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Abstract: Waste incineration is regarded as an ideal method for municipal solid waste disposal
(MSW), with the advantages of waste-to-energy, lower secondary pollution, and greenhouse gas
emission mitigation. For incineration leachate, the information from the headspace gas that varies
at different processing processes and might be useful for chemical analysis, is ignored. The study
applied a novel electronic nose (EN) to mine the information from leachate headspace gas. By
combining manifold learnings (principal component analysis (PCA) and isometric feature mapping
(ISOMAP), and uniform manifold approximation and projection (UMAP) and ensemble techniques
(light gradient boosting machine (lightGBM) and extreme gradient boosting (XGBT)), EN based
on the UMAP-XGBT model had the best classification performance with a 99.95% accuracy rate in
the training set and a 95.83% accuracy rate in the testing set. The UMAP-XGBT model showed the
best prediction ability for leachate chemical parameters (pH, chemical oxygen demand, biochemical
oxygen demand, ammonia, and total phosphorus), with R2 higher than 0.99 both in the training and
testing sets. This is the first study of the EN application for leachate monitoring, offering an easier
and quicker detection method than traditional instrumental measurements for the enforcement and
implementation of effective monitoring programs.

Keywords: electronic nose; incinerator leachate; data mining; prediction; classification

1. Introduction

The world generates 2.01 billion tons of municipal solid waste (MSW) annually, and
waste generated per person per day averages at 0.74 kg. When looking forward, global
waste is expected to grow to 3.40 billion tons by 2050 [1]. Comprised of physicochemical
and biological characteristics that are aggressive to the soil, water resources, fauna and
flora, and MSW is difficult to handle for most countries and regions [2]. To date, the main
disposal methods for MSW are landfill and incineration. MSW landfill causes some issues
to the environment, including: (1) high greenhouse gas (GHG) emissions if landfill gas is
not properly collected, (2) leachate produced damages the ecosystem, (3) a larger space
is needed for the project set up [3]. Therefore, waste incineration is regarded as an ideal
method for MSW disposal [4], with the advantages of waste-to-energy, lower secondary
pollution, greenhouse gas emission mitigation, and so on.

However, for MSW incineration, a considerable number of challenges are still gener-
ated at different points, including but not limited to leachate processing. For incineration
leachate, research has mainly focused on the characteristics of leachate concentrate [5], the
organic matter molecular transformation in leachate [6], and the degradation of refrac-
tory organics [7]. All these direct or indirect studies relate to the leachate headspace gas,
which hints that the information in the leachate headspace gas can be mined for leachate
processing or monitoring. Until now, few in-depth studies have been conducted to fetch
information from the vast amounts of original data about the varieties, concentrates, and
changes of those materials.
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The electronic nose (EN) appears to be a promising candidate for headspace gas detect-
ing, mimicking the human nose, with a range of applications, including the food industry,
disease diagnosis, and environment monitoring [8]. Different from instrumental methods,
such as gas chromatography (GC) with a flame photometric detector (FID), photoionization
(PID), or a mass spectrometer (MS), EN offers the whole information that is unique for
each sample headspace gas instead of specific materials or their concentrations. EN has
been predominately used for indoor air monitoring [9], soil contamination detection [10],
and water quality monitoring [11]. However, studies on leachate detection based on EN
technology are rare, according to our best knowledge.

Novel EN devices, based on machine learning algorithms capable of real-time de-
tection of industrial and municipal pollutants, have been developed to monitor specific
environmental-pollutant levels for enforcement and implementing effective pollution-
abatement programs [12]. Manifold learning, such as isometric feature maps (ISOMAPs)
and uniform manifold approximation and projection (UMAP), uncover a low-dimensional
manifold embedded in a high-dimensional space while respecting the intrinsic geome-
try [13]. Manifold learning, as a novel data pre-processing technology, can improve the
performance of EN detecting.

Ensemble methods are designed to overcome problems with weak predictors and meet
the fast, high-performance requirement [14]. Combining manifold learning and ensemble
methods techniques makes it possible to identify and differentiate between gases of different
leachate samples based on EN and mine useful information for leachate monitoring. A
novel EN based on manifold learning and ensemble methods was applied to monitor the
changes in leachate headspace gas. The main objectives are: (1) to study the variation of
leachate headspace gas based on EN with different processing procedures; (2) to investigate
the manifold structure of EN original data based on principal component analysis, ISOMAP,
and UMAP; and (3) to mine the relationship between leachate headspace gas and chemical
parameter changes based on ensemble methods (extreme gradient boosting and light
gradient boosting machines). The study provides insights into the relationship between
leachate gas emission and chemical parameters based on EN combined with manifold
learning and ensemble methods and offers an easier and quicker monitoring method than
traditional instrumental measurements for the enforcement and implementation of effective
monitoring programs.

