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Abstract: Lung cancer is one of the deadliest form of cancer in Europe, characterized by a lack of
obvious symptoms until the terminal stages of the illness. Electronic noses are a rising screening
technology to detect early-stage lung cancer directly in the homes of people at risk. Electronic noses
need to be tested using samples from patients. However, obtaining numerous samples from cancer
patient turns out to be a difficult task in practice. Therefore, the development of a sensor benchmark
able to evaluate the performance of sensors without direct breath sampling is of high interest. This
paper focuses on the methodology for developing such a benchmark, in the case of a breath sampling
electronic nose. The setup used is introduced and general recommendations based on literature
and undergoing experiments is detailed. The benchmark can be used for a variety of sensors and a
variety of target illnesses. It is also possible to apply it to other types of medical gaseous samples or
environmental VOC monitoring. The benchmark is currently still undergoing tests, and results will
be published in a following article.
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1. Introduction

According to records from 2015 to 2017 in the United States by the National Cancer
Institute, approximately 6% of men and women will be diagnosed with Lung Cancer
(LC) at some point during their lifetime [1]. LC was the leading cause of death for men
and the second leading cause of death for women in 2018 in Europe (estimated fatalities:
388,000 Europeans). LC is the most common form of cancer [2], and if the number of cases
is slowly dropping in developed countries, the burden of LC is on the rise in emerging
countries, resulting in an increase in the global number of cases [3].

Early detection serves well against cancer. For example, thanks to screening and cancer
awareness, declines in breast cancer mortality rates in Europe have been reported [2]. This
is crucial for a lot of cancer types, and especially LC, as early detection increases survival
chances in the next five years by a factor of five (early stage against late stage) [4]. The usual
diagnostic methods (low-dose computerized tomography, PET-scan, IRM) are hard to use
for early lung cancer diagnostics in a wide asymptomatic population, as their cumbersome
nature confines them to hospital usage only. To reduce pressure on medical care centers, a
simple, portable, inexpensive, non-invasive, new early screening method is required.

Among last years’ proposals, one promising method resides in the analysis of volatile
organic compounds (VOC) naturally emitted by the human body. The abundance and
composition of the VOCs in the breath is tightly linked with the human body’s metabolic ac-
tivity. These VOCs (or metabolomes) therefore act as biomarkers and have been extensively
studied in the literature, which is especially plentiful for LC studies [5].

Of all the ways to analyze VOCs, sampling breath is a straightforward and easy one.
Because of the logical proximity of lung cancer and the airways, a lot of projects used
breath sampling for lung cancer detection. Several methods are popular in the literature:
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gas chromatography coupled with mass spectrometry (GCMS) [6,7], breath condensate
analysis [8,9], and the use of an Instrumental Odor Monitoring System (IOMS, also called
electronic nose or e-nose). This last method has several advantages that make it interesting
as an answer to the remote screening problem: ease of use, portability and low costs would
be the main ones. Therefore, this paper will mainly focus on the IOMS approach.

The literature regarding the various projects tackling the creation of custom sensor
arrays for lung cancer detection is starting to become plentiful. The varying approaches
and considerations call for reflection on which good practices should be followed, and
how to build a sensor benchmark for sensor selection in breath sensing. The aim of the
present document was to share the reflection on the construction of a thorough benchmark
procedure based on current literature in breath sensing and IOMS.

The article is structured into two main sections. First, a literature review on the use of
the electronic nose, breath, the creation of gas mixtures, the target gases, sample handling,
the data treatment and the validation using a reference method is performed. Reproducibil-
ity aspects are considered for all experiments. Then, the methodological proposal will be
explained in regard to the findings in literature and the original experiments are realized.
A short discussion concludes the article.

2. Literature Review

This literature review was not made according to a specific protocol, except for the part
on target biomarkers. The methodology of the systematic literature review on biomarkers
is detailed on point 2.3.2 “On the selection of target VOCs”.

The goal was to cover this very plural subject in a manner that helps people working
on tech aspects and device testing. The effort was to use the most useful articles collected
during three years of experimentation. Articles for this review were found on Scopus,
PubMed and University of Liège databases. The following keywords were used: “e-nose”,
“electronic nose”, “sensor”, “array”, “breath”, “lung cancer”, “disease”, “benchmarking”,
“merit”, “machine learning”, “standard”, “drift”, “calibration”, “diagnostic”, and “sam-
pling”. The references of the selected documents were examined to find more pertinent
articles. A total of 659 articles published from 1980 to 2022 in the English language were
considered for inclusion in this review. Meta-analysis articles were excluded. Other review
articles were included.

2.1. Instrumental Odour Monitoring System (IOMS)

An IOMS is a device mimicking the biological nose and able to tell gas mixtures apart
from each other [10]. The basic principle of the e-nose was formed in 1982 in the work of
Persaud et al. [11].

The particularity of an e-nose is that it relies on the “fingerprint” (or “breathprint” in
the field of disease detection) of the gas mixture. Such a system will not identify chemical
species in a gas sample (unlike a mass spectrometer), but can recognize mixtures of several
hundreds of compounds at a time and tell each mixture apart in a very short timeframe [10].

As shown on Scheme 1, each measurement triggers several sensors. It is possible that a
sensor reacts to a single compound, or to several at once. The strength of the signal obtained
depends on each sensor’s affinities. Each sensor being different, the vector containing the
response of the whole array will be the mixture’s “fingerprint”.

That vector can be compared with previously observed vectors (for example, those
from the breath of cancer patients and healthy patients) using a clustering algorithm and
dimensionality reduction [12], which allows for the classification of a new sample in a
known category and therefore gives the user an indication on the need for further medical
tests.
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IOMS are structured as shown in Scheme 2, and are as follows [12]:

• Sample storage, which includes piping and any form of sample containment before
analysis. It can have a form of pre-concentration or pre-treatment against interfering
compounds.

• The sensor array is usually composed of 4 to 32 sensors housed in one (or several)
chamber(s). Sensors previously used in cancer breath detection are surface acoustic
wave sensors (e.g., SAW, BAW, QMB/QCM) [13], polymer gas sensors [14,15] or
carbon nanotube based sensors [16], but the most common are likely metal oxide
semiconductor (MOS) sensors as the technology is well known and commercially
available [17–19].

• A signal treatment system, which converts the analogic output of the sensors to a
numeric output interpretable by the processing unit.

• A processing unit that will control the other units, collect and save the data from the
sensors.
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An IOMS seems to be able to identify cancer, and even isolate specific mutations
of cancer [20]. It should however be noted that sample pools are usually small in these
studies (usually, 20–100 patients, half of them being controls, with some exceptions having
up to 300 patients) and further research is needed to confirm the IOMS as a diagnostic
tool [21–26].

2.2. Establishing a Performance Metric for Gas Sensors

By taking computing power benchmark as an epitome [27], a good benchmark should
be:

• Relevant (to the purpose of the device tested).
• Equitable (all sensors are tested and are compared on the same basis).
• Repeatable (results can be verified).
• As effective as possible in regard of cost and logistics.
• Should work for all kind of purposes and concentration ranges, in order to be usable.

across devices with different purposes using the same concept.
• Transparent (metrics should be easy to understand).

By setting these goals, the aim was set to the conception of a general use breath sensor
benchmark.

The first step to evaluate a sensor would be the evaluation of its metrological perfor-
mances [28,29]: sensor response time, recovery time, operating conditions (e.g., working
temperature, energy consumption), general behavior (i.e., linear or non-linear response),
sensitivity to temperature and humidity variations, stability over time (drift), sensor life-
time and recommended stabilization period. While some of these aspects do not influence
the quality of the information given by a sensor, they can, however, make the sensor
integration and use difficult, depending on the setup.

