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Abstract: Excessive use of animal manure as fertilizers can lead to pollution through the introduction
of nitrogen, phosphorus, and other mineral compounds to the environment. Wet chemical analytical
methods are traditionally used to determine the precise chemical composition of manure to manage
the application of animal waste to the soil. However, such methods require significant resources to
carry out the processes. Affordable, rapid, and accurate methods of analyses of various chemical
components present in animal manure, therefore, are valuable in managing soil and mitigating water
pollution. In this study, a stacked regression ensemble approach using near-infrared spectroscopy was
developed to simultaneously determine the amount of dry matter, total ammonium nitrogen, total
nitrogen, phosphorus pentoxide, calcium oxide, magnesium oxide, and potassium oxide contents
in both cattle and poultry manure collected from livestock production areas in France and Reunion
Island. The performance of the stacked regression, an ensemble learning algorithm that is formed by
collating the well-performing models for prediction was then compared with that of various other
machine learning techniques, including support vector regression (linear, polynomial, and radial),
least absolute shrinkage and selection operator, ridge regression, elastic net, partial least squares,
random forests, recursive partitioning and regression trees, and boosted trees. Results show that stack
regression performed optimally well in predicting the seven abovementioned chemical constituents
in the testing set and may provide an alternative to the traditional partial least squares method for a
more accurate and simultaneous method in determining the chemical properties of animal manure.

Keywords: stacked regression; cattle manure; poultry manure; machine learning; livestock produc-
tion; near-infrared spectroscopy

1. Introduction

Animal manure has traditionally been used as a fertilizer to improve soil fertility and
carbon sequestration, as well as support crop growth [1,2]. It contains essential nutrients
including nitrogen (N), phosphorus (P), and potassium (K), which can improve soil quality
and, thus, influence agronomic activities such as soil and crop management [3]. Most
chemical nutrients existing in fertilizers are normally present in their oxide form; thus, P
is present as phosphorus pentoxide (P2O5), K as potassium oxide (K2O), calcium (Ca) as
calcium oxide (CaO), and magnesium (Mg) as magnesium oxide (MgO), among others.

The presence of the aforementioned chemical nutrients has profound effects in plants.
Plant organic structure, physiological makeup, biomass synthesis, and distribution, for
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example, are affected by N and its deficiency hampers the structure and function of photo-
synthesis, which in turn lowers crop yield. Insufficient P has a similar effect, significantly
reducing leaf area, impairing photosynthesis and carbon metabolism, and, thereby, restrict-
ing tillering, biomass buildup, and crop yield. On the other hand, K controls membrane
protein transport, steady-state enzyme activation, charge balance, stomatal movement, and
osmotic regulation [4]. Other nutrients such as carbon (C), magnesium (Mg), and sulfur
(S) are also present in manure. Despite the importance of these chemical nutrients in the
proper growth and functioning of plants, built-up and/or excess application of manure
containing these nutrients can also be harmful to the environment and poses health risks [5].
For example, nearly 10% of all direct emissions of greenhouse gases, including methane,
nitrous oxide, and carbon dioxide, from agricultural production are caused by direct appli-
cation of manure to farmlands [6]. Manure application can also lead to soil/groundwater
contamination by heavy metals such as zinc and copper. In the United States, approxi-
mately 1.4 billion tons of manure are generated by the 9.8 billion heads of poultry and
livestock produced yearly [7], implying that there is a need for proper manure management
processes. To reduce greenhouse gas emissions and effectively employ the nutrients in
manure for soil improvement, processing systems need to be based on a thorough analysis
of these nutrients [8].

