of Peng et al. [6].

Brassicaceae plants often feature regularly in diets as raw or preserved vegetables and
vegetable oil [11].

Lunaria annua L. is a biennial cruciferous oilseed crop. The biennial character of Lunaria
is the main constraint for economically feasible cultivation. The seeds contain 30–35% oil,
which contains 67% of long-chain fatty acids (44% erucic acid, C22:1, and 23% nervonic
acid, C24:1). The oil is suitable as a lubricant [12,13]. In representatives of the genus, the
boiled root of a plant is edible, while unripe fruits can be chopped and used as a spice.

Determinations of heavy metals in environmental samples, whether qualitative or
quantitative, can be performed using different spectroscopic and electroanalytical meth-
ods. These include atomic absorption spectrometry (AAS), inductively coupled plasma
atomic emission spectroscopy (ICP-AES) [14], microwave-induced plasma optical emis-
sion spectroscopy (MIP-OES), inductively coupled plasma optical emission (ICP-OES) and
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stripping voltammetry [15]. The latter is a widely used electrochemical technique for the
detection of heavy metals in soil and water samples due to its ability to measure metal ions
at trace concentrations. Stripping analysis consisted of two steps, a preconcentration and a
stripping one. During the former one, the metal ions were reduced to a metal of interest
and accumulated on the surface of a working electrode; during the latter, by applying a
positive (anodic) or negative (cathodic) potential scan to the electrode, a metal of interest
was oxidized back to its ion form and stripped out into the solution. In the meantime, the
amount of the element was determined by measuring the generated current [3].

In this work, we investigated the accumulation properties of Lunaria annua L. in the
context of copper and lead-abundant soil. Metal concentrations of copper and lead were
measured before planting and after the plants were harvested in soils, seeds and plants
depending on the stage of growth. COMPO SANA, a commercially available organic
mineral substrate and a soil sample collected from the Botanical Garden of the Faculty of
Science, University of Split (30 cm-deep soil surface), were used in these experiments.

For the determination of Cu and Pb, square wave anodic stripping voltammetry
(SWASV), using a glassy carbon electrode modified with mercury film, was applied. The
standard addition method was used to determine and calculate the concentrations of copper
and lead.

2. Materials and Methods
2.1. Chemicals and Materials

All chemicals and reagents were at least of analytical grade, and Milli-Q water was
used throughout the experiment. Lead(II) nitrate, potassium nitrate and phosphoric acid
were purchased from T.T.T. (Zagreb, Croatia); copper(II) nitrate, mercury(II) nitrate mono-
hydrate and sulfuric acid were purchased from Kemika (Zagreb, Croatia). Nitric acid was
purchased from Merck (Darmstadt, Germany). Hydrochloric acid was purchased from
VWR Chemicals (Radnor, Pennsylvania, SAD). Ethanol was purchased from Gram-mol (Za-
greb, Croatia). Standard solutions (1 × 10−5 M) of each metal were prepared by dissolving
exact salt weight (Pb(NO3)2), Cu(NO3)2 × 3H2O) in 100 mL deionized water.

All experiments were carried out in a conventional three-electrode electrochemical
cell at 25 ◦C. The glassy carbon (φ = 3 mm) served as a working electrode, Ag/AgCl/3
M KCl as a reference electrode and platinum as an auxiliary electrode. Electrochemical
measurements were carried out using a potentiostat (Autolab PGSTAT 302N), connected to
a PC and driven by the GPES4.9 software (Eco Chemie).

The supporting electrolyte required for the determination of Pb(II) and Cu(II) was a
mixture of 0.01 M H3PO4 and 0.01 M HNO3 acids. To eliminate the influence of matrix in
soil samples, measurements were performed with the addition of 100 µL aqua regia (2 mL
of concentrated HNO3 and 6 mL of concentrated HCl into a 50 mL volumetric flask and
filled with deionized water up to the volume). All experiments were carried out at room
temperature (approximately 25 ◦C) without removing the dissolved gases.