The other important aspect is the sensor’s sensitivity to a variety of target VOCs
and confounding factors. This is the subject of the first sensor performance evaluation.
By determining the sensor responses to increasing concentrations of chosen compounds,
sensor behavior becomes apparent. It is often advised to favor diversity within an array of
sensors, as it brings more information on samples and therefore provides good and robust
discrimination [30]. In this case, diversity means that each sensor has a different sensitivity
to each gaseous species of interest [31]. It is therefore desirable to compare sensors having
similar sensitivities to the analyte between them, in order to evaluate which sensor provides
the highest quality of information for the task at hand. Comparing sensors of radically
different information would be counterproductive. The best sensor out of several similar
sensors would be the most sensitive one, and with the lowest limit of detection (LOD), as
breath VOCs are in parts-per-billion (ppb) to parts-per-million concentration (ppm) [5,32].

One way to favor diversity is to measure the amount of information given by a
combination of the array’s features (extracted from the raw sensor signal, such as the area
under the curve, or the maximum peak height) using a statistical test (through Principal
Component Analysis’s (PCA) eigenvalues, interclass discrimination efficiency, correlation
between features and variables, among others) is called a Filter method. The other way is by
using a Wrapper method, which subsets the array’s features to train a model and evaluate
the resulting performances [33]. The algorithm starts by choosing a single combination of
features and changes its composition by adding (Sequential Forward Selection, or SFS) or
removing (Sequential Backwards Selection, or SBS) features progressively. Changes are
kept if they improve the separation of the groups of interest. Both methods have a tendency
to get stuck in local optimums, which should be kept in mind while using them [29].

Wrapper methods often achieve better predictive accuracy, but are computationally
intensive [33]. They do not prevent irrelevant, redundant or correlated feature selection,
however [29]. Filters are simpler and often find a general solution, where wrappers have
an overfitting tendency [33].

A few very interesting methods have been explored in the literature. For example, it
is possible to use PCA eigenvectors to select sensors, and therefore evaluate their quality
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and complementarity. Sensors contributing the most to the highest ranking eigenvectors
can be chosen, and it has been demonstrated that this technique improves classification
accuracy [29]. It is also possible to produce uncorrelated features using PCA to achieve
better classification performances [34]. It should be noted, however, that PCA captures
directions of maximum variance, which do not always contain useful information for
intergroup discrimination [33].

2.3. On the Use of Breath-like Gaseous Samples

Between healthy and sick people, the differences lie in the part-per-billion (ppb)
concentrations for most VOCs, and in the absence/presence for some potential biomark-
ers [5,32]. Therefore, one of the main challenges of making breath-like mixes is the accurate
and reproducible dilution of gases.

One approach consists in the insertion of a few microliters of the liquid volatile
compounds in a gas sampling bag; the bag is equipped with a septum and pre-filled with
analytical air, and with the help of a microliter syringe, it is possible to reach ppm-level
concentrations [35,36]. Such “Static methods” work well for low concentrations and when
small volumes are needed. In order to reach ppb level with liquid injection, however, a
second dilution is necessary. The best method to do so is likely by using pumps and Mass
Flow Controllers (MFC, a dynamic method, which means working with flow rates instead
of volumes for dilution) [37]. Other methods have been developed [36], but only some of
them are usually found in post-2000 literature.

An interesting alternative is the use of a permeation oven (dynamic method) as
presented by Helwig et al. [38]. This device heats permeable tubes filled with the chemical
species of interest, releasing small amounts of them into an air flow. This enables one to
reach ppb-level concentrations with accuracy and enables in-line setups with machine-
operated preprogrammed experiments. This allows for the easy calibration of sensors and
reduces the sources of errors greatly. Coupled with MFCs, it was previously shown that this
setup permitted a wide range of concentrations, with reasonable concentration errors (less
than 1% typically, even if low permeation rates can give more than 10% error). With MFCs
considered, Helwig et al. managed to obtain 12.1% error or less on output concentrations.
The main drawback of this technique is the expensiveness of the oven and permeation
tubes.

Dynamic methods also include the injection of droplets into the flow of diluting gas
(usual error has been reported as 5–9% coefficient of variation). Other methods include
diffusion (similar to a permeation oven in performances) and evaporation (bubbling).
Evaporation is only viable for low vapor pressure compounds, otherwise the inaccuracy is
too great (5–15%) [35].

The last usual possibility is to use commercial gas mixtures, sold in cylinders. They
use precise gravimetry to reach part per million (ppm) concentrations (the lower limit
varies depending on the compounds). These mixtures can reach high prices for the lower
concentrations and have a limited lifetime. Due to stability issues, some gas mixtures
cannot be stored for long before decaying. Akamatsu et al. used cylinders for some of
their target gases (acetone, MiBK) and their “background mix” that simulated common
interfering compounds [19]. For ppb-level concentrations, a dilution unit with MFCs is
advisable to dilute cylinder gas further. MFCs are the standard gas-mixing tools for air
pollutants [37], which are often in low concentrations—such as in breath VOCs. Among
the notable uses, carbon dioxide-enriched air is easily available and is used as a diluent in
order to recreate the real sampling conditions of breath [37].

2.3.1. Composition of Breath

Breath has several rather unusual characteristics as a gas sample: temperature close
to the body’s, increased carbon dioxide content (4–5%) and being saturated in humidity.
These aspects influence MOS sensor behavior: water vapor and CO2 interfere with sensors
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as experienced by Gregis et al. [39]. These aspects are therefore important to consider when
testing MOS sensors for breath sensing.

Variations in breath VOC mixtures have been shown to be linked with cancer. There-
fore, it has been hypothesized that some of these VOCs are lung cancer biomarkers.
Biomarker identification for lung cancer is a major research effort that has been going
on for several decades. Even if several studies have shown similarities in their results, one
cannot help but notice that there has been no consistent and validated list of biomarkers for
both the clinical and in vitro studies. As stated by several sources, the use of biomarkers in
breath for medical screening is a pretty new approach, and therefore suffers from a lack of
standardized biomarker identification procedures. The complexity of the analyte and the
variety of study objectives enhance the problem [40–43].

Regarding confounding factors, Tan et al. and Shlomi et al. showed that it was possible
to differentiate people based on their smoking history, i.e., if they were heavy smokers,
light smokers or never-smokers [20,44]. It has been widely reported that smoking history
has a strong influence on the volatilome [45]. Previous studies by another team found no
correlation between the sensor’s output and smoking history, showing that it is possible to
create a device that sees past usual confounders [46]. For more information on confounders,
a short review of other confounding factors can be found in a previous publication [47] and
in the work of Jia et al. [40].

2.3.2. On the Selection of Target VOCs

The first step for breath LC detection is to know the VOCs characteristic of a “healthy
patient” or a “cancer patient”, and in which concentrations they are found. Numerous gas
chromatography mass spectrometry (GC–MS) studies aiming at cancer breath characteriza-
tion can be found in literature.

A systematic literature review was conducted following the PRISMA method and
the PRISMA-P checklist [48], on Scopus, PubMed and University of Liège databases. The
following keywords were used: (“VOC” OR “biomarker” OR “breath” OR “chromatography”)
AND (“lung cancer”) NOT (“condensate” OR “in vivo”). The references of the selected
documents were examined to find more pertinent articles. Papers about cancer cell cultures
and breath condensate methods were not included, as it is believed that VOCs found
in vivo are not similar to those found in vitro [49]. Methods using sorption tubes or SPME
were included.

A total of 331 articles published from 1985 to 2021 in English language were evaluated.
Meta-analysis and review articles were excluded. Sixty-six articles were found to be
relevant to the subject and 21 were excluded for the following reasons: for not sampling
cancer patients or having no control group (2), not identifying clear cancer biomarkers
(18) or being inaccessible (1). A total of 45 articles were selected and compounds cited
as significant for group discrimination were sorted by frequency of citation as potential
biomarkers.

