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Abstract: Hydrogen sulfide (H2S) plays a crucial role in a variety of physiological and pathological
processes, similar to other gaseous signaling molecules. The significant pathophysiological functions
of H2S have sparked a great deal of interest in the creation of fluorescent probes for H2S monitoring
and imaging. Using 3-cyanoumbelliferone as the push–pull fluorophore and a dinitrophenyl sub-
stituent as the response site, herein we developed a umbelliferone-based fluorescent probe 1 for H2S,
which exhibited a remarkable turn-on fluorescence response with a low detection limit (79.8 nM),
high sensitivity and selectivity. The H2S-sensing mechanism could be attributed to the cleavage of
the ether bond between the dinitrophenyl group and the umbelliferone, leading to the recovery of
an intermolecular charge transfer (ICT) process. Moreover, the probe had negligible cytotoxicity
and good cell membrane permeability, which was successfully applied to image H2S in MCF-7 cells
and zebrafish.
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1. Introduction

Hydrogen sulfide (H2S), one of the prominent volatiles produced from the spoilage
of food samples, is well-known to the public as a toxic gas with a rotten egg odor. In
mammals, this gaseous molecule can be endogenously produced as the result of particular
enzyme-catalyzed reactions of cysteine (Cys) and homocysteine (Hcy) in the presence of
cystathionine β-synthetase (CBS), cystathionine γ-lyase (CSE) and/or 3-mercaptopyruvate
sulfotransferase (3-MST) [1]. Endogenous H2S can be found in the brain, liver, kidneys,
cardiovascular and inflammatory systems, which is closely related to the function in many
physiological processes, including regulating inflammation, suppression of oxidative stress,
mediation of neurotransmission, relaxation of vascular smooth muscles, antioxidant effects
and the inhibition of insulin signaling [2–6]. Actually, H2S is the simplest and smallest
reactive sulfur species (RSS), which is considered to be the third gaseous signaling molecule
following nitric oxide (NO) and carbon monoxide (CO) [7–9]. However, an abnormal
level of H2S could contribute to a variety of diseases, such as diabetes, Down’s syndrome,
chronic kidney disease and liver cirrhosis [10–12]. Obviously, the assessment of H2S levels
in vivo is of great significance, not only for the early diagnosis of specific diseases but also
for a better understanding of the diverse physiological functions of H2S in complicated
biological systems.

Up to now, a series of analytical methods have been developed for the quantitative
detection of H2S, involving the titration method [13], gas chromatography [14], colorimetric
assays [15], electrochemical methods [16], chemiluminescence (CL) assays [17], and fluori-
metric assays [18]. Among them, fluorescence-based techniques are particularly attractive
as they offer a low cost, real-time and in vivo biosensing, high sensitivity and selectivity,
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non-destructive testing and spatiotemporal resolution [19–22]. Not surprisingly, huge
progress has been made in the development of fluorescent probes for the sensitive and se-
lective tracking of various analytes [23–26]. For example, we have recently summarized the
progress made so far in fluorescent chemosensors for f-block metal ions [27] and HOBr [28].
At present, numerous H2S-specific fluorescent probes have been developed, whose sensing
mechanism involves an irreversible chemical reaction, as induced by H2S [29–31]. The
reduction of azides or nitro compounds to amines with H2S and the thiolysis reaction in
the presence of H2S (e.g., removal of the 2,4-dinitrobenzenesulfonyl group, dinitrophenyl
ether or nitrobenzofurazan group) are two typical examples [32–34].

Structurally, fluorophore-based fluorescent probes coupled with H2S-reactive sites
are mainly constructed from small organic dyes. Coumarin and its derivatives are a very
large family of phytochemicals, whose backbone contains the unique 2H-chromen-2-one
motif [35]. Despite negligible or weak fluorescence of the parent coumarin, the decorating
of coumarin with a specific substituent group can readily afford various functionalities
and sufficient fluorescence with diverse emission colors. For example, the introduction
of electron-donor groups onto the 6- or 7-position or electron-withdrawing groups (e.g.,
-CN, -CF3, -NO2) in the 3- or 4-position of the coumarin core, can result in a bathochromic
emission. Accordingly, a large variety of coumarin dyes have been rationally developed as
fluorescent chemosensors for anions, metal ions, pH and biologically related species [36–38].
Particularly, fluorescent chemosensors based on the phytochemical coumarin possess excel-
lent biocompatibility. With respect to umbelliferone, it possesses the 7-hydroxycoumarin
structure that is widely distributed in umbelliferae families [39]. By virtue of its structural
simplicity, umbelliferone is also a fluorescing compound that has been widely accepted
as a synthon for more complex coumarins. As a result, we speculated that tethering spe-
cific units onto umbelliferone would result in a robust fluorescent probe for the selective
recognition of certain guests.