2.2. Sample Preparation
2.2.1. Preparation of Soil Samples

The soil sample collected from the Botanical Garden (hereinafter S1) and a commer-
cially available organic mineral substrate (COMPO SANA) (hereinafter S2) were air-dried
for three weeks, mixed into a homogenous mixture and then sieved through a 2.5 mm,
1.0 mm, 0.5 mm and 0.25 mm mesh.

In total, 1.0 g of each soil sample was put on porcelain crucibles, placed in a cool muffle
furnace and ashed at 550 ◦C for 3 h. Afterwards, the ashes were cooled and dissolved in
8 mL of aqua regia. The solution was filtered, the ashes were washed with diluted aqua
regia and the filtrate was transferred into a 50 mL volumetric flask and diluted to the mark
with deionized water.

For soil pH determination, two replicates of a 10.00 g portion of each soil sample were in-
dividually transferred to 50 mL glass beakers, and 25 mL of Milli-Q water (Ω = 18.2 MΩ/cm)
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was added. A premium hotplate stirrer model MSH-20A (Witeg Labortechnik, GmbH,
Wertheim, Germany) was used for stirring the solutions. The pH of the samples was
measured using a pH/conductivity combimeter (Orion Star Series Meter Thermo Fischer
Scientifc Inc., Beverly, MA, USA).

2.2.2. Preparation of Seeds Samples

In total, 1.0 g of the plant was put on porcelain crucibles, placed in a cool muffle
furnace and ashed at 550 ◦C for 3 h. Afterwards, the ashes were cooled and dissolved in
8 mL of aqua regia. The solution was filtered, the ashes were washed with diluted aqua
regia and the filtrate was transferred into a 50 mL volumetric flask and diluted to the mark
with deionized water.

2.2.3. Preparation of Plant Samples

Four flowerpots were prepared for each plant species; two of them were filled with
S1, and two of them with S2. The seeds of Lunaria annua L. were planted in the flowerpots
with the prepared soils. Two flower pots were watered with 15 mL of tap water of pH 7
(samples S1 + H2O and S2 + H2O) and the other two with 15 mL of a prepared solution
which contained 8 mM of Pb(NO3)2 and 8 mM Cu(NO3)2 × 3H2O (samples S1 + Pb/Cu
and S2 + Pb/Cu), for thirty days. Unseeded and untreated soils were used as controls.

After thirty days of cultivation, when plants had flowered, a plant from each flowerpot
was harvested and left to dry at room temperature (ca. 25 ◦C) over a period of two days,
and afterwards, in a laboratory drying oven at 75 ◦C to a constant mass, in order to obtain
dry mass. Plant samples were cut to pieces and milled into a homogenous powder. In total,
1.0 g of a plant was put in a porcelain crucible, placed in a cool muffle furnace and ashed at
550 ◦C for 3 h. Afterwards, the ashes were cooled and dissolved in 8 mL of aqua regia. The
solution was filtered, the ashes were washed with diluted aqua regia and the filtrate was
transferred into a 50 mL volumetric flask and diluted to the mark with deionized water.

2.3. Electrode Preparation

A working electrode was polished with alumina powder to obtain a mirror-like
surface, washed with deionized water, sonicated in ethanol solution for 2 min, washed
with deionized water and dried. After, the electrode was electrochemically cleaned in 0.5 M
sulfuric acid in the potential area of −1 V to 1 V, and the scan rate of 0.2 Vs−1.

Plating was carried out by immersion in a solution of 0.1 M KNO3, 0.01 M HNO3,
and 2 × 10−4 M Hg(NO3)2 × H2O, while the electrode potential was held at −1.0 V for
2 min. After each experiment, the electrode was electrochemically re-prepared, and the
mercury film was cleaned by wiping the electrode with a wet tissue, followed by plating a
new mercury film for performing a new experiment.

2.4. Voltammetric Measurements

The concentrations of lead and copper were determined using the square wave anodic
stripping voltammetry (SWASV) under optimized parameters, i.e., electrodeposition poten-
tial and final potential of −1.5 and +0.25 V, respectively; electrodeposition time of 60 s; step
potential = 2 mV, step amplitude = 25 mV, and frequency = 10 Hz.