The most frequently cited (as biomarkers) compounds are as follows:

• With 12 occurrences, 1-propanol is the most cited compound.
• With 11 occurrences, 2-butanone (or methyl-ethyl-ketone).
• Isoprene has been cited 10 times in the reviewed papers.
• Hexanal, ethylbenzene and 2-propanol have nine occurrences each.
• Acetone was cited eight times.
• Pentane, benzene, and styrene were cited seven times each.
• Hexane, toluene and decane were cited sox times each.
• Propanal, nonanal, heptanal, undecane, 2-methylpentane, pseudocumene and ethanol

were cited five times each.

Seven compounds were cited four times, eleven compounds were cited three times,
and more than one-hundred and ninety-one compounds were cited two times or less. This
last category was not studied any further, as the relevance of each compound was likely to
be very low. This review was the basis for the selection of VOCs for use in IOMS evaluation.
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It is however important to point out that sources of contamination for the biomarkers are
frequently encountered in everyday life, adding incertitude to the conclusions.

The number of patients sampled for each study was recorded, and a sum of the number
of controls and cancer patients involved in the discovery of each potential biomarker was
calculated. Since studies tend to have a small sample pool, this method was done to
enhance biomarkers that are backed by more statistical evidence. The compounds with a
sample pool above 600 peoples are the following:

A variety of putative biomarkers was chosen with an educated guess from the list, as
already reported in a previous article [47]. Main choosing criterions were the following:
short half-life in the body, not reported as smoking-related, found as relevant for studies
cumulating numerous test subjects, not found to be exclusively exogenous, not highly
correlated with physical activity. However, there is no existing consensus on the quality of
each compound as a biomarker. Choosing compounds with certitude is therefore impossible
for now, and for many compounds in Table 1 our criterions were not met. Considering this,
the chosen compounds for this study were the following: 2-butanone, 2-pentanone, and
decane. Decane has been cited in six papers with a reported sample pool of 456.

Table 1. Ranking of compounds by sample pool size (each compound has been cited three times as
potential biomarker or more).

Rank Compound Pool Rank Compound Pool Rank Compound Pool

1 1-propanol 2267 13 2-propanol 905 25 Cyclohexane 424

2 Isoprene 1840 14 2-pentanone 897 26 Hexane 408

3 2-butanone 1559 15 Benzaldehyde 861 27 Methyl-cyclopentane 408

4 Acetone 1488 16 Pentane 832 28 1,2,4-trimethylbenzene 403

5 3-hydroxy-2-butanone 1285 17 Ethanol 669 29 Ethylacetate 370

6 Pentanal 1151 18 Dimethylsulfide 668 30 Nonanal 339

7 Methanol 1023 19 Benzene 542 31 Octanal 316

8 Hexanal 1019 20 Styrene 540 32 Butanal 244

9 Propanal 999 21 Toluene 512 33 N-dodecane 241

10 Butane 980 22 Decane 456 34 Eicosane 233

11 Undecane 973 23 Heptanal 455 35 2-propenal 125

12 Ethylbenzene 962 24 2-methylpentane 455 36 Hexadecane 117

Several other compounds were acquired for use in the benchmark to better represent
the variability and complexity of breath. These were chosen based on the previous list and
studies on breath VOC confounding factors [45,50]. Among the compounds frequently
found in breath are likely confounders (smoking-related compounds, for example) or
biomarkers that are also likely to be exogenous. The compounds are:

• Pentane, 1-propanol, ethanol, dodecane, hexanal (potential biomarkers or behavioral
contaminants).

• Acetone (unavoidable metabolism by-product).
• Toluene, 2-propanol (potential biomarker or smoking marker).

Calibration models of IOMS need to include the species of interest and all possible in-
terferents. This enables multivariate analysis with interference detection, without, however,
enabling interference compensation [33]. It is however possible to select sensors that have
little or no sensitivity for interfering compounds, and therefore improve the performances
of the system.
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2.3.3. Sampling and Sample Storage

Once the atmospheres were synthesized (or breath has been sampled), they were used
directly (inline) or are stored and used some time afterwards (offline).

Offline Sampling

Offline sampling requires some kind of container in order to transfer gas mixes to the
sensing device. The most commonly used are sampling bags, whose volume varies a lot
between breath sampling studies: 750 mL for end-of-breath alveolar air sampling [51] to
5 L for whole-breath sampling [52]. In a clinical context, the patient would blow in a gas
sampling bag, and then the bag is immediately connected to the electronic nose [23,53].
The nose would be equipped with a downstream pump to suck the sample into the sensor
chamber at a constant rate. This method, however, cannot isolate end-tidal breath, unless
combined with a capnography-based or spirometry-based sampler. Some studies used a
pump in an upstream position [24], which is not recommended because of the inherent
contamination of the air stream by the pump.

The first point of care while using offline sampling would be the release of VOCs
from the bag’s constituting materials. Several studies showed that Tedlar™ (Dupont de
Nemours™, Wilmington, Delaware)(polyvinyl fluoride) itself emits detectable compounds
at the ppb level, such as N,N-dimethylacetamide and phenol, hexane, 2,4-dimethylheptane,
4-methyloctane, as well as CS2, COS, acetonitrile and 1-methoxy-2-propyl acetate [54,55].
Other polymers like Kynar™ (Arkema™ SA, Colombes, France) or Flexfilm™ (SKC™ Ltd.,
Dorset, UK) also emit detectable species. The contamination for all bags can be reduced; pre-
conditioning (nitrogen flushes and heating with an oven) and shorter storage times have
a good mitigation power [55]. The bias caused by bags on sensors has been experienced
in the literature, especially when switching to a different type of bag or switching to a
different supplier; it can be big enough to make it possible for an e-nose to very clearly
differentiate populations of samples based on these differences [23].

The second important point is about the bag’s membrane is that it permits some
diffusion, which is especially noticeable for ppb-level compounds [49]. It is usually advised
not to store samples that way for more than 10 h before analysis to avoid significant
drift. It is to be noted that water vapor permeates easily through Tedlar®, Kynar® and
Flexfilm® bags and the humidity of the sample reaches an ambient level within one to a
few hours [54,56]. To avoid sample alteration, storage time should therefore be as short as
manageable, down to a few minutes if possible.

Sorption on sampling material is also a known problem. Even with material with low
sorption capacity, there is still a possibility for the loss of analytes during sampling. This is
one of the reasons why some studies recommend not to use sampling bags if avoidable [57].
Other methods include glass or stainless-steel containers, but these are less convenient and
more expensive than bags. Washing bags reduces the problem of sorption by removing
adsorbed compounds. It is to be noted that no study was found on sampling bag aging,
nor on the evolution of background VOCs over the life cycle of reusable sampling bags. It
is therefore possible that the age of the bag has some influence on the contained mixture.

Storage temperature is also a common concern for breath sampling. Since breath is
saturated with water vapor, condensation will occur if the bag is not uniformly held at a
temperature high enough (45 ◦C is often indicated for breath-like samples). This is an issue
as water in its liquid state can concentrate polar compounds in the gas phase, altering the
composition of the breath sample. It is therefore recommended to keep the sample above
the dew point temperature [35,36].

Another common procedure in literature is adsorption, with Tenax® (Buchem™ B.V.,
Apeldoorn, The Netherlands) sorbent for example, followed by thermal desorption. This
technique is often valued because it concentrates some compounds and raises the device’s
sensitivity [58]. However, sorbents are known to alter the samples significantly in a number
of ways [39]. For example, some compounds are not well retained by sorbents, and therefore
the amount of each of the compounds found after desorption may vary, depending on
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each compound’s volatility and affinity for the sorbent. Humidity is not highly retained
by sorbents such as Tenax®, which is often seen as an advantage [39], but Tenax® does
not retain light compounds (such as propanol for example) very well. Sorbents such as
Carbograph® 5TD (LARA™ Srl., Olmetti, Italy) retain light compounds better, but tend
to retain water more as well [59], and water has to be eliminated before GC analysis by
dry purging. It is also worth noting that it has been reported that humidity impairs the
adsorption of VOCs on sorbents [60]. One of the main advantage over the bags is the
storage stability of sampling tubes over several weeks if refrigerated [61,62].