With our continued interest in the construction of molecular receptors [40–45], we
report herein on a umbelliferone-based fluorescent probe 1 capable of selective recognition
of H2S with high sensitivity and selectivity. This probe contains the electron-withdrawing
cyano (-CN) group at the 3-position and the reactive dinitrophenyl substituent at the 7-
oxygen of the coumarin. Probe 1 itself exhibited negligible or very weak fluorescence due
to the inhibition of an intramolecular charge transfer (ICT) process. The addition of H2S
could selectively lead to obvious fluorescence enhancement, owing to the enhanced ICT
effect and the restoration of the conjugation of the hydroxy and cyano groups resulting
from the cleavage of the ether bond between the dinitrophenyl group and umbelliferone
framework. In addition, the probe was successfully applied to visualize H2S in MCF-7 cells
and zebrafish.

2. Experimental Section
2.1. Materials and Instruments

All materials, unless otherwise noted, were purchased from commercial sources and
used without further purification. 1H NMR and 13C NMR were recorded on a Bruker
Avance-600 MHz magnetic resonance spectrometer using tetramethylsilane (TMS) as an
internal standard, and coupling constants (J) are denoted in Hz. Electrospray ionization
mass spectra (ESI-MS) were measured with a Q Exactive Orbitrap mass spectrometer
(Thermo Fisher Scientific, America). UV–vis absorption spectra were recorded on a TU-
1901 spectrophotometer (Beijing, China). Fluorescence measurements were obtained using
an F-380 fluorescence spectrophotometer (Tianjin Gangdong SCI &TECH, Tianjin, China).
The pH value measurements were performed by a PHS-3C pH meter (Shanghai, China).
Confocal laser shooting was measured with confocal fluorescence microscopy (Olympus
FV1200, Tokyo, Japan).
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2.2. Synthesis of Probe 1

3-Cyanoumbelliferone (200 mg, 1.00 equiv.) and 1-chloro-2,4-dinitrobenzene (260 mg,
1.20 equiv.) were dissolved in acetonitrile (20 mL) in the presence of K2CO3 (180 mg,
1.2 equiv.). The resulting mixture was refluxed at 80 ◦C for 10 h. After cooling to room
temperature, the solvent was removed and the crude compound was purified by column
chromatography (silica gel, EtOAc: PE = 1:2, v/v) to afford 1 (241 mg, 60%) as a white
powder. 1H NMR (600 MHz, DMSO-d6) δ 8.95 (s, 2 H), 8.57 (dd, J = 9.2, 2.8 Hz, 1 H), 7.92
(d, J = 8.6 Hz, 1 H), 7.56 (d, J = 9.2 Hz, 1 H), 7.43 (d, J = 2.4 Hz, 1 H), and 7.32 (dd, J = 8.6,
2.4 Hz, 1 H). 13C NMR (151 MHz, DMSO-d6) δ 160.0, 156.6, 155.6, 152.7, 152.2, 143.2, 140.6,
132.2, 130.0, 122.7, 122.1, 116.2, 114.7, 114.5, 106.8, and 100.8. HRMS (ESI): m/z calculated
for C16H7N3O7 [M + Na]+ 376.0182, found: m/z: 376.0185.

2.3. General Procedure for Absorption and Fluorescence Measurements

All stock and working solutions were prepared in CH3CN (spectroscopic grade) and
ultrapure water. The samples of 1 (3.0 × 10−3 mol·L−1) were freshly prepared in CH3CN.
The UV–vis absorption responses of probe 1 (10 µM) toward the analytes were investigated
in CH3CN. The fluorescence responses of 1 (10 µM) toward these analytes were investigated
in an aqueous PBS buffer (10 mM, pH = 7.4, containing 50% CH3CN) under excitation at
413 nm with 10 nm emission and excitation slit widths in the spectrofluorometer.