2. Materials and Methods
2.1. Sample Collection

The incineration leachate samples collected were from Wenling Green New Energy Co.,
Ltd. (Wenling, China), which was invested in by Zheneng Jinjiang Environment Holding
Co., Ltd. (Hangzhou, China), who is a forerunner and leading waste-to-energy operator
in China’s waste-to-energy (WTE) industry. The Wenling incineration power generation
plant is located in the northern part of the Eastern New District of Wenling City, next to
the East China Sea, with a total area of 7.3 × 105 sqm. The leachate treatment scale of
the incineration plant is 1600 tons/day in two phases, and for now, the treatment scale
of the first phase is 800 tons/day (600 tons/day of domestic waste and 200 tons/day of
dry sludge). The leachate treatment process of the incineration power plants is shown in
Figure 1.

Leachate samples from six water outlets were collected on the 15 July 2022. In Figure 2,
the samples from six water outlets were named leachate raw water (LRW), leachate effluent
(LE), internal circulation reactor effluent, aerobic effluent (AeroE), anaerobic effluent (ANE),
and MBR effluent (MBRE). The samples were preserved in a refrigerator at a temperature
lower than 4 ◦C and were forwarded to the laboratory.
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Figure 2. Leachate sample collection: (a) leachate raw water (LRW), (b) leachate effluent (LE),
(c) internal circulation reactor effluent (ICRE), (d) aerobic effluent (AeroE), (e) Anaerobic effluent
(ANE), and (f) MBR effluent (MBRE).

2.2. Chemical Parameters Detection for Incinerator Leachate

In general, incinerator leachate is tested by conventional parameters, including pH,
chemical oxygen demand (COD), biochemical oxygen demand after 5 days (BOD5), ammo-
nia (NH4+-N), and total phosphorus (TP). The values of those conventional parameters
exhibit considerable differences due to variations in composition and moisture content,
as well as seasonal factors and incinerator location. The value of pH was tested by the
electrode method [15]. For COD detection, the dichromate method is not suitable for the
water samples in which the chloride ion concentration is higher than 1000 mg/L. The
chlorine emendation method was applied to detect the contents of COD in the incinerator
leachate samples [16]. The concentration of ammonia nitrogen was measured according to
Nessler’s reagent spectrophotometry [17]. The alkaline potassium persulfate digestion UV
spectrophotometric method [18] was used to detect total nitrogen content. The ammonium
molybdate spectrophotometric method [19] was applied to detect the content of TP.
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2.3. E-Nose Detection

The EN mainly consists of two parts: the sensor array, which is applied to sense
the information in the sample’s headspace, and the software part, which handles the
information received from the sensors. According to the sensing materials, metal-oxide-
semiconductor (MOS), quartz crystal microbalance, and surface acoustic wave sensors
are most applied in the EN system [20]. MOS gas sensors are most sensitive to hydrogen
and unsaturated hydrocarbons or solvent vapors containing hydrogen atoms [21]. The
headspace gas from incinerator leachate contents is mainly composed of volatile organic
compounds (VOCs), including hydrogen sulphide, methyl mercaptan, acetylene, propylene,
and ethylene, and also varies according to source, season, the incinerator site, and so on [22].

A commercial PEN2 electronic nose (Airsense Analytics, GmBH, Schwerin, Germany)
was applied to detect the headspace gas from incinerator leachate samples at different
processing procedures. For PEN2, MOS sensors are the core part, and the details of MOS
sensors are presented in Table 1. The MOS sensors convert the information about gas types
and concentrations into an electrochemical signal. The EN signal was expressed as G/G0,
where G and G0 represent the resistance of a sensor in sample headspace gas and clean air.
As the sensors are cross-sensitive to a class of gas compounds, EN does not give the specific
information of one material but offers the headspace gas complementary information.

Table 1. Sensors used and their main applications in the EN.