Inline Sampling

Aside from offline sampling, inline sampling also has some advantages, the most
obvious ones being the simplicity of the system by comparison to offline sampling, and
the avoidance of some interferences from the sampling apparatus. Several studies used
this technique; some experiments in the literature, such as those of Kononov et al., used a
rotameter as an indicator for the patient to blow at a defined flow [57]. However, relying on
the patient alone to follow an instruction to obtain stable airflow sounds like an important
source of variability without a way to obtain a stable flow. One way to do this would be
by taking part of the breath with a pump perpendicularly to the flow [63], or by using the
method described below.

For both online and offline sampling, the flow speed is of great importance for the
sensors. Flow speed conditions regulate heat loss and sample consumption, and to some
extent influence sensor responses and their reproducibility. The chosen flow speed varies
between studies, but it is always stable. For example, Kononov et al. used a very high flow
speed (3.5 L/min) for 10 s only. The sensor chamber was then kept without any flow for the
time necessary for sensor signal stabilization [57]. This is most convenient method for inline
sampling, as it permits normal breath flow speed (between 11 and 23 L/min in the testing
conditions of [26]). The drawback is that the heat buildup might become a problem without
active temperature stabilization. Similar methods are used by another workgroup [64,65].
For offline sampling, air flows are often lower, around 100–200 mL/min [16,66]. As large
gas samples are inconvenient to handle and take up space (especially considering the need
to keep them above body temperature), it is often advantageous to use a low volume of
sample, which is adequate for alveolar breath sampling. For continuous flow systems, flow
needs to be low to keep sample consumption moderate, since sensors need incompressible
time to output a stable signal. A few hundred milliliters per minute are usually enough for
heat dissipation and is an adequate value for many applications [28,67].

Between samples, sensors need to be zeroed by exposure to a reference air. For inline
sampling, a “flush” of very high flow speed air to wash out the previous sample is often
applied, but for offline sampling, a simple three-way valve is used to keep the flow speed
constant and switch between samples and reference instantaneously [68]. The nature of
reference air varies from room air to pure analytical air. For portable setups, using ambient
air is appealing, as air canisters are often impractical, cumbersome, and heavy. In this
case, a VOC filter is advisable to remove environmental contamination. Filters need to be
combined with a humidifier, as most VOC filters also tend to dry the air. Reference air
should therefore be humidified to an easily reproducible and stable level [69]. The use of
pure distilled water is recommended to avoid contamination. Obtaining a level of relative
humidity close to 90% at 38 ◦C is recommended, as it is closer to breath.

2.4. Data Treatment

Raw sensor data are rarely used directly to qualify a sensor or discriminate samples.
Sensor output (conductance in µS) is often registered every second or several times per
minute, and the information obtained by each measurement is far too plentiful. It has to be
refined before use.

In most papers, the extracted features are the following, or a combination of the
following [70,71]:
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• The steady-state response (the mean, median or maximum value of the signal’s
plateau), usually with baseline subtraction to enhance response reproducibility and
comparability. The baseline is the steady-state response of the reference air.

• The area under the curve (AUC), with baseline subtraction as well.
• The greatest ascending or descending slope, to give a measurement of the transient

response). If the sensor is well-behaved (such as a polymer sensor or quartz microbal-
ance sensor), it is possible to use the transient response as a predictor of the steady
state response to reduce measurement time.

These extracted features are done after other data processing techniques, as necessary.
These include sensor signal processing (e.g., noise filtering), normalization and standard-
ization, which are the usual steps [12]. Normalization is useful to mitigate the effect of
concentration, which often improves classification when the center of attention is a change
in the ratios of concentrations, and not an identical increase of every compound’s concen-
tration. It is possible to find a same mixture in concentrated or diluted form, as ratios of
concentration are not influenced by dilution effects. However, concentration is an influ-
encing factor for all gas sensors. Suppressing the effect of concentration is done by using
normalization, which is done using the following equation (Equation (1)) [12]:

x′ ij =
xij√

∑n
i=1 xij

2
(1)

where xij is a component of the array vector, x′ij is the normalized component, j is the
number identifying a sample, and i is the output (e.g., the steady state response) of the
sensor number i.

Standardization (Equation (2)) is often used with normalization, as it centers and
reduces the data of a sensor (between −1 and 1). It is notably necessary to perform before a
PCA analysis, as standardization prevents the analysis giving more weight to sensors that
have a higher baseline and response [12].

xstd =
xi − µ

σ
(2)

where xstd is the standardized sensor output, xi is the sensor output, µ is the mean of all the
sensor’s outputs, and σ is the standard deviation of all the sensor’s outputs.

After this pre-processing step, other analyses can occur. Most of the time, data structure
visualization is employed as a first step after pretreatment, using principal component
analysis, for example, as stated earlier in this document (see Section 2.2). Visualizing
data structures is useful for researchers that want to identify redundant sensors, marginal
data, tendencies, and see clusters in the dataset [72]. In the case of seeing which sensor
contributes the most in the discrimination, methods of feature selection come into play.
Obtaining this information requires the creation of a testing system with all the sensors to
be tested at the same time, and the analysis by that system of a few hundreds of mixtures to
discriminate (healthy and cancer breaths). The sensors giving out the most relevant features
in a dataset of healthy and cancer breath should be the most interesting to use [73]. From
that point, there are several ways to proceed. For example, convex hull algorithms [74] can
be used to compute sensor space and estimate the resolving power (i.e., ability to tell the
difference between two gas mixtures) of an array of sensors. This can be used to select the
best sensors by computing the effect of the removal of a feature on the resolving power.

3. Methodological Proposal

Based on this literature review, a method was developed for sensor selection in the
domain of breath sensing for disease detection. Before delving into details, it is important
to lay down some general guidelines.

The global idea behind the method is that experimental conditions should not stray
away from the intended field application. Samples should keep as many of the breath’s
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characteristics as manageable. The testing device itself should be designed to be as close
as possible to the final prototype (i.e., ensuring the sensors are tested in conditions close
to those of the final prototype). Otherwise, relevancy might be lost and conclusions only
valid in a laboratory environment might be drawn [75].

Making breath-like mixes is difficult due to the part per billion (ppb)-level concen-
tration of biomarkers. Therefore, it requires a lot of rigor and care to avoid interferences;
any source of contamination, no matter how slight, can become of great importance for the
final results, even if it has been shown that a sensor array could keep good discrimination
with confounding factors in play [13]. For good measure, the efficiency and reproducibility
of the dilution has to be confirmed by a validated reference method, such as TD–GC–MS
quantitative analysis. However, a larger variability in the atmosphere synthesis can be
accepted, as electronic noses themselves are, in general, not as accurate or sensitive as
a GC–MS. Error sources tend to pile up for most sample creation methods. Due to the
unusually low concentrations, the total relative incertitude is often around 10 to 20% of the
concentration value, depending on the method and the chemical species (for example, very
light species that are difficult to adsorb on sorbents, or heavier species that tend to conden-
sate because they have low vapor pressure, have been observed to be more troublesome
during the trials made alongside this article).

There are several ways to transform a breath sample to suppress or modify problematic
aspects—e.g., sorbents and thermal desorption to raise concentration, desiccants to remove
water [76], filters to protect the inner parts of a device from bacterial and viral contamination.
If a device has some of these specificities incorporated in its design, the most precious
advice is to make it so synthetic atmospheres are processed in the same way as breath
would. It is risky to try to foresee the impact of these modifications on the sensors’ behavior
and the quality of the discrimination without including them in all experiments from the
start. Gaseous samples should undergo any treatments that future real breath samples
would receive.