2.4. Cell Imaging

MCF-7 (human breast cancer cell line) cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM), which contains a supplement of 10% FBS (Fetal Bovine Serum) and an-
tibiotics (100 U·mL−1 Penicillin and 100 g·L−1 streptomycin) in a 5% CO2 incubator at 37 ◦C.
MCF-7 were inoculated in a 10 mM glass culture dish and further incubated with probe 1
(10 µM) for 30 min at 37 ◦C and 5% CO2 incubation. The cells were washed three times
with PBS, then incubated with NaHS (100 µM) for another 30 min, followed by washing
three times with PBS, and further imaging using a confocal fluorescence microscope.

2.5. Zebrafish Imaging

Pathogen-free zebrafish (AB strain) were cultured and reproduced on the zebrafish
experimental platform of Chengdu University of Traditional Chinese Medicine (TCM). The
zebrafish were reared in a fully enclosed circulatory system based on the standard zebrafish
breeding protocols. Three-day-old zebrafish were cultured in probe 1 (10 µM) for 30 min,
followed by treatment with NaHS (100 µM) for another 30 min. These zebrafish were
transferred into a new confocal plate for imaging using confocal fluorescence microscopy.

3. Results and Discussion
3.1. Synthesis and Characterization

The preparation procedure for umbelliferone-based fluorescent probe 1 has been
outlined in Scheme 1. Briefly, the key precursor 3-cyanoumbelliferone reacted with 1-chloro-
2,4-dinitrobenzene in the presence of K2CO3 in acetonitrile solvent at 80 ◦C following the
classical nucleophilic aromatic substitution reaction to offer the derivative 1 in a reasonable
yield (60%). Its structure was confirmed by NMR spectroscopy and high-resolution mass
spectrometry (HRMS) (Figures S1–S3, ESI†).

3.2. Optical Behavior of 1 to H2S

With probe 1 in hand, we firstly exploited its recognition behaviors toward various
analytes by the screening of anions (HSO3

-, CO3
2-, AcO-, Br-, Cl-, F-, H2PO4

-, SO4
2-, NO3

-

and HS-), cations (NH4
+, Mg2+ and Al3+) and amino acids (Ser, Met, Leu and Gly) using

the UV–vis absorption technique in CH3CN at room temperature. Specifically, HS- can
be used as the source of H2S as this gas molecule mainly exists in the form of HS- in an
aqueous solution under physiological conditions [46–48]. As shown in Figure 1, probe 1
exhibited a strong absorption centered at 342 nm, along with a shoulder peak centered at
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approximately 307 nm. Upon the addition of 10 equiv. of the above-mentioned analytes,
the intensities of these two absorption bands underwent a slight decrease, which was not
comparable to that of H2S. Obviously, only in the case of the addition of H2S (NaHS is
the source of H2S), a new absorption band peaking at 438 nm was observed, accompanied
by a readily observable change from colorless to straw yellow under visible light (inset of
Figure 1). These results preliminarily indicated that probe 1 had displayed a selective and
favorable recognition of H2S.
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Figure 1. Absorption spectra of 1 (10 µM) treated with various analytes (10 equiv.) in CH3CN. The
inset was the corresponding color change of 1 following the addition of H2S under visible light.

Subsequently, the recognition behaviors of probe 1 were conducted by fluorescence
spectroscopy in H2O-CH3CN (1:1, v/v, 10 mM PBS, pH = 7.40) mixed aqueous medium. The
probe itself showed marginal background fluorescence upon excitation at 413 nm (Figure 2).
After treatment with H2S, a strong enhancement of the fluorescence emission at 455 nm
was observed. Meanwhile, the fluorescent color of 1 clearly changed from colorless to
sky-blue in the presence of H2S when exposing the solution under UV light (365 nm) (inset
of Figure 2). In contrast, the other analytes did not induce such a remarkable emission
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enhancement, suggesting that probe 1 selectively reacted with H2S. Then, HRESI-MS was
employed to rationalize the H2S-sensing mechanism, and the MS spectrum was recorded
after mixing 1 with H2S. A very strong ion peak in negative ion mode at m/z 186.0192
(calculated: 186.0191) corresponding to [3-CU-H]- could be observed (Figure S4). As a result,
we ascribed the turn-on fluorescence response to the nucleophilic aromatic substitution
with H2S, leading to the release of free 3-CU and the recovery of the intramolecular charge
transfer (ICT) process of 3-CU after the reaction.
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Figure 2. Fluorescence emission spectra of 1 (10 µM) treated with various analytes (10 equiv.) in H2O-
CH3CN (1:1, v/v, 10 mM PBS, pH = 7.40) mixed aqueous medium (λex = 413 nm, slit = 10 nm/10 nm).
The inset was the corresponding color change of 1 following the addition of H2S under UV light
(365 nm).