Various spectroscopic methods have been utilized by researchers to examine ma-
nure chemical properties including using inductively coupled plasma-atomic emission
spectroscopy (ICP-AES), atomic absorption spectroscopy (AAS) [9], ultraviolet-visible (UV-
Vis) spectroscopy, fluorescence excitation-emission matrix spectroscopy, Fourier-transform
infrared spectroscopy, pyrolysis-mass spectrometry, solid state 13C nuclear magnetic res-
onance (NMR) spectroscopy [10], solution NMR, X-ray absorption near-edge structure
(XANES) spectroscopy [11], and near-infrared (NIR) spectroscopy [12]. However, each of
these techniques has advantages and disadvantages. Solution 31P NMR, for instance, can
provide relevant data on the organic P forms in animal manures but not on the inorganic P
solid phases. Organic and mineral P fractions of manure have also been identified using
XANES spectroscopy. Since no liquid extraction is required, this method has an advantage
over solution NMR [11]. In comparison to AES, AAS is more specific for some elements,
coupled with the relative ease of its use. As for the disadvantage, AAS is not appropriate
for P analysis, and only one element can be studied during each run. ICP-AES, on the
other hand, enables rapid multi-element analysis. For many elements, its detection limits
are comparable to or lower than those of AAS; nevertheless, compared to AAS, the costs
associated with its initial acquisition, use, and maintenance are higher [9]. In general, the
use of the abovementioned methods for assessment of various chemical nutrients present
in animal manure require significant time and other resources (e.g., training, finances, etc.)
to carry out the analyses.

Present analytical laboratories typically employ traditional standard wet chemical
analytical techniques such as distillation, Kjeldahl, colorimetry using an auto-analyzer,
combustion, and microwave-assisted digestion for the analysis of chemical constituents
present in animal manure [9]. However, such processes are relatively expensive and
time-consuming, making them unsuitable for rapid analysis. Because animal manure is
heterogeneous and certain chemical constituents in animal manure are volatile, a rapid,
low-cost, and accurate analysis at the time of application is required. Physicochemical
modeling and NIR spectroscopy have proven to be such rapid evaluation methods [13,14].
Animal manure contains two types of chemical constituents that can be accurately predicted
using NIR spectroscopy. The first type is made up of chemical constituents that contain
chemical bonds that contribute to NIR spectral absorption. Moisture, organic matter, dry
matter, C, and N, for example, can be assigned directly to main NIR absorption bands
such as N-H, C-H, and O-H. The NIR technique as applied to these constituents in animal
manure has produced satisfactory predictions in most previous studies. The second type
consists of chemical constituents that are not spectrally active but correlate well with the
first type. Due to their correlations with dry matter content, P and Mg without spectral
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absorption bonds could be quantitatively analyzed using NIR spectroscopy [15]. Even
though NIR spectroscopy has been demonstrated to be a reliable technique in manure
nutrient analysis, sensing systems require periodic maintenance because of large variations
in manure, which can be costly, time-consuming, and technically challenging. Furthermore,
because the NIR analysis of manure compositions is based on the relationship between
nutrient concentrations and spectral data, it is unknown whether the changes in the NIR
spectral data are driven by direct variation in N concentration or indirect variation in other
manure constituents [14]. As such, the development of a robust and reliable calibration
model using chemometrics and various other machine learning techniques is necessary.

NIR spectroscopy and chemometrics have been established as reliable techniques for
qualitative and quantitative investigations in a variety of industries, including agriculture,
food, and oil, among others. NIR spectroscopy is efficient, affordable, and non-destructive,
and has become popular because of advancements in computers and the development of
new mathematical methods allowing data processing. However, deciphering NIR spectra
can be challenging, and chemometrics is useful for extracting and aiding with the inter-
pretation of the acquired data [16]. The most commonly used chemometric techniques
include principal component analysis for qualitative analysis of NIR spectral data and
partial least squares (PLS) regression for quantitative prediction of sample parameters of
interest [17]. Least absolute shrinkage and selection operator (LASSO) regression, ridge
regression (RIDGE), least angle regression, random forest (RF), and forward stagewise
or stepwise regression are other rarely used regression techniques for processing spectral
data [12]. In addition to these machine learning techniques, various signal preprocessing
methods such as mean centering, multiplicative scatter correction, Savitzky–Golay smooth-
ing with first and second derivation, and their combinations were also used in processing
NIR spectra data prior to the implementation of the aforementioned machine learning
techniques [14]. Other authors have also reported the use of other preprocessing tech-
niques such as standard normal variable (SNV) and de-trending (DT), as well as SNV-DT
ratio [18–20]

The majority of the existing literature investigated spectral data from various NIR sys-
tems to analyze only a single nutrient’s concentration in manure. For example, NIR-sensing
systems with reflectance and transflectance modes coupled with PLS were employed in the
prediction of N speciation in dairy cow manure using a spiking method [14]. In another
study, Devianti et al. also applied principal component regression and NIR spectroscopy
to exclusively determine N content as a quality parameter of organic fertilizer [19] and P
content in organic fertilizer [20]. The metal nutrient contents of animal manure compost
produced in China on fresh and dried weight basis, on the other hand, was previously
investigated using PLS and NIR [18]. In another recent study, particle swarm optimization
and two multiple stacked generalizations were used to assess the quantity of N and organic
matter in manure using Vis-NIR spectroscopy [21].