3.1. Choice of VOCs

From the most-cited compounds in literature, four have been picked as interesting
(see Section 2.3.2). Their drawbacks (i.e., retention time in body, correlation to lifestyle
aspects or non-cancer related aspects) are less important and their contamination sources
are less common than others—however, the hypothesis that the sources are simply less
known cannot be discarded, unfortunately. Within the existing body of knowledge, they
look like interesting candidates.

3.1.1. Using Real Breath as Dilution Gas

A way to test the efficiency of an IOMS to detect the subtle differences between cancer
breath and healthy breath is to use healthy breath as the dilution medium for test samples,
as shown on Scheme 3. Several breaths from healthy volunteers are sampled in gas bags,
and from each breath sample two test samples are created: one is the breath without
alteration (labelled “healthy”) and the other is the same breath with cancer-related VOCs
added. All samples are analyzed by the IOMS. If it is performing well enough, it should be
able to tell the difference between breath with and without VOC additions. This enables to
test classification performances prior to lengthy and costly clinical trials.

Of course, the amount of VOC added should be done in accordance to real cancer
breath concentrations: it should be an amount that “transforms” a healthy breath into a
cancer breath. The difference between median concentrations of compounds in both groups
should be preferably used to determine the amount of VOCs to be added. Unfortunately, in-
formation about median concentrations in breath isn’t plentiful. A research group [7,77–80]
has been publishing several works where concentrations for healthy, cancer and smoker
groups are available for a range of compounds. However, analysis of a larger amount of
breaths would be needed to truly be able to establish the fundamental difference between
groups, and give more confidence to this approach.
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Breath sampling should follow a very strict procedure for such a trial. A good analysis
can be found in the work of Amann et al. [81]. Here is a synthesis of the sampling procedure
described, enriched with more recent findings in literature.

The sampling place is chosen to be as clean from VOCs sources as possible, with
regulated temperature and sufficient ventilation. A 12 h “nothing by mouth” procedure
(food, beverages except water, teeth brushing, chewing gums, and smoking are forbidden)
is requested of the sampled people. Before sampling, a short questionnaire is filled to
know more about the person’s habits and lifestyle (diet, medication, sports frequency,
smoking, body mass index [82]). The filling of the questionnaire should be done in a sitting
position, enabling the person to rest for at least 10 min before sampling. Then, the person is
asked to rinse their mouth and gargle three times with 50 mL of tap water, as a work by
Ge et al., has shown the benefits of doing so on the quality of the classification [83]. The
person is then sampled by using a FEP Teflon bag combined with a bacterial and viral filter
(similar to a spirometry filter) to avoid cross contamination [81]. One complete blow at
maximum lung capacity is sampled. Alternatively, one could use an end-of-breath sampler
to select alveolar breath by capnography [84], as it was shown that the alveolar air is less
contaminated by ambient air [85] and likely improves the quality of classification. With
alveolar breath, several blows might be necessary to obtain a sufficient volume for analysis.
As a side note, it seems that the use of a clean air supply for the patient to breathe in does
not remove environmental contamination; due to VOC kinetics in term of their metabolism,
half-life, diffusion or adsorption, breathing clean air for a few minutes does not remove the
contamination [82,85].

The gas sample bag, once filled with a sufficient volume, should be used for dilution
and analyzed as quickly as possible (see Section 2.3.3).

3.1.2. Contaminants

Diet and lifestyle are among the largest causes of exogenous VOC contamination. Al-
most every study involving breath asked the patients not to drink, eat, smoke, mouthwash
or brush their teeth for 2 to 12 h before sampling, depending on the source. These products
are VOC-emitting and/or cause a change in the VOCs emitted by bacterial flora in the
mouth cavity, esophagus or stomach. Food intake has an impact on the metabolism that
can be measured in the breath: acetone is known to vary if the subject is fasting or had
a recent sugar intake, since acetone is a by-product of glucose metabolism. Fasting as a
source of bias for e-nose detection of cancer has been assessed by McWilliams et al., which
found that some combinations of sensors in an array can be significantly affected by fasting,
and that fasting tended to make the separation between cancer subjects and control subject
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clearer, but that result has to be verified on a larger sample pool [22]. It is therefore very
important to include the most common confounders in the testing protocol to evaluate
their influence on each sensor. An ideal sensor would be able to give useful information for
classification regardless of the variety and concentration of confounders.

Sample storage is a common source of contamination, on which some control is
possible. Amongst commonly available sampling bags, Teflon FEP bags have been found
to be the most appropriate for VOC analysis due to their low background, low permeability
to VOCs and low VOC retention [56,86,87]. Bags should be pre-conditioned and washed
after each use. In both cases, the procedure involves filling the bag with dry clean air and
heating the bag for some time before emptying it. The process is repeated several times for
a cleaning to be complete. A study was conducted in the literature on Tedlar bags (similar
to FEP on a lot of aspects) to track the efficacy of cleaning for each heating cycle; heating
three times for 30 min is a good compromise between time consumption and cleaning
efficiency [54], and was the choice for this method.

Samples in the bag should not be stored for more than a few hours if possible. If
storage is unavoidable, we prefer storing under a lowered temperature to decrease the
loss of compounds [88]. As condensation is to be expected, heating the bag until complete
volatilization after storage is recommended. FEP bags and most sampling bags are perme-
able to humidity; expect at least 20% humidity loss in the first 30 min and at least 40% in
the first 4 h [54].

3.1.3. Sample Creation Procedure

To reach ppb-level concentrations, it is easier to obtain ppm-level concentrations and
dilute the mix further afterwards, as previously reported [47]. The insertion of a few
microliters of the liquid compounds in a gas sampling bag filled with a known volume
of analytical grade pure air, which is then heated (30 min at 60 ◦C) to ensure complete
volatilization, works to reach ppm-level concentrations. It is to be noted that Bastuck et al.,
recommends the activated charcoal filtering of canister air, even of analytical grade [86].
Injected volumes were calculated in regard to the Ideal gas law to obtain the desired
concentration for each compound.

The obtained mixture was diluted to ppb-level using Mass Flow Controllers (MFC)
and canisters of 5%-CO2-enriched air (or real healthy breath, see Section 3.1.1).

The final sample was stored for a short time before usage. Condensation is to be
avoided at all costs, therefore all tubing and devices in contact with humidified air were
heated (40 ◦C minimum). Bear in mind that heated gases might lower several aspects, such
as:

• Flowmeter accuracy (and therefore dilution ratios and sample VOC concentrations).
• Sorption efficiency on sorption cartridges for TD–GC–MS.

Diluted air was humidified to the desired level using a bubbler filled with pure water,
in combination with MFCs for dry and humid air, enabling precise humidity levels to be
reached [28].

As it was reported before [47], canisters of CO2-enriched air were used as the dilution
air. Instead of real breath as background, pre-made VOC mix canisters (Westfalen®) can
be used to provide interfering compounds (ppm level) to the dilution unit, where their
concentration is reduced (ppb level). Each canister must have its own MFC, and only the
diluting air (unless it is real breath) should be humidified before mixing.

The 90% relative humidity was picked as the appropriate level, as MOS sensors often
saturate in humidity around these levels and do not behave differently when exposed to
either 90% or 100% [12]. Less humidity reduces the risk of local condensation, which is
why 90% is preferred instead of the breath-like 100%. The bubbler should be dimensioned
to enable the complete saturation at the flow speed used in practice (up to 1 L/min in this
case). The water should be heated at 40 ◦C as well to avoid cooling the sample air and
reaching absolute level of humidity close to real breath. A certain time is needed for the
bubbler to reach the required temperature.
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Materials in contact with the samples should be non-emitting, and with no VOC
adsorption capacity. Teflon (PTFE, FEP, PFA . . . ), glass and stainless steel are widely
recommended, since they emit very low quantities of unusual and well-known compounds.
Other types of material often have a higher VOC signature, or randomly adsorb and desorb
compounds, altering the samples and causing cross-contamination. If it is not possible to
avoid the use of these materials, proper testing should be made to ensure no sorption or
alteration takes place.