3.3. Time and pH-Dependent Fluorescence Response of 1 to H2S

One of the most important characteristics of a probe is its response time. In identical
conditions, the kinetic profile of 1 in the presence of H2S was examined using fluorescence
spectroscopy. After the addition of H2S, a notable increase in fluorescence at 455 nm was
observed after 20 min incubation, which reached a maximum within 50 min (Figure 3a).
A further extension of the incubation time had a small effect on its emission intensity,
implying that the recognition event at room temperature needs 50 min to reach completion.

The pH level is a crucial variable that controls biological activities. To determine
whether this probe is suitable for detecting H2S in biological systems, the effect of pH
on 1 in the absence and presence of H2S was investigated. As shown in Figure 3b, the
fluorescence intensity of probe 1 by itself at 455 nm did not significantly vary across
the pH range of 4.0–10, demonstrating that the probe is pH-insensitive and has good
stability over a broad pH range. Upon the addition of H2S, the fluorescence intensity
at 455 nm gradually enhanced with the increase of pH value from 5.0–8.0. A further
increment in pH value (pH > 8) led to a slight decrease in its fluorescence intensity, which
was still obviously boosted compared with that of free 1. These findings showed that
probe 1 had a considerable turn-on fluorescent recognition of H2S from a pH value of
6.0 to 10, signifying that our newly developed probe is suitable for measuring H2S under
physiological pH conditions.

3.4. Selectivity and Detection Limit of 1 to H2S

In order to evaluate the selectivity of probe 1 toward H2S, a full 100 equiv. of the
above-mentioned potentially interfering species were added into the H2O-CH3CN (1:1, v/v,
10 mM PBS, pH = 7.40) solutions containing probe 1 (10 µM), followed by the addition of
10 equiv. of H2S. As presented in Figure 4a, when these competitive species were added,
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the fluorescence intensity at 455 nm showed roughly the same pattern as that of free 1 alone.
However, each of the emissions was significantly increased when H2S was subsequently
added to the solution, which was comparable to that obtained in the presence of H2S
alone, suggesting that none of the tested species interfered with the sensing of H2S. As
a result, these results further proved that probe 1 was a highly sensitive and selective
turn-on fluorescent sensor for H2S. In the same medium solution, fluorescence titration of
probe 1 with various H2S concentrations was also investigated. The previous fluorescence
emission band, which was centered at 455 nm, was noticeably amplified with the addition of
increasing amounts of H2S. In particular, the measured fluorescence intensity was linearly
related to the H2S concentration ranging from 3.0 to 9.0 µM (R2 = 0.992), from which the
detection limit was determined to be 79.8 nm using the 3σ/k method.
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Figure 3. (a) Time-dependent fluorescence intensity of 1 at 455 nm in the presence of 10 equiv.
of H2S in H2O-CH3CN (1:1, v/v, 10 mM PBS, pH = 7.40) mixed aqueous medium (λex = 413 nm,
slit = 10 nm/10 nm). (b) pH-dependent fluorescence intensity of 1 at 455 nm followed by the addition
of 10 equiv. of H2S in H2O-CH3CN (sodium hydroxide and hydrochloric acid were used to modulate
the pH values).
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2- + H2S; 15: 1 + Ac-; 16: 1 + Ac- + H2S; 17: 1 + Br-; 18: 1 + Br- + H2S; 19: 1 +
Cl-; 20: 1 + Cl- + H2S; 21: 1 + F-; 22: 1 + F- + H2S; 23: 1 + H2PO4