This study is the first to comprehensively compare and test a wide array of machine
learning techniques including support vector regression with linear (SVRLin), polyno-
mial (SVRPoly), and radial (SVRRad) basis kernels, LASSO, (RIDGE, elastic net regression
(ENET), PLS, RF, recursive partitioning and regression trees (RPART), and boosted trees
(XGB) using NIR spectral data, for the simultaneous prediction of seven chemical con-
stituents present in animal manure. These components include dry matter (DM), total
ammonium nitrogen (NH4) (designated as NH4 in this study), total N (designated as N
in this study), P2O5, CaO, MgO, and K2O. In so doing, we determined the most suitable
techniques for the simultaneous determination of the abovementioned chemical compo-
nents. Results of this study show that stacked regression that collated the performance of
the various abovementioned machine learning techniques appears to be a robust machine
algorithm for the simultaneous quantification of the seven chemical components in fresh
cattle and poultry manure.
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2. Materials and Methods
2.1. Dataset

The dataset used in this study was obtained from Gogé et al. and is comprised of
196 cattle and 136 poultry manure samples (a total of 332 samples) collected from livestock
production areas in France and Reunion Island. The samples were frozen immediately after
collection to prevent any further microbiological activity that causes NH4 losses during
storage and were homogenized in the laboratory by crushing them in their frozen state
using a blender-cutter (Blixer Dito K45, Electrolux, Senlis, France) [22]. Further details
about the materials and reagents, as well as equipment used are provided and explained
explicitly in the manuscript by Gogé et al. [22]. A brief explanation of these is provided in
the next sections.

2.2. Equipment and Sample Analyses

The NIR spectra were acquired and analyzed on fresh homogenized samples using
three different instruments: two XDS Foss (FOSS, Silver Spring, MD, USA) and one NIRFlex
Buchi (Flawil, Switzerland) using a rectangular quartz cell (250 mL) (800–2500 nm). The
seven chemical properties analyzed include DM, NH4, N, P2O5, CaO, MgO, and K2O. DM,
initially at 40 ◦C, was oven dried at 103 ± 2 ◦C until it reached a constant weight. Total
NH4 and total N were measured by the Kjeldahl method of nitrogen analysis. P2O5, CaO,
MgO, and K2O, on the other hand, were measured by ICP (Element XR Thermo Scientific,
Waltham, MA, USA) of which only 158 out of 332 samples were analyzed. The descriptive
statistics of the different chemical components are summarized in Table 1 [22].

Samples were scanned in triplicate using the abovementioned spectrometers. Each
replicated measurement was obtained using the mean of 32 scans. The absorbance was
recorded using the equation: absorbance = log(1/reflectance). The final spectrum used in
the data analysis was generated using the mean of the triplicate measurements [22].

Table 1. Descriptive statistics of the chemical components of poultry and cattle manure in fresh-weight
basis (%) (n = number of samples, sd = standard deviation, min = minimum value, max = maxi-
mum value).

Chemicals n Mean Median sd Min Max

DM 332 37.285 27.885 20.063 11.255 82.480
NH4 332 0.262 0.095 0.276 0.001 1.086

N 332 1.369 0.672 1.093 0.255 4.152
P2O5 158 0.477 0.224 0.585 0.091 3.020
CaO 158 0.575 0.330 0.556 0.094 3.108
MgO 158 0.227 0.156 0.186 0.062 1.054
K2O 158 1.022 0.826 0.648 0.187 3.845

2.3. Data Preprocessing

The datasets, which are composed of NIR spectra and quantitative results (i.e., con-
centrations) from various chemical analyses, were split into 232 samples (for DM, NH4,
and N) and 110 (for P2O5, CaO, MgO, and K2O) for the training set, and 100 (for DM, NH4,
and N) and 48 (for P2O5, CaO, MgO, and K2O) for the test set in a stratified manner based
on the type of manure (cattle and poultry manure) so that each of the sets would have the
same distribution as the original dataset of cattle and poultry manure before splitting. The
rsample package version 1.0.0 in R was used in data splitting [23].