Before the measurements, to avoid any contamination, the electrochemical cell was
rinsed with concentrated HNO3 and Milli-Q water.

2.5. Analysis of Samples

In total, 50 mL of supporting electrolyte was transferred into an electrochemical cell,
100 µL of each digested soil or plant sample and 100 µL of aqua regia was added. The
solution was stirred thoroughly and the potential was scanned. The obtained values of the
peak current are given in the results chapter and were used to determine the concentrations
of Pb and Cu in samples, respectively.
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2.6. Standard Addition Method

The standard addition method was used to determine the concentrations of metals in
samples and to eliminate the matrix effects. In total, 100 µL of a prepared sample and a
particular volume of standard solutions (1 × 10−5 M) of each metal were transferred into a
50 mL volumetric flask. The peak current value, relevant to each addition, was plotted on
the y-axis, while the x-axis was graduated in terms of the concentration of a standard in the
cell. The regression line was calculated and extrapolated back to the point on the x-axis
at which y = 0. The content of the determined element in the sample (w) was calculated
according to the following equation:

w (mg kg−1) = −cx (mol L−1) × M (metal/gmol−1) × 2.5 × 107 (1)

where 2.5 × 107 represents the correlation factor.

3. Results
3.1. Simultaneous Determination of Cu(II) and Pb(II)

Since certain concentrations of lead and copper can be found in real samples at the
same time, combinations were developed with constant Pb2+ (1 × 10−7 M) with different
additions of Cu2+ (1 × 10−6; 1 × 10−7; 1 × 10−8 M) and constant Cu2+ (1 × 10−5 M) with
different additions of Pb2+ (1 × 10−7; 1 × 10−8; 1 × 10−9 M).

The reductive peak currents for the Cu and Pb ions increased linearly with an increase
in their respective concentrations without affecting the other peak currents (Figure 1). It
is obvious that copper and lead do not interfere with each other. The reduction peak
potentials of the Cu and Pb ions on the modified electrode were separated completely into
two well-defined peaks at 0.00 V and −0.44 V vs. Ag/AgCl, respectively.

Chemosensors 2022, 10, x FOR PEER REVIEW 5 of 11 
 

 

Before the measurements, to avoid any contamination, the electrochemical cell was 
rinsed with concentrated HNO3 and Milli-Q water. 

2.5. Analysis of Samples 
In total, 50 mL of supporting electrolyte was transferred into an electrochemical cell, 

100 µL of each digested soil or plant sample and 100 µL of aqua regia was added. The 
solution was stirred thoroughly and the potential was scanned. The obtained values of the 
peak current are given in the results chapter and were used to determine the concentra-
tions of Pb and Cu in samples, respectively. 

2.6. Standard Addition Method 
The standard addition method was used to determine the concentrations of metals 

in samples and to eliminate the matrix effects. In total, 100 µl of a prepared sample and a 
particular volume of standard solutions (1 × 10−5 M) of each metal were transferred into a 
50 mL volumetric flask. The peak current value, relevant to each addition, was plotted on 
the y-axis, while the x-axis was graduated in terms of the concentration of a standard in 
the cell. The regression line was calculated and extrapolated back to the point on the x-
axis at which y = 0. The content of the determined element in the sample (w) was calcu-
lated according to the following equation: 

w (mg kg−1) = -cx (mol L−1) × M (metal/gmol−1) × 2.5 × 107 (1)

where 2.5 × 107 represents the correlation factor. 

3. Results 
3.1. Simultaneous Determination of Cu(II) and Pb(II) 

Since certain concentrations of lead and copper can be found in real samples at the 
same time, combinations were developed with constant Pb2+ (1 × 10−7 M) with different 
additions of Cu2+ (1 × 10−6; 1 × 10−7; 1 × 10−8 M) and constant Cu2+ (1 × 10−5 M) with different 
additions of Pb2+ (1 × 10−7; 1 × 10−8; 1 × 10−9 M). 