-; 24: 1 + H2PO4
- + H2S; 25: 1 + SO4

2-;
26: 1 + SO4

2- + H2S; 27: 1 + NO3
-; 28: 1 + NO3

- + H2S; 29: 1 + mg2+; 30: 1 + mg2+ + H2S; 31: 1 + Al3+;
32: 1 + Al3+ + H2S;). (b) Linear correlation between the fluorescence intensity at 455 nm of 1 and the
concentration of H2S in the range of 3.0–9.0 µM.
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3.5. Cytotoxicity of 1

Before further exploring the potential imaging capability of 1 in living cells, a 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay experiment, a
frequently used technique for assessing the toxicity of a compound, was carried out to
make sure that compound 1 was a safe probe to utilize in cells. Two different cell lines
of human breast cancer cells (MCF-7) and human lung cancer cells (H460) were selected
to test their cytotoxic activities. As depicted in Figure 5, after a long time of incubation
(72 h) with 1 at various concentrations (0.03, 0.1, 0.3, 1.0, 3.0, and 10 µM), the cell viability
of 1-treated cells remained at 70% for MCF-7 and 65% for H460, even at 10 µM of 1. These
results demonstrated that probe 1 had good biocompatibility and negligible or extremely
low cytotoxicity. Meanwhile, the cell viability of MCF-7 was slightly higher than that of
H460 at all test concentrations.
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(0.03–10 µM).

3.6. Imaging of H2S in Cells by 1

The excellent H2S-recognition behavior prompted us to investigate whether the probe
was suitable for imaging H2S in a cellular environment. Considering the relatively higher
cytotoxicity to H460, we chose the MCF-7 cell lines in the cell imaging experiments. The
MCF-7 were therefore incubated with probe 1 (10 µM) for 30 min at 37 ◦C before being
visualized using laser scanning confocal fluorescence microscopy. As shown in Figure 6a–c,
the cells only exhibited very weak or negligible intracellular fluorescence. By contrast,
after further incubation with H2S, the 1-loaded cells showed considerable fluorescence
amplification, and visible fluorescence signals in the blue channel could be observed
(Figure 6d–f). These results indicated that our probe has good cell membrane permeability
and can consistently detect intracellular H2S in living cells.

3.7. Imaging of H2S in Zebrafish by 1

Zebrafish are recognized as a significant vertebrate model for imitating human genetic
illnesses owing to their unique advantages which include easy breeding, high homology
with humans, rapid growth ability, specific translucent feature and facile operations. As a
result, we also applied the probe to track H2S in living zebrafish. Three-day-old zebrafish
were incubated in probe 1 (10 µM) for 30 min and then treated with H2S (100 µM) for
another 30 min. These zebrafish were put onto a fresh confocal plate for imaging after
being washed in PBS. As depicted in Figure 7, the zebrafish labeled with 1 displayed a
very low fluorescence background. However, after additional incubation with H2S, the
1-labeled zebrafish showed a dramatically increased fluorescence intensity in the blue
channel. These results demonstrated that our probe is capable of imaging exogenous H2S
in a zebrafish model.
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4. Conclusions

In summary, we have rationally designed and synthesized a umbelliferone-based
fluorescent probe 1, which was composed of 3-cyanoumbelliferone as the push–pull flu-
orophore and a dinitrophenyl substituent as the response group. This probe showed
impressive turn-on fluorescence recognition of H2S with excellent sensitivity and good
selectivity, as well as a low detection limit. We ascribed the distinctive H2S-sensing mecha-
nism to the nucleophilic aromatic substitution with H2S, resulting in the breaking of the
ether bond between the dinitrophenyl group and umbelliferone framework and enabling
a strong ICT process of 3-cyanoumbelliferone. Furthermore, the minimal cytotoxicity
and good cell membrane penetrability allowed for in vivo visualization of H2S in MCF-7
cells and zebrafish. As a result, the probe might hold potential applications in the further
investigation of H2S-related physiological and pathological processes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/chemosensors10100427/s1, Figure S1: Figure S1 1H NMR spectrum
(600 MHz, DMSO-d6) of 1 at 298 K. Figure S2: 13C NMR spectrum (151 MHz, CDCl3) of 1 at 298 K.
Figure S3: ESI-HRMS spectrum of 1. Figure S4: ESI-HRMS spectrum of the mixture of 1 and H2S.
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