Both the training and test sets were standardized (mean = 0 and standard deviation = 1)
separately. The spectra in the training and test sets were further pretreated by Savitzky–
Golay smoothing with a differentiation order of 1, polynomial order of 3, window size of
11, and sampling interval of 2 using the prospectr package version 0.2.4 in R [24].

Resampling methods were done on the training set to help understand the effectiveness
of the models without touching the test set that we had set aside. Repeated v-fold (or
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k-fold) cross-validation was used in resampling the training set. The v-fold (or k-fold) cross-
validation process worked by further splitting the training set into an analysis set, with each
of the v sets containing 1—1/v of the training set (called the “folds”) and 1/v of the training
set was set aside for the assessment set. The analysis set was used for modeling, while the
assessment set was used to measure the performance of the model. The disadvantage of v-
fold (or k-fold) cross-validation is its noisy or high-variability characteristic, and gathering
more data helps reduce the noise, but because of the constraints and limitations of collecting
more data, cross validation resolves this issue by averaging more than the v statistics. Thus,
another fold generation technique is a repeated v-fold (or k-fold) cross-validation in which
the v-fold generation process was done R times to create R collections of v partitions, and
v × R statistics were used to find the average to estimate the performance of the model.
Considering the present size of the training set, a 5-repeat of 10-fold cross-validation was
used in this study. For instance, in this study, there were 232 observations (points) for
DM, NH4, and N in our training set. The training set was then randomly divided into
10 folds (sometimes called groups) of approximately equal size. Each k-1 (i.e., 9) fold was
used for an analysis set and the left out (i.e., 1) fold (i.e., 10% of 232) was used for the
assessment (testing) set. With the use of five repeats, there were five groups of 10 or a total
of 50 splits created.

Tuning is the process of determining the optimum values of the hyperparameters that
cannot be directly determined from the training data and were specified ahead of time. In
our study, we used the tuning parameters as shown on Table S1. The grid search method
used in this study was just a simple space-filling regular grid of value 100.

Throughout the course of this study, Savitzky–Golay signal filtering was used prior to
any data analysis. Savitzky–Golay is a popular smoothing technique based on local least
squares fitting of the data by polynomials [25] and can be presented as:

x·j =
1
N

k

∑
h=−k

ch

where x·j is the new value, N is a normalizing coefficient, k is the gap size on each side of
j, and ch are pre-computed coefficients that depend on the chosen polynomial order and
degree [26–28]. All data preprocessing was done on the training and test sets separately to
avoid information leakage. No other signal pretreatment methods were used after applying
the Savitzky–Golay signal preprocessing technique.

2.4. Individual Machine Learning and Stacked Regression Analyses

This study utilized 10 machine learning regression techniques, namely SVRLin, SVR-
Poly, SVRRad, LASSO, RIDGE, ENET, PLS, RF, RPART, and XGB. The results of the individ-
ual machine learning techniques were then collated using a stacked regression approach.
Details about each individual machine learning technique are provided below.

(i) SVR is a technique in which a model learns a variable’s importance for characterizing
the relationship between the input and output. It formulates an optimization problem
to learn a regression function that uses the input predictor variables and map these to
the output responses. The optimization is represented by using support vectors (i.e., a
small set of training data samples) where the optimization solution depends on the
number of support vectors instead on the dimension of the input data [26]. Linear
(SVRLin), polynomial (SVRPoly), and radial (SVRRad)-basis kernels were utilized in
this study. SVR for linear, polynomial, and radial-basis kernels was performed using
the ‘kernlab’ package version 0.9.30 in R [27,28].

(ii) LASSO regression aims to identify the variables and the corresponding regression
coefficients leading to a statistical model that minimizes the errors of prediction. This
is achieved by imposing a constraint on the model parameters, thus, shrinking the
regression coefficients toward zero [29].
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(iii) RIDGE is a popular regression method used to address the issue of collinearity
frequently encountered in multiple linear regression techniques [30]. It utilizes a ridge
estimator by maximizing the likelihood with a restriction, thus, improving the mean
square error [31].