The reductive peak currents for the Cu and Pb ions increased linearly with an in-
crease in their respective concentrations without affecting the other peak currents (Figure 
1). It is obvious that copper and lead do not interfere with each other. The reduction peak 
potentials of the Cu and Pb ions on the modified electrode were separated completely into 
two well-defined peaks at 0.00 V and −0.44 V vs. Ag/AgCl, respectively. 

Figure 1. Square wave anodic stripping voltammogram of simultaneous detection of (a) lead at a 
constant concentration of copper; (b) copper at a constant concentration of lead at optimized param-
eters: electrodeposition potential and final potential of −1.5 and +0.25 V respectively, electrodeposi-
tion time of 60 s; step potential = 2 mV, step amplitude = 25 mV and frequency = 10 Hz. 

  
(a) (b) 

Figure 1. Square wave anodic stripping voltammogram of simultaneous detection of (a) lead at a con-
stant concentration of copper; (b) copper at a constant concentration of lead at optimized parameters:
electrodeposition potential and final potential of −1.5 and +0.25 V respectively, electrodeposition
time of 60 s; step potential = 2 mV, step amplitude = 25 mV and frequency = 10 Hz.

3.2. Determination of Cu(II) and Pb(II) in Real Samples

The resulting stripping voltammograms for the seed sample are shown in Figure 2.
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Figure 2. SWAS voltammogram recorded for seed sample with (a) increasing lead concentration and
(b) increasing copper concentration. Inset: corresponding calibration curve. Optimized parameters:
electrodeposition potential and final potential of −1.5 and +0.25 V, respectively, electrodeposition
time of 60 s; step potential = 2 mV, step amplitude = 25 mV and frequency = 10 Hz.

Redox signals for lead were observed at about −0.45 V. The peak potential for copper
was −0.07 V, and it gradually shifted toward more negative potentials with an increase in
heavy metal concentration.

Obtained voltammograms for the determination of metals in plant samples from S1
and S2, watered with tap water, are shown in Figures 3 and 4.
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Figure 3. SWAS voltammogram of Pb, with the corresponding calibration curve, recorded in plant
samples from (a) S1; and (b) S2; watered with tap water, at optimized parameters: electrodeposition
potential and final potential of −1.5 and +0.25 V, respectively, electrodeposition time of 60 s; step
potential = 2 mV, step amplitude = 25 mV and frequency = 10 Hz.
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Figure 4. SWAS of Cu, with the corresponding calibration curve, recorded in plant samples
from (a) S1; and (b) S2; watered with water, at optimized parameters: electrodeposition potential and
final potential of −1.5 and +0.25 V, respectively, electrodeposition time of 60 s; step potential = 2 mV,
step amplitude = 25 mV and frequency = 10 Hz.

The voltammograms obtained for the determination of metals in plant samples from
S1 and S2, watered with prepared solution (8 mM for Pb and 8 mM for Cu), are shown in
Figures 5 and 6, respectively.
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Figure 5. SWAS voltammogram of Pb, with the corresponding calibration curve, recorded in plant
samples from (a) S1; and (b) S2; watered with a prepared solution at optimized parameters: electrode-
position potential and final potential of −1.5 and +0.25 V, respectively, electrodeposition time of 60 s;
step potential = 2 mV, step amplitude = 25 mV and frequency = 10 Hz.
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 ICP SWASV 
Sample (n = 5) Content of Pb (mg/kg) Content of Cu (mg/kg) Content of Pb (mg/kg) Content of Cu (mg/kg) 

S1 25.7 ± 0.8 29.6 ± 0.8 23.8 ± 1.8 30.9 ± 1.7 
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Seeds Lunaria 1.6 ± 0.1 2.8 ± 0.1 2.1 ± 0.3 3.1 ± 0.4 
S1 + H2O 25.5 ± 0.8 29.8 ± 0.6 26.9 ± 1.5 29.4 ± 1.7 