No. Sensor Name General Description Reference

S1 W1C Aromatic compounds Toluene, 0.1 g/kg

S2 W5S Very sensitive with negative signal, broad range
sensitivity, react on nitrogen oxides NO2, 1 × 10−3 g/kg

S3 W3C Very sensitive with aromatic compounds Benzene, 1 × 10−2 g/kg
S4 W6S Mainly hydrogen, selectively, (breath gases) H2, 0.1 g/kg
S5 W5C Alkanes, aromatic compounds, less polar compounds Propane, 1 × 10−3 g/kg

S6 W1S Sensitive to methane (environment). Broad range, similar
to S8; CH4, 0.1 g/kg

S7 W1W Reacts on sulfur compounds, or sensitive to many
terpenes and sulfur organic compounds; H2S, 1 × 10−4 g/kg

S8 W2S Detects alcohol’s, partially aromatic compounds,
broad range CO, 0.1 g/kg

S9 W2W Aromatics compounds, sulfur organic compounds H2S, 1 × 10−3 g/kg

S10 W3S Reacts on high concentrations > 0.1 g/kg, sometime very
selective (methane) CH4, 0.1 g/kg

During the EN detection, incinerator leachate liquid with a 5 mL volume was placed
into a 500 mL beaker. The beaker was sealed by plastic wrap and was kept still for 30 min to
balance the headspace gas generated from the incinerator leachate. Two holes were made,
one for EN detection and the other for a steady stream of gas while EN detecting. The EN
detection time was set to 80 s, and then the gas path and sensor chamber were cleaned
with clean air. The gas flow rate was 200 mL/min, and one signal per second was collected.
Landfill leachate was collected from six water outlets with 24 samples; thus, 144 samples
(24 samples × 6 procedures) were prepared. All the detection was accomplished on the
sample collection day.

2.4. Data Reduction Based on Manifold Learning
2.4.1. Principal Component Analysis

As a multivariate technique, Principal Component Analysis (PCA) was applied to ana-
lyze a data set consisting of several inter-correlated quantitative dependent variables [23].
By calculating eigenvalue and eigenvector from the covariance matrix of the original data
set, the new orthogonal variables will be derived and usually called principal components
(PC). The cumulative contribution rate of PCs should reach more than 85% of the total
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variance, then the PCA will be considered to have extracted the main information of the
original data.

2.4.2. Isometric Feature Mapping

As a nonlinear dimensionality reduction technique, Isometric Feature Mapping (ISOMAP)
maintains the essential geometric structure of nonlinear data [24]. ISOMAP is multidimen-
sional scaling combined with geodesic distance for reducing the dimensionality of data
sampled from a smooth manifold. ISOMAP tries to solve the shortest path to obtain the
geodesic distance that preserves the characteristics of high-dimensional data structures
as much as possible. Multidimensional scaling is used to calculate the coordinates of
each data point in the low-dimensional space, and the original data is embedded in the
high-dimensional set.

2.4.3. Uniform Manifold Approximation and Projection

As a nonlinear dimensionality reduction technique, uniform manifold approximation
and projection (UMAP) was developed for the analysis of any type of high-dimensional
data [25]. From a theoretical framework based in Riemannian geometry and algebraic
topology, UMAP learns the data representation between points in high-dimensional space
and maps to low dimensions by calculating the joint probability density between high-
dimensional sample points. Spectral clustering analysis is used to initialize the low-
dimensional data and then project it into the low-dimensional space. Adjustable parameters
are used in joint probability density to control the change of conditional probability and
ensure the symmetry of the data. Low-dimensional data also provides two parameters
to adjust the aggregation of mapped data so that low-dimensional data can better fit
high-dimensional spatial data.

2.5. Classification and Prediction
2.5.1. Classification and Regression Tree

Classification and Regression Tree (CART) selects features based on the minimization
of the Gini coefficient to generate a binary tree. By pre-pruning through empirical judgment,
the useless attributes can be removed. After the construction is completed, the algorithm
can resist overfitting and has better generalization ability by cutting off a part of the
information with less proportion.

In addition, the shortcomings that CART cannot handle large amounts of data, un-
derfitting, and overfitting, can be overcome by integrating multiple CART classifiers into
a single ensemble model with the ideas of bagging and boosting. The study selects a
boosting algorithm with relatively stable generalization performance. Boosting is a kind of
optimization algorithm based on the greedy strategy of selecting the fixed loss function (op-
timization function and objective function) based on a greedy strategy for the optimization
of the loss function, committed to obtaining the minimum loss optimization function, such
as eXtreme Gradient Boosting (XGBT) and Light Gradient Boosting Machine (lightGBM).