For whether sampling would be done inline or offline, the choice fell on the latter.
Direct inline sampling was first chosen for its simplicity, but quickly showed a lack of
reproducibility, mainly due to unstable blowing rates, and proved itself impractical with
regards to the time needed for sensors to stabilize, and the unattainable effort required of
the patient. For increased reliability and patient comfort, a gas-sampling bag was chosen as
a tampon between the patient and the device.

3.1.4. Sampling and Sensor Testing

The sensitivity of each sensor, be it experimental or commercial in origin, is often only
known for a few compounds at most. By using a calibration approach, the objective is
knowing the affinities of each sensor for the confounders and biomarkers. This allows for
the improvement of experimental sensors (in the case of the Pathacov project [87], a project
to detect diseases in breath, which is the frame for this paper) and the creation of arrays
with sensors that complement each other, even before feature selection. To avoid creating
a specific device (that would include all sensors at once), and also to test sensors in their
final working environment, sensor testing was performed in the same setup that would be
used for breath sensing. The number of sensors tested at a time was limited to six, and we
prioritized sensors to be chosen for discrimination testing. The procedure was as follows:

• Each bag contained a single VOC in a concentration well above those observed in real
breath: sensors are rarely sensitive enough to sense a single compound at 1–100 ppb.
The collective signal of all VOCs is what is measured. To find the sensitivity to a single
compound, a range of concentrations of 500 ppb to 5 ppm are often needed. Four
different concentrations were used to obtain a four-point calibration line. This enables
the verification that sensor response is indeed linear over the range.

• In addition to VOCs, on different repetitions, humidity was set at 40% RH or 90% RH
to check the cross influence of water vapor on the sensor readings.

• Usual confounders were added on different repetitions, at the highest concentration of
the tested biomarker VOC for cross influence assessment. Therefore, for a 0.5 to 5 ppm
series of samples, the confounder was set at 5 ppm in all samples.

Results were used to create a linear regression model, the slope indicating the sensi-
tivity to the compound in the specific conditions of the test (moisture, confounders . . . )
giving valuable data on the sensor’s general behavior. This will also give insight on the
linearity of the response in the commonly encountered sample concentration range.

For evaluation of sensor behavior alteration to varying environmental temperature
conditions, the working device was set in a different temperature environment (for exam-
ple, 10 ◦C or 35 ◦C) and their response to a standard gas mixture (e.g., Ethanol 5 ppm)
was monitored after temperature acclimation of the device. The standard mixture was
humidified to 40% RH at 20 ◦C.

Drifting tendencies were evaluated over time, after a preconditioning period of two
weeks had passed; all calibration data were compared over time to assess the percentage
of variation (by computing a ratio between the first calibration and the following ones).
Calibration must occur every three months at least. Using principal component analysis, it
is even possible to characterize the effect of drift across several compounds. Drift evaluation
requires several months at least to be evaluated [68], with no known efficient workaround
to speed up the process while remaining true to the actual working conditions of the
sensors.
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Sensor lifetime corresponds to the median time until sensors are out of order and need
to be replaced. For MOS sensors, it can take years before replacement is needed, making
evaluation slow and of limited priority at early-stage research. For other types of sensors,
at least 5 sensors should be used in ambient conditions until sensors do not react to stimuli
anymore. Then the median lifetime between sensors can be used as a metric.

The stabilization period (or pre-conditioning time) for new sensors was evaluated by
exposing the sensor every day from startup to a standard gas (Ethanol 5 ppm and 90% RH
at 20 ◦C) until response became reproducible (with less than 5% coefficient of variation for
at least two weeks).

The sensors were also tested as an array, to evaluate the type of information they
provide when exposed to breath VOCs. Samples were then split into populations of equal
size:

• A mix using the concentrations found in the breath of cancer persons.
• A mix using the concentrations found in the breath of healthy persons.
• A mix using the concentrations found in the breath of healthy persons with some

common smoking-related VOCs in usual concentrations.
• A mix using the concentrations found in non-cancerous persons having comorbidi-

ties frequently associated with lung cancer patients (such as Chronic Obstructive
Pulmonary Disease, or COPD).

The composition of these mixtures (Table 2) is inspired from the works of Buszewski
et al. [7,77–80] and a few others [89,90], which encompasses 384 lung cancer patients and
645 controls in total for Buszewski et al. Other publications had 70 lung cancer patients and
108 controls in total. The number of publications sharing concentration values is very low,
and not all frequently cited compounds are quantified. The composition of the samples
submitted for analysis by the electronic nose should be as close as possible to what is
indicated in Table 2. The population size for COPD values is however much lower than for
other groups, and values should therefore be considered with caution.

Table 2. Concentrations found in several sources from literature for healthy, lung cancer, COPD and
smoker groups.

VOC
Healthy Average (ppb) Smoker Average (ppb) COPD Average (ppb) Cancer Average (ppb)

[78] [77] 1 [78] [79] [77] 1 [78] [77] 1

2-butanone 5.1 7 10.6 1.45 6 8.8 9

Decane - 11 - 0.23 7 - 9

Pentane 104.9 111 108.4 1.87 - 40 11

1-propanol 6.6 61 17 28.15 28 54.8 99

2-propanol 13.3 169 320.7 258.37 92 149.5 398

Ethanol 188.5 193 286.4 218.64 523 467 1203

2-pentanone 5 6 5.3 - 492 7.5 9

Acetone 226 580 330.2 - 19 359 1000

Hexanal 0 3 0 - 719 4.5 4

Toluene 30.9 13 46.8 0.63 4 12.9 7

Benzene 6.3 7 9.2 0.57 7 5.4 5
1 Source gives concentration as a median instead of an average.

Other non-cancer related diseases can also influence the breath volatilome (e.g., dia-
betes); a more thorough testing including various mixes inspired by volatilome research
literature can be made if it is relevant to the task at hand. The goal would mainly be to
evaluate the risk of misclassifying another illness or condition as cancer. It will likely only
be necessary if clinical trials reveal a specific source of misclassification. In that case, it is
interesting to evaluate sensors on their ability to disregard that source.
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The two populations were created from a number of concentrated bags, each having
several “daughter” (diluted) bags which are differentiated only by slight variations in
their concentrations (maximum 10% deviation from median concentration, ratios between
compounds are preserved). This was to simulate variety inside a population. Every bag was
submitted to the e-nose several times until completely empty. A fraction of each bag was
adsorbed on Tenax, followed by Carbograph 5TD for TDGCMS analysis and composition
checking.

Response time was usually measured as the necessary time to reach 90% of the steady-
state response in response to a step change in concentration [12]. This was easily measured
during calibration.

3.1.5. Gas Chromatography

A reliable and reproducible gas dilution procedure is essential for sensor testing. The
validity of the dilution procedure should therefore be checked by a reference method. This
also allows for comparison of results between the electronic nose and the mass spectrometry
analysis.

The TD–GC–MS method is identical to what was reported before [47] and is based on
usual methods for VOC analysis in breath literature.

Semi-quantitative analysis was made after calibration on all target VOCs (see Sec-
tion 2.3.2). It was previously reported that only four compounds (pentanone, heptanal,
decane, toluene) were used. This was mostly for logistical reasons. This set was chosen to
better represent the diversity of breath VOCs and more accurately encompass the variety of
behaviors, while keeping the number of analytes low. This way, methods were developed
to ensure the GC separation and quantification of complex VOCs mixtures. However, for
good practices, it is recommended to use all the selected target VOCs for calibration.