S1 + Pb/Cu 2194.4 ± 22.4 681.2 ± 15.8 2131.8 ± 83.1 701,7 ± 36.1 
S2 + H2O 10.8 ± 0.4 10.6 ± 0.5 11.1 ± 1.1 10.6 ± 0.8 

S2 + Pb/Cu 2270.8 ± 39.2 715.8 ± 13.3 2232.5 ± 75.9 708.5 ± 28.0 
Plant from S1 + H2O 28.8 ± 0.8 14.7 ± 0.4 32.7 ± 2.4 15.8 ± 1.6 

Plant from S1 + Pb/Cu 3845.5 ± 52.1 598.2 ± 11.3 4116.2 ± 190.3 624.2 ± 23.4 
Plant from S2 + H2O 16.7 ± 0.3 4.0 ± 0.1 17.5 ± 1.6 4.1 ± 0.6 
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Figure 6. SWAS voltammogram of Cu with the corresponding calibration curve, recorded in plant
samples from (a) S1; and (b) S2; watered with a prepared solution at optimized parameters: electrode-
position potential and final potential of −1.5 and +0.25 V, respectively, electrodeposition time of 60 s;
step potential = 2 mV, step amplitude = 25 mV and frequency = 10 Hz.

After 30 days of exposure, concentrations of Cu in the plant from S1 and S2 wa-
tered with tap water were 15.8 ± 1.6 and 4.1 ± 0.6 mg/kg, while the concentrations
in the plants from S1 and S2 contaminated with a solution of Pb/Cu were 624.2 ± 23.4
and 498.9 ± 21.0 mg/kg. Unlike for Cu, concentrations of Pb in the plant from S1 and S2
watered with tap water or solution of Pb/Cu were much higher in comparison with
unseeded and untreated soil (32.7 ± 2.4 and 17.5 ± 1.6 mg/kg; 4116.2 ± 190.3 and
3314.7 ± 99.4 mg/kg) (Table 1). The detection results were verified by inductively coupled
plasma mass spectrometry (ICP-MS). A comparison of voltammetric and ICP-MS results
are shown in Table 1.

Table 1. The comparison of voltammetric and ICP-MS results for the determination of Pb(II) and
Cu(II) in the determined samples.

ICP SWASV

Sample (n = 5) Content of Pb (mg/kg) Content of Cu (mg/kg) Content of Pb (mg/kg) Content of Cu (mg/kg)

S1 25.7 ± 0.8 29.6 ± 0.8 23.8 ± 1.8 30.9 ± 1.7

S2 10.8 ± 0.4 10.8 ± 0.5 10.6 ± 0.8 11.3 ± 0.9

Seeds Lunaria 1.6 ± 0.1 2.8 ± 0.1 2.1 ± 0.3 3.1 ± 0.4

S1 + H2O 25.5 ± 0.8 29.8 ± 0.6 26.9 ± 1.5 29.4 ± 1.7

S1 + Pb/Cu 2194.4 ± 22.4 681.2 ± 15.8 2131.8 ± 83.1 701.7 ± 36.1

S2 + H2O 10.8 ± 0.4 10.6 ± 0.5 11.1 ± 1.1 10.6 ± 0.8

S2 + Pb/Cu 2270.8 ± 39.2 715.8 ± 13.3 2232.5 ± 75.9 708.5 ± 28.0

Plant from S1 + H2O 28.8 ± 0.8 14.7 ± 0.4 32.7 ± 2.4 15.8 ± 1.6

Plant from S1 + Pb/Cu 3845.5 ± 52.1 598.2 ± 11.3 4116.2 ± 190.3 624.2 ± 23.4

Plant from S2 + H2O 16.7 ± 0.3 4.0 ± 0.1 17.5 ± 1.6 4.1 ± 0.6

Plant from S2 + Pb/Cu 3198.6 ± 47.5 501.0 ± 12.5 3314.7 ± 99.4 498.9 ± 21.0

n—number of samples in each determination. S1—soil from the Botanical Garden of the Faculty of Science,
University of Split. S2—commercially available organic mineral substrate.
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In the table, it can be clearly observed that the results obtained from the proposed
method are almost the same as those provided using the ICP-MS. This confirms the practical
utility of the proposed method for metal ion detection in real samples.