2.5.2. eXtreme Gradient Boosting

eXtreme Gradient Boosting (XGBT) uses the first and second partial derivatives, and
the second derivatives help the gradient descend faster and more accurately. Using Taylor
expansion to obtain the function as the second derivative form of the independent variable,
the leaf splitting optimization calculation can be carried out only by relying on the value of
the input data without selecting the specific form of the loss function, essentially separating
the selection of the loss function from the optimization of the model algorithm/parameter
selection [26]. The algorithm goes:

1. Initialize model with a constant value:

f̂0(x) = argmin
n

∑
i

L(yi, θ)
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For m = 1 to M:
a. Compute so-called pseudo-residuals:

ĝm(x) = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f (x)= f̂m−1(x)

ĥm(x) = −
[

∂2L(yi, f (xi))

∂ f (xi)
2

]
f (x)= f̂m−1(x)

b. Fit a base learner using the training set {xi,
ĝm(xi)

ĥm(xi)
}

n

i=1
by solving the optimization

problem below:

ϕ̂m = argmin
N

∑
i

1
2

ĥm(xi)

[
− ĝm(xi)

ĥm(xi)
− ϕ(xi)

]2

f̂m(x) = αϕ̂m(x)

c. Update the model:
f̂m(x) = f̂m−1(x) + f̂m(x)

2. output FM(x).

2.5.3. Light Gradient Boosting Machine

Light Gradient Boosting Machine (LightGBM) grows trees leaf-wise instead of level-
wise, yielding the largest loss decrease. LightGBM implements a highly optimized histogram-
based decision tree learning algorithm, which greatly improves efficiency and memory
consumption [27]. The algorithm goes:

(1) The sample points are sorted in descending order according to the absolute value of
their gradient;

(2) Select the first samples of the sorted results to generate a subset of large gradient
sample points;

(3) For 100% samples of the remaining sample set (1− a), randomly select b (1 − a) × 100%
sample points to generate a set of small gradient sample points;

(4) Merge the large gradient samples with the sampled small gradient samples;
(5) Multiply the small gradient samples by a weight coefficient;
(6) Learn a new weak learner (CART) using the above-sampled samples;
(7) Continuously repeat steps (1)~(6) until the specified number of iterations or conver-

gence is reached.

2.6. The Evaluation of Data Processing

To evaluate the accuracy and precision of the established models, 100 samples were
set as the training data, and the rest, 44 samples, were set as the testing data.

The receiver operative curve (ROC) was deployed as a performance indicator for the
classification models. True positive and negative rates are the most commonly used to
evaluate the performance of classification tests. The higher the probability value of these
two indicators, represents the better the judgment effect in the model [28].

The coefficient R2 and RMSE were selected as the evaluation parameters for prediction
models. The higher the R2 was and the lower the RMSE was, the more accurate the
prediction ability of the model would be.

3. Results and Discussion
3.1. The Chemical Parameter Changes of Leachate

The composition of leachate is highly variable and heterogeneous. In general, in-
cinerator leachate is tested using conventional parameters, including pH, COD, BOD5,
ammonia, and TP. The changes in the chemical parameters for leachate samples are shown
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in Table 2. There were statistically significant differences (Turkey HSD, p < 0.05) in the
contents of COD, BOD5, ammonia, TN, and TP. It was noteworthy that the values of COD
decreased significantly at each process procedure. The changes were also noticeable for
BOD, ammonia, TN, and TP. Different from the other five chemical parameters, the value of
pH changes a lot at the last processing procedure. All the chemical parameters were all up
to standard, when the processed leachate was discharged to the municipal pipe network.

Table 2. Average values of leachate chemical parameters.

pH COD
(mg/L)

BOD5
(mg/L)

Ammonia
(mg/L)

TN
(mg/L)

TP
(mg/L)

LRW 8b 4.23 × 103 f 1.10 × 103 c 1.92 × 103 d 2.18 × 103 c 15.4 b
RPE 8b 6.14 × 103 e 1.50 × 103 d 1.70 × 103 c 2.14 × 103 c 24.3 c
ICRE 8.1b 2.90 × 103 d 0.70 × 103 b 1.54 × 103 c 1.76 × 103 b 24.1 c
AnE 8.3b 2.00 × 103 c 0.52 × 103 b 0.71 × 103 b 1.32 × 103 a 15.2 b

AeroE 7.8b 1.5 × 103 b 0.10 × 103 a 0.12 × 103 a 1.20 × 103 a 10.3 a
MBRE 6a 0.33 × 103 a 0.09 × 103 a 0.04 × 103 a 1.13 × 103 a 4.61 a

The values are the average of the total score of the ten experts with respect to three replications of leachate samples.
Mean in the same row followed by different inline letters (a, b, c, d, e, f) is statistically different as confirmed by
Tukey’s HSD test (p < 0.05).