For sensor sensitivity evaluation, the calibration range was based on the concentrations
used (0.5–5 ppm) instead of what is usually reported in breath (10 ppb−1 ppm). The
calibration was made using a linear regression model on the peak area under the curve
(AUC). For compounds without a calibration line, the quantification results are expressed
in equivalent concentrations (the compound that is closest in retention time). For every
gas bag, half was measured by IOMS and the other half was adsorbed on cartridges and
analyzed in parallel.

3.2. Gas Sensor Benchmarking Apparatus

It is important to test the sensors in the actual environment they will be most likely
used in. The device should be able to control and/or measure as many influencing pa-
rameters as possible. The benchmark prototype used for this article has the following
features:

• Carbon dioxide measurement, by the mean of a CO2 sensor. Compact sensors using
infrared in the 0–6% range are available on the market. This is an important parameter
as most MOS sensors behave differently with differences in the oxygen content of
the sample, and it serves as a simple way to ensure no leaks occurred in the system.
O2 sensors can also be used alternatively, but often take more time than CO2 sensors
to reach a stable signal. CO2 sensors and valves can also be used to select the most
interesting part of each exhalation (alveolar air, for example).

• As breath is water-saturated at about 37 ◦C and sensors are influenced by both tem-
perature and humidity, both parameters are crucial to monitor. A significant problem
to consider is condensation. Liquid water in the system could remove some chemical
species from the gas phase, which would alter responses from sensors. Accumulation
of liquid water can also cause a range of problems (bacteria proliferation, VOC reten-
tion and contamination, material degradation, short circuits . . . ). The whole system
should therefore be heated to avoid condensation.

• The sensor chamber should be heated, and the temperature controlled with a feedback
loop (i.e., Proportional-Integral-Derivative controller (PID)) in order to keep the am-
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bient temperature around the sensors as stable as possible regardless of the device’s
surroundings. As sensors are very sensitive to heat loss, this enables reproducible sens-
ing and constant sensor properties [12]. To avoid contamination, the sensor chamber
should always be upstream from everything else if possible.

• Flow speed is also an important parameter. Flow speed and sensor chamber design
should be chosen to enable laminar flow [28]. A flow control device (e.g., rotameter,
Mass Flow Meter, MFC) and pump were placed downstream from the sensor chamber
to ensure constant and reproducible flow. Offline analysis of collected samples gave
more stable sensor signals than having a patient directly blow into the sensor chamber.
Sorbent cartridges instead of gas sampling bags, while manageable, have not been
chosen for the testing device. The increased complexity would make the device harder
to develop, and it was chosen to not use sorption for the first versions of the device.

• All materials in contact with the samples should be non-emissive and resistant to
chemical alterations to avoid sample alteration, as mentioned before [47]. Stainless
steel, glass or PTFE are the most appropriate materials in this regard. Other materials
should be placed downflow of the sensor chamber. If this is not possible, rigorous
testing of their influence on samples should be realized, preferably by using IOMS
and a reference method such as GCMS.

• A small volume sensor chamber is preferred, as this avoids the dilution of samples
and provides quicker signal stabilization. However, without enough dead volume
the heat dissipation of the sensors is likely to be too low, and this might result in
lower reproducibility and damage to the sensors if the heaters are under constant
voltage. There is no straightforward way to dimension a sensor chamber to have
an adequate inner dead volume. The sensor chamber currently being used for this
project has an internal dead volume of 7.5 cubic centimeters, has shown excellent heat
dissipation properties (40 ◦C interior temperature while in function without external
heating, at room temperature), and the sensors used displayed quick reaction times
(40 s mean reaction time). To complement the setup, each sensor heater is controlled
by an individual PID to ensure optimum sensor temperature is maintained even under
changing or uneven conditions.

• To enable experiment monitoring in real time, measurements can be displayed on a
computer showing the evolution of sensor outputs. To ensure all variables are under
control and experiments proceed as expected, this feature is invaluable.

• Sensors should be placed so that they are in the same conditions in regard to the flow.
In this case, the sensors were placed radially so that they were all perpendicular to the
flow in the same way, and therefore were evaluated in the exact same environment.

The IOMS setup was already described in a previous publication [47]. As a reminder,
the sensors used were as follows:

• TGS® 2603 (Figaro Engineering™, Osaka, Japan)
• G3530, G1430, G2530, G8530 (Umwelt Sensor Technik® GmbH, Thuringia, Germany)
• MP901 sensors (Winsen™ Electronics Technology Co., Ltd., Zhengzhou, China)
• BME680 (Bosch Sensortec™ GmbH, Reutlingen, Germany)

These sensors were chosen for their differences and apparent complementarity. It is
worth noticing that metal oxide sensors need an initial stabilization period (“burn-in”) of
3 to 10 days before use, either when starting from cold or for their first usage [12].

The setup includes a carbon dioxide sensor (GSS SprintIR®)(Gas Sensing Solutions Ltd.,
Cumbernauld, UK). Flow measurements were made using a small size flowmeter (Renesas®

FS2012-1020)(Renesas Electronics Co., Tokyo, Japan), which enables flow control in com-
bination with a small size diaphragm pump downstream (RS® PRO D200-03)(RS Group,
London, UK).

For this setup, commercial MOS Sensors were used as a first step, but other types of
sensors could be used as well with the same general recommendations. Be aware that the
sensors’ optimal operating conditions may vary: for example, polymer sensors tend to
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operate better around room temperature, whereas metal oxide sensors need to be heated to
200–300 ◦C to function and require heat dissipation to avoid overheating.

Flow speed is an important variable to control in an e-nose, as higher air flows tend
to cool down the sensors more. Constant flow speeds enhance comparability between
experiments, and therefore should be aimed for.

Measurements on breath have a lot of similarities with those made on car exhausts
for emission regulations (i.e., high humidity content, elevated temperature, many different
compounds). The interesting approach of samplers for car exhausts comes from the
de-dilution of samples by ambient air to prevent condensation from happening in the
system [91]. The obvious drawback is that biomarker concentrations are reduced, and
breath characterization could prove itself harder with less sensitive sensors. Even if this
approach is noteworthy, such a setup has not been chosen for now.

For lung cancer breath detection using a sensor chamber under constant flow, response
time should be as quick as possible. The main reason is that time influences the volume
of sample necessary to reach steady state, along with flow speed and sensor chamber
volume. A quick response time makes it possible to use smaller volumes, which is better
logistically and in terms of patient comfort. Recovery time can be longer, however, as
ambient air is likely to be used as zero-air. Alternatively, some methods enable the reading
of sensor response before a steady-state is reached [70], but how this method performs
in real discrimination conditions remains to be studied. Response time can be slower for
systems using static air in the sensor chamber during measurement.

Operating conditions should be adequate for the task at hand (i.e., sensor temperature
should be high enough to enable the detection of compounds of interest), but keep in mind
that a high power consumption and high working temperature might impair the autonomy
of remote devices and requires extra heat dissipation modules.

Linearity within the concentration range of the analyte is desirable, as it makes cal-
ibration simpler. The ideal sensor would be as insensitive to temperature and humidity
shifts as possible, especially since breath has a high humidity content.

Evaluation of the effect of humidity is crucial, as reversible alterations of behavior can
be observed, for example, in sensors at lowered temperatures [92].

Drifting tendencies would be kept to a minimum, as it improves reproducibility and
reduces the need for recalibration, which is often logistically intensive [86]. For similar
reasons, sensor lifetime should be as long as possible, but other factors such as sensor
interchangeability and ease of replacement are to be considered in this case [67]. Lastly, a
quick stabilization period after startup is preferred for the final user’s ease of use.

3.3. Statistical Aspects

Using a certain number of breath-like mixtures, the objective was to characterize how
well a sensor performs in a discrimination task, how much information it provides and
how it complements other sensors.