According to the data listed on the product label, S2 contains 12.3 mg/kg of copper and
10.22 mg/kg of lead, which corresponds to the values obtained in these experiments. Higher
values of Cu concentrations in S1 could be explained by the fact that it is an agricultural area
where vine grapes were planted from where the sample was obtained. Namely, years ago,
in the northern part of the botanical garden, autochthonous Mediterranean plant cultures
were cultivated (vineyards, olive groves, etc.). In addition, vines were grown near the
botanical garden on the slopes of the Marjan forest. It is known that the vines were sprayed
with a mixture of copper sulphate, lime and water, popularly known as Bordeaux mixture.
In addition, most of the plants in the botanical garden were also repeatedly sprayed with
the Bordeaux mixture.

The permissible level of Pb and Cu in agricultural areas in Croatia is 0–50 mg/kg and
0–60 mg/kg [16]. Data in Table 1 show that Pb and Cu levels in the soil samples were under
the permissible limit. The values obtained in this work corresponded to those found for the
concentrations of Pb and Cu in soil and plants from Brassicaceae families [17].

Concentrations of metals in the samples of plants presented in Table 1 showed that con-
centrations of Pb in the plant from soils which were watered with tap water are slightly higher
than in unseeded and untreated soil, while Cu concentrations did not change significantly.

The amount of lead and copper in plant samples that were watered with a solution of
Pb/Cu significantly increased as related to the soil contamination level (S1 and S2). Similar
behavior was observed in the article of Herrero et al. [2].

Although the added concentrations of lead and copper were high, the plant did not
wither, which suggests that the Lunaria annua L. have mechanisms to tolerate the presence of
heavy metals in the substrate which they grow in. The results showed that Lunaria annua L.,
according to the criteria for hyperaccumulation [8], is a lead hyperaccumulator and a
potential copper accumulator.

According to the literature [1,18], with increasing soil pH, the availability of metals in
the soil decreases, so it is more difficult for plants to accept them, i.e., the higher the soil
pH, the lower the possibility of metal accumulation. The measured pH values show that
soil 1 (pH = 6.35) is poorly acidic to neutral. On the other hand, the purchased organic soil
2 (pH = 8.58) is moderately alkaline soil. So, the obtained results show that the higher the
pH, the lower the possibility of metal accumulation. Considering the measured pH values
of the investigated soils, this could explain the significantly lower concentrations obtained
for copper compared to lead.

4. Conclusions

The experiments showed that SWASV could be used successfully to determine metals,
particularly copper and lead, in contaminated soils and plant samples. Moreover, such
a technique may be a good alternative to spectroscopy due to its simplicity and lower
equipment costs.

Obtained concentrations for copper in plants from both types of soil watered with tap
water are lower in comparison to the unseeded and untreated soil. Unlike copper, lead
concertation in plants from both types of soil watered with tap water were much higher
in comparison with unseeded and untreated soil. This confirms the well-known fact that
for the bioavailability of copper, the optimal pH should be between 4.5 and 6, while the
mobility of lead does not depend on pH value.

The obtained results showed that the higher the pH, the lower the possibility of
metal accumulation.

Various species of the Brassicaceae family are known to hyperaccumulate metals.
Our results suggest that Lunaria annua L. is capable of accumulating toxic amounts of
copper and lead. None of the plant samples accumulated copper in concentrations above
1000 mg kg−1, meaning the criteria for a hyperaccumulator were not met. However, given
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the obtained concentration values, we can conclude that Lunaria annua L. is a potential
copper accumulator and a heavy metal-tolerant species. In contrast to the obtained values of
copper, the values for lead were greater than 1000 mg kg−1, indicating that Lunaria annua L.
is a hyperaccumulator of lead. Hence, the results presented in this paper indicate a possible
health risk if the plant material of Lunaria annua L. were used for human consumption.
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