3.2. The Result of EN Detection

The EN was used to analyze the headspace gas of the leachate samples at different
process periods. A typical response of the EN sensors array during exposure to sample gas,
which was randomly selected from the 144 samples, is depicted in Figure 3a. The procedure
of extracting the sample gas from the beaker to the sensing chamber took 5 seconds,
and then the sensors could react with the gas. The sensor signals changed significantly
from 5 to 35 s, and then the signals achieved a dynamic equilibrium. The various signal
values (maximum or minimum), the shifts, the response areas, and so on indicated that
the sensors offered unique and abundant characteristics about the headspace gas of the
leachate samples. To simplify data processing, sensor signals at 80th second were selected
as the input data of the analysis models. To fully understand the sensor signals, the average
values of 10 sensors were calculated and shown in Figure 3b. The overall signals (at the 80th
second) varied a lot in the first three process periods (LRW, LE, and ICRE), and for ANE,
AeroE, and MBRE samples, the signals changed not so remarkably. To further analyze the
behaviors of those sensors, a radar fingerprint chart of EN signals is shown in Figure 3c: S2,
the most sensitive sensor, showed the biggest variance, and S10 stayed almost still, and S10
stayed almost still. The impacts of leachate headspace gas on the responses of S8, S6, S9,
and S5 were to different degrees, and those on S7 and S4 were not so obvious.
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3.3. Data Reduction Based on Manifold Learning

Data reduction helps transfer an abundant and disordered original data set into a
simplified and ordered form. PCA is a popular technology in dimensionality reduction
and is flexible, fast, and easily interpretable. PCA does not perform well when there are
nonlinear relationships within the data. For high-dimensional data, it is difficult to affirm
whether the EN data is linear or not linear. ISOMAP and UMAP, as two kinds of manifold
learning, were applied and compared with PCA.

The best description of differences in the original data can be found by calculating the
eigen-decomposition of positive semi-definite matrices and the singular value decomposi-
tion of rectangular matrices. The PCs are ordered by ranking according to their contribution
(eigenvalue). In Figure 4a, the contributions of PCs are displayed, and the first three PCs
have extracted the most information from the original EN data at the 80th second (more
than 85%). The sample distributions of 144 samples based on the first three PCs (PC1, PC2,
and PC3) are shown in Figure 4b. LPW, LE, and ICRE can be easily classified, but ANE,
AeroE, and MBRE are overlapped in a three-dimensional space. The result is similar to
those shown in Figure 3b in some ways.
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ISOMAP constructs the geodesic distance graph from the original EN data, and
uses eigenvalue decomposition of MDS on the geodesic distance matrix to achieve low-
dimensional embeddings. The ICs are ordered and displayed by ranking the contribution
in Figure 5a. The first three ICs also extracted the most information of the original EN
data at 80th second (more than 85%), which are very similar to that in Figure 4a. Because
PCA and ISOMAP used eigen-decomposition and eigenvalue in this study, but there were
minuscule differences in the data. The sample distributions based on the first three ICs are
shown in Figure 5b. Similar as in Figure 4b, LPW, LE, and ICRE can be easily classified, but
ANE, AeroE, MBRE overlapped.

UMAP preserves the local and global data structures and offers short run times
based on Riemannian geometry and algebraic topology. Calculating the distance between
embedding spaces is an approximate measure to determine how sensitive the canonical em-
bedding space’s topology is, which is the feature importance. Figure 6a provides a careful
look at the feature importance of 10 UCs, which is quite different from Figures 4a and 5a.
The first three UCs obviously did not extract more than 85% of the information from the
original EN data, but not meaning that UMAP would do badly for later classification and
prediction. In Figure 6b, most of the samples seem to be clustered narrowly. LPW, LE,
and ICRE are classified clearly and can be easily distinguished in a three-dimensional
space. ANE and AeroE are overlapped, along with two MERE samples. In general, in
three-dimensional space, UMAP outperformed the PCA and ISOMAP in Figures 4b and 5b.
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3.4. Classification Based on EN Signals
3.4.1. Classification Result Based on LightGBM