When using samples, one important question is “how many?”. Luckily, this question
has drawn the attention of statisticians for a while and formulas have been developed
to identify the optimal number of samples one should aim for. A screening study does
not need as many samples as a diagnostic study: high sensitivity is required (sensitivity
means correctly identify as many true positives as possible, i.e., low type I error) but low
specificity can be tolerated (specificity means correctly identify as many true negatives as
possible, i.e., low type II error) [93].

Several factors come into the determination of the necessary sample size: the preva-
lence of disease (number of positives in the tested population, the fewer positives, the
bigger the needed sample) and the expected values of sensitivity and specificity for each
outcome (healthy or sick i.e., null or alternative hypothesis). In Bujang et al.’s work, one
can find tables to determine adequate sample sizes based on those parameters. It is un-
derlined however that too small sample sizes are to be avoided to obtain a dataset with a
sufficient statistical confidence, regardless of what the tables show [93]. Moreover, for most
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multivariate analysis and discrimination approaches, large datasets are desirable to obtain
robust models.

To know how many positives to expect, it is important to examine the correct popula-
tion. Since the screening device will be used in people that are most at risk of developing a
lung cancer (former smokers or actively smoking people, above 45 years old), the likeliness
of encountering a person with lung cancer is higher than if the general population was
sampled. Smoking is accountable for 80 to 90% of diagnosed lung cancer [94], but that does
not mean that most smokers will develop lung cancer, specifically. It is therefore interesting
to investigate Low Dose Computed Tomography (LDCT) trials that processed thousands
of people in the population at risk and find how many of them had LC. During the UK
Lung Cancer Screening Trial in 2016, 42 individuals were found to have LC amongst the
1994 participants (2.1%) [95]. During the Dutch–Belgian NELSON Trial between 2003–2009,
7557 participants underwent LDCT and 70 were found to have LC (0.9%) in the first round
of tests and 54 in the second round (0.7%, or 1.6% in total) [96]. The 2015 NLST trial in
the United States enrolled 53 454 participants and detected 1384 LC cases among them
(2.6%) [97]. The approximation of the general incidence of lung cancer in the population at
risk will therefore be considered to be around 2%.

Here’s an example. Considering a p-value of 0.05 and aiming for a power of 80%
(probability of avoiding a type II error), and a prevalence of 5% (closest to 2%), one should
need a minimum of 400 samples to detect a change in the sensitivity and specificity from
0.50 to 0.80, including 20 “sick” samples and 380 “healthy” samples [93]. If one wants the
prevalence to be around 2% instead of 5%, it would be advisable to increase the number of
“healthy” samples to 980, which of course becomes logistically intensive.

This number of samples is, however, intended for clinical trials, which is an important
part of the validation process. In addition, the correspondence of artificial breath to real
breath can only be confirmed by actual real breath sampling. On the other hand, the
number of samples needed to test the array and individual sensors does not need to be
as high as stated above, as artificial breath is not a replacement for clinical trials. For
calibration/discrimination testing purposes, three readings of each mixture and each
concentration/sample is enough, provided the creation and storage of mixtures has been
proven to be reproducible enough. For array testing on complex mixtures, a 50% incidence
is considered for ease of testing, which brings down the number of samples to 20 of each
kind with the other parameters kept constant. Since this is the minimum value, a 50%
increase was decided to ensure sufficient data were gathered for the data analysis, which
brought the number of samples to 30 of each kind.

3.4. Data Treatment
3.4.1. Pre-Treatment

The sensor signal is recorded every second, and therefore needs to be pretreated to
reduce the amount of information. RStudio®(RStudio, Boston, Massachusetts) was used to
create a program in R language to do it automatically, as previously reported [47].

The first part of the code identifies where the signal of each sample starts, ends, and
then computes the height of the plateau, the area under the curve, and the start and end
slopes, taking into account the baseline signal. Since zero-air has less CO2 than samples,
tracking the CO2 allows for easy sample tracking; the beginning and end of a measurement
is found by looking at sudden and important variations in carbon dioxide levels. This was
found to be more reliable than using the second derivative to find the beginning of the
sample’s signal using conductivity alone.

Normalization (signal of each sensor is divided by the square root of the sum of all
signals squared) or standardization (subtraction of the signal’s mean and division by the
standard deviation) of the array’s signals may also be applied to improve the following
analyses.

This pre-processed data was recorded and used for Principal Component Analysis
(PCA), data structure visualization and multivariate analysis.
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Several functionalities are usually implemented at this stage, such as baseline drift
compensation to compensate the drift of aging sensors. However, as the current experi-
ments aimed to test the raw characteristics of sensors, and did not aim to obtain the best
e-nose reliability over time, this step could be overlooked at this first stage.

3.4.2. Principal Component Analysis

Score plots and the associated loading plots of a PCA were considered. This is particu-
larly useful for array testing, and less for calibration data. Using these, it was possible to
highlight the ability of the e-nose to identify differences between samples, and the contri-
bution of each variable to each component. This way, it was possible to obtain information
regarding:

• The quality of the separation between groups, by looking at the location and spread
of clusters of samples. The further away groups are from each other, and the less
overlapping there is, the better the classification by multivariate analysis will be, and
therefore the higher the quality of the array is.

• The effect of the modification of one variable on the results, appearing as a shift in
data (variation in VOC concentrations or humidity, for example).

• The contribution of each sensor to the separation of groups. Using the loading plot, it
is possible to see if a feature is either redundant, not contributing to the separation,
or important for the separation. One can therefore identify which sensors are worth
keeping and which should be replaced or improved. It is however important to keep
in mind that artificial mixtures are not breath, and that an apparently redundant sensor
might become useful using real breath. The hypothesis that mixtures give a good
enough representation of actual breath must be verified and will be exposed in future
work. If it is indeed verified, it will be possible to discard or keep sensors based on the
mixtures’ results alone, prior to any form of clinical trial.

• The effect of each feature (signal slopes, AUC, maximum value), the effect of each data
treatment (e.g., with or without normalization, noise cancelling . . . ).

Once the best contributing sensors have been identified, the configuration of the bench-
mark e-nose is modified by replacing redundant or less contributing sensors. Then the array
testing method described in Section 3.1.4 is repeated until optimal sensor configuration is
obtained. Then, clinical trials may begin and comparisons between lab and clinical results
may give insight on the quality of the benchmark and ways to optimize it.

4. Discussion

Using an IOMS for lung cancer detection is not a novel idea, as tens of references can
be found; various projects with varying approaches tried to tackle the problem. So far, none
of them investigated the subject of gas mixture creation for testing a medical device.

This publication presents a way to create reproducible complex gas mixtures at the
ppb level, using low-cost equipment, and the subsequent usage of these mixtures to test
sensors and compare them with each other and with a reference method (TD–GCMS). This
methodology is usable for a wide range of VOC-related applications but is mainly intended
for the validation of IOMS built for medical diagnostics.

The method is currently being used to test a device designed to detect early-stage lung
cancer. The quality of the classification using artificial atmospheres will be compared with
the quality of the classification using real breath samples, to assess if conclusions drawn
from testing with artificial atmospheres are similar to those drawn from testing with real
breath samples. If correspondence is indeed confirmed, this would enable device conception
and optimization from a laboratory environment and overall bettered performances from
the very first field tests.

The complexity of the atmospheres created, and the composition based on volatolomics
research from literature and project partners and the calibration approach all form potential
improvements of what is usually performed during lab testing for medical electronic nose.
Usual practices often lack relevance regarding the final use, often to simplify the setup and
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improve reproducibility. By the present method, the goal is to prove that it is possible to
obtain complex mixtures with good reproducibility while remaining true to the intended
objective. Results and a detailed analysis of the method once applied will be published in
another article.
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