ROC graphs are used to organize classifiers and visualize the results. As can be seen
from the ROC curve of the lightGBM in Figure 7, the classification accuracy results of the
original, PCA, ISOMAPa, and UMAP data are very different in the training set, respectively.
In the view of the lightGBM models, the PCA better retains the majority of the information
of the original data set according to the ROC curve, and the overall AUC area reaches 100%.
From the ROC results, the performance of UMAP was better than that of ISOMAP, and
only one category 6 classification showed partial errors. In the ISOMAP-lightGBM model,
samples from classes 4 and 6 were misclassified.
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Figure 7. Overall receiver operating characteristics (ROC) curve of lightGBM showing the true
positive and false-positive: (a) based on original data, (b) based on the PCA data, (c) based on the
ISOMAP data, and (d) based on the UMAP data. Class S1 refers to LRW samples, class S2 refers to LE,
class S3 refers to ICRE, class S4 refers to AeroE, class S5 refers to ANE, and class S6 refers to MBRE.

To explore further the models based on different data sets, testing data sets were
applied to verify the classification result. Moreover, to reduce the volatility attributable,
each model was run 20 times, and the average results are displayed in Table 3. The best
classification performance is the UMAP-XGBT model, with a 99.95% accuracy rate in the
training set and a 97.36% accuracy rate in the testing set, indicating that UMAP-XGBT has
the most stable robustness. For PCA-lightGBM, the classification results were worse than
those of the original-lightGBM model in the testing set. ISOMAP-lightGBM has a 100%
average accuracy rate in the training set and a 96.81 average accuracy rate in the testing set.

Table 3. The classification results in the training set and testing set based on lightGBM.

Model Accurate Rate in the Training Set (%) Accurate Rate in the Testing Set (%)

Original-lightGBM 100 96.25
PCA-lightGBM 100 94.44

ISOMAP-lightGBM 100 96.81
UMAP-lightGBM 99.95 97.36

3.4.2. Classification Result Based on XGBT

According to the ROC results in Figure 8, the best performance of classification models
is PCA-XGBT, with only two error classification cases. In the UMAP-XGBT model, samples
of LE and AeroE were misclassified, but the overall performance was better than that of the
original-XGBT. The ISOMAP-XGBT model, with the worst classification performance, has
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categories LE and AeroE misclassified. According to the training set, ISOMAP-XGBT has
the worst performance.
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Figure 8. Overall receiver operating characteristics (ROC) curve of XGBT showing the true positive
and false-positive: (a) based on the original data, (b) based on the PCA data, (c) based on the ISOMAP
data, and (d) based on the UMAP data. Class S1 refers to LRW samples, class S2 refers to LE, class S3
refers to ICRE, class S4 refers to AeroE, class S5 refers to ANE, and class S6 refers to MBRE.

For XGBT models, the data training took 20 times to decrease the instability, and the
result is shown in Table 4. The accuracy rates of XGBT models were lower than those of the
lightGBM-based models. From Table 4, it can be concluded that the UMAP-XGBT model
had the best classification performance, with a 99.95% accuracy rate in the training set and
a 95.83% accuracy rate in the testing set.

Table 4. The classification results in the training set and testing set based on XGBT.

Model Accurate Rate in the
Training Set (%)

Accurate Rate in the Testing
Set (%)

Original-XGBT 100 94.72
PCA-XGBT 100 93.61

ISOMAP-XGBT 100 95.28
UMAP-XGBT 99.95 95.83

From Tables 3 and 4, models of original-XGBT, PCA-XGBT, and ISOMAP-XGBT always
had a satisfying performance with a 100% accuracy rate in the training set in the 20 times
it was run, while they fell short in the testing set. This might be because the models were
overfit in the modeling, so the results in the testing set were not very good.

3.5. Chemical Parameter Prediction Based on EN Signals
3.5.1. Prediction Results Based on LightGBM

As an ensemble learning program, lightGBM aims to build a comprehensive model
by parallelizing and serializing weak learners (CART). For lightGBM models, a histogram-
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based algorithm and tree leaf-wise growth strategy with a maximum depth limit are
adopted to increase the training speed. For lightGBM, the max-features was set 4, and the
tree leaf-wise was set 3 to simplify the lightGBM model in preliminary work. Then, the
number of decision trees was the most important parameter in the later modeling. The
number of CARTs was optimized, and the optimization procedure is carried out in Figure 9
(taking COD prediction as an example) according to the R2s and EMSEs in the training set
and testing set. The lightGBM was 20 times for each number of CARTs to minimize the
contingency. As shown in Figure 9, the results in the training set have stable precision with
the increasing decision tree numbers. While the result precision in the testing set was not
stable regardless of which data set was applied. All in all, the lightGBM model with the
UMAP data set had a slight advantage (not so obvious) when compared to the other three
data sets. When the number of CARTs was 25, the lightGBM model showed a satisfactory
result. The best number of CARTs for the lightGBM model was decided.
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original data set, (b) based on the PCA data set, (c) based on the ISOMAP data set, and (d) based on
the UMAP data set.

EN signals offered the entirety of the information on leachate headspace gas, which
mainly consisted of volatile organic compounds (VOCs), including hydrogen sulphide,
methyl mercaptan, acetylene, and so on. The materials in the headspace gas were most
closely correlated to the value of COD. The EN combined with the data mining method
could predict the contents of COD in leachate samples. Table 5 summarizes the prediction
results based on different data reductions for five chemical parameters (pH, COD, BOD5,
AN, TN, and TP). According to the R2s and EMSEs in the training set and testing set, the
PCA process had no effect on the lightGBM models compared to models based on original
data. LightGBM models based on ISOMAP and UMAP showed satisfactory outcomes. The
prediction of five chemical parameters based on the UMAP-lightGBM model showed the
best performance with an R2 higher than 0.98 in the training set and testing set (RMSEs are
not comparable when it comes to different parameters and units).
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Table 5. Comparison of the LightGBM prediction models based on different manifold learning methods.

Data Set R2

(Training)
RMSE

(Training)
R2

(Testing)
RMSE

(Testing)
Data
Set

R2

(Training)
RMSE

(Training)
R2

(Testing)
RMSE

(Testing)

Original
data

pH 0.9721 0.2278 0.7217 0.6870

PCA

pH 0.9258 0.3716 0.8690 0.4521
COD 0.9987 120.72 0.9779 492.01 COD 0.9968 189.74 0.9916 302.91
BOD 0.9991 27.82 0.9843 110.01 BOD 0.9968 50.89 0.9893 94.20
AN 0.9991 40.66 0.9753 208.42 AN 0.9974 68.20 0.9957 87.06
TN 0.9953 52.35 0.9785 110.42 TN 0.9857 90.85 0.9694 132.52
TP 0.9978 0.5781 0.9347 3.11 TP 0.9952 0.8652 0.9739 2.02

ISOMAP

pH 0.9211 0.3834 0.8793 0.4286

UMAP

pH 0.9806 0.1339 0.9803 0.1721
COD 0.9968 189.29 0.9963 202.01 COD 0.9989 113.43 0.9881 356.88
BOD 0.9967 51.98 0.9921 80.49 BOD 0.9991 27.82 0.9947 66.30
AN 0.9973 68.55 0.9959 85.75 AN 0.9991 40.52 0.9938 105.89
TN 0.9837 96.96 0.9701 130.60 TN 0.9952 52.45 0.9933 62.07
TP 0.9953 0.8512 0.9844 1.51 TP 0.9982 0.5229 0.9895 0.5742

3.5.2. Prediction Results Based on XGBT

As with lightGBM, the parameters of the XGBT models, including the number of trees,
maximal depth, and minimum rows, were optimized. Finally, the max-features was set 4,
max-depth was set 2, and min-split was set 2 to simplify the XGBT model. The number
of decision trees (CART) was the most important parameter in the later modeling. The
optimization procedure is carried out in Figure 10 (taking COD prediction as an example)
according to the R2s and EMSEs in the training set and testing set, 20 times for each
modeling step to minimize the contingency. As shown in Figure 10, the overall prediction
performance of XGBT models was much better than lightGBM in Figure 10. XGBT models
have very strong robustness and stability, particularly for the ISOMAP-XGBT models in
Figure 10c. When the number of decision trees was 25, the XGBT models had a relatively
satisfactory result, meanwhile the model was not so big, the same as the lightGBM models.
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Figure 10. The performance of XGBT according to the numbers of decision trees: (a) based on the
original data set, (b) based on the PCA data set, (c) based on the ISOMAP data set, (d) based on the
UMAP data set.



Chemosensors 2022, 10, 506 14 of 16

Table 6 summarizes the prediction results based on different data reductions for five
chemical parameters. All in all, prediction results based on XGBT have achieved better
results compared to lightGBM models. Different from PCA-lightGBM models, PCA-XGBT
models have a slight edge over the (original data)-XGBT models in the testing set. The
prediction of five chemical parameters based on the UMAP-XGBT model showed the best
performance with an R2 higher than 0.99 in the training set and testing set.

Table 6. Comparison of the XGBT prediction models based on different manifold learning methods.

Data Set R2

(Training)
RMSE

(Training)
R2

(Testing)
RMSE

(Testing) Data Set R2

(Training)
RMSE

(Training)
R2

(Testing)
RMSE

(Testing)

Original
data

pH 0.9721 0.2278 0.7217 0.6870

PCA

pH 0.9258 0.3716 0.8690 0.4521
COD 0.9987 120.72 0.9779 492.01 COD 0.9968 189.74 0.9916 302.91
BOD 0.9991 27.82 0.9843 110.01 BOD 0.9968 50.89 0.9893 94.20
AN 0.9991 40.66 0.9753 208.42 AN 0.9974 68.20 0.9957 87.06
TN 0.9953 52.35 0.9785 110.42 TN 0.9857 90.85 0.9694 132.52
TP 0.9978 0.5781 0.9347 3.11 TP 0.9952 0.8652 0.9739 2.02

ISOMAP

pH 0.9861 0.1834 0.9803 0.1986

UMAP

pH 0.9806 0.1939 0.9833 0.1721
COD 0.9968 189.29 0.9963 202.01 COD 0.9989 113.43 0.9901 156.88
BOD 0.9967 51.98 0.9921 80.49 BOD 0.9991 27.82 0.9947 66.30
AN 0.9973 68.55 0.9959 85.75 AN 0.9991 40.52 0.9938 105.89
TN 0.9837 96.96 0.9701 130.60 TN 0.9952 52.45 0.9933 62.07
TP 0.9953 0.8512 0.9844 1.51 TP 0.9982 0.5229 0.9975 0.5574

For prediction models, the overall performances of XGBT models are better than those
of lightGBM, and the data set based on UMAP reduction has a slight advantage both in the
training set and the testing set when compared to other three data sets.

4. Conclusions

MSW incineration is regarded as an ideal method for MSW disposal, with many
advantages. This study applied an EN detection method for monitoring MSW incinerator
leachate combined with manifold learning and ensemble methods. Some conclusions can
be drawn:

(1) COD, BOD5, ammonia, TN, and TP of leachate were significantly changed during the
processing procedure, especially for COD;

(2) EN sensors offered unique and abundant characteristics of leachate samples in the
headspace gas. The signals at the 80th second varied a lot in the first three process
periods (LRW, LE, and ICRE), for ANE, AeroE, and MBRE samples, the signals
changed not so remarkably;

(3) Manifold learnings (PCA, ISOMAP, and UMAP) were applied to extract the informa-
tion hidden in the headspace gas of leachate detected by EN. The first three PCs and
ICs have extracted the most information from the original data (>85%), and samples
of LPW, LE, and ICRE could be easily classified according to the three-dimensional
space, while others were not so satisfied. UMAP outperformed the performance of
PCA and ISOMAP;

(4) Ensemble methods (LightGBM and XGBT) were applied to mine the relationship
between EN signals of leachate headspace gas and chemical parameter changes
combined with PCA, ISOMAP, and UMAP. The UMAP-XGBT model had the best
classification performance, with a 99.95% accuracy rate in the training set, and a
95.83% accuracy rate in the testing set. The UMAP-XGBT model showed the best
prediction ability for the leachate chemical parameters R2 higher than 0.99 in the
training and testing sets.

Up until now, there have been few in-depth studies that have been conducted to
fetch information from the headspace gas of leachate samples. This is the first study
with an EN application for leachate monitoring based on manifold learning and ensemble
methods, offering an easier and quicker monitoring method than traditional instrumental
measurements. Future work will focus on the potential relationship between microor-
ganisms and headspace gas in the leachate based on EN technology to fully understand
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the MSW incineration leachate chemical parameter changes, which is quite important for
leachate disposal.
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