(iv) ENET provides a bridge between LASSO and RIDGE, thereby improving the predic-
tion accuracy by shrinking some of the regression coefficients to approximately zero
as the strength of the penalty parameter increases [32,33]. LASSO, RIDGE, and ENET
were conducted using the ‘glmnet’ package version 4.1.2 in R [34,35].

(v) PLS is a data reduction technique that compresses a large number of measured
collinear variables into a few orthogonal latent variables (i.e., principal components).
The optimum number of latent variables to be used in the analysis is then determined
by minimizing the root mean square error (RMSE) between the predicted and observed
response variables [36]. PLS was fitted using the ‘mixOmics’ package version 6.17.26
in R [37]

(vi) RF builds a predictor ensemble using a set of decision trees that grow in randomly
selected subspaces of data [38]. The random sampling and ensemble strategies utilized
in this method enable it to achieve predictions and better generalizations [39]. The
‘random forest’ package version 4.7.1.1 in R was used for RF analysis [40].

(vii) RPART is a regression method often used for the prediction of binary outcomes that
avoids the assumptions of linearity [41]. It builds classification or regression models
of a very general structure using a two-step process; the resulting models can be
represented as binary trees. RPART was performed using the ‘rpart’ package version
4.1.16 in R [42]. RPART was performed using the ‘rpart’ package in R [42].

(viii) XGB is a highly effective and widely used machine learning technique that combines
multiple decision trees to create a more powerful model [43,44]. It builds trees in
a serial manner, where each tree tries to correct the mistake of the previous one.
Each tree can provide good predictions and, in the process, more and more trees are
added to iteratively improve the performance of the predictive model [44]. XGB was
conducted using the ‘xgboost’ package version 1.5.1.1 in R [45].

The R packages of the different models listed above were accessed using the R package
‘parsnip’ version 1.0.0 [46] from the ‘tidymodels’ ecosystem [47].’Parsnip’ provides a simple
interface to a different range of models in R, whether as core packages or external/separate
packages. It provides harmonization on the naming convention of arguments across related
models and decoupling of model configurations from the model implementation.

(ix) Stacked regression is an ensemble learning technique that collates the performance
of the abovementioned individual machine learning techniques to optimize model
performance [48]. The R package ‘stacks’ version 0.2.3 is part of the tidymodels
ecosystem and was used for stacked regression. Individual statistical models (e.g.,
support vector regression, linear regression (LASSO, RIDGE, and ENET), etc.) were
first defined and formed as candidate members (SVRLin1, SVRPoly1, SVRRad1, etc.)
of the ensemble (Level 1 models) with each having different parameter values or
model configurations in which all of them share the same resampling and repeated
k-fold cross-validation. The Level 1 models were then stacked together (data stack)
in a tibble format where the first column was the true outcome in the training set
and the rest of the columns were the predictions for each candidate member of the
ensemble. A regularized model (elastic net) was then fitted on each of the candidate
members’ predictions to figure out how they can be combined to predict the true
outcome (Level 2 modeling). In this stage, the stacking coefficients were determined
with non-zero values retained and became members of the model stack, which were
then trained on the full training set. The final model stack was then used to make the
final and ultimate predictions on the test set, which was set aside previously, and the
performance metrics were then determined (Figure 1).
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Figure 1. The visual outline of the steps in stack regression. The models were first defined in which
each Level 1 model has different parameter values. The models with different configurations were
then stacked together and a regularized model was then fitted on each of the candidate members
to determine which members have non-zero coefficients that are to be used for final and ultimate
predictions (SVRLin = support vector regression with linear kernel; SVRPoly = support vector regres-
sion with polynomial kernel; SVRRad = support vector regression with radial kernel; LASSO = least
absolute shrinkage and selection operator; RIDGE = ridge regression; ENET = elastic net regression;
PLS = partial least squares; RF = random forests; RPART = recursive partitioning and regression trees;
XGB = boosted trees) [48].

2.5. Comparative Analysis of the Individual Machine Learning Techniques and Stacked Regression

The performance of all machine learning techniques including that of the stacked
regression were both assessed in each of the chemical components in the training and
testing sets using the RMSE values, which can be calculated as [49]:

RMSE =

√
∑N

i=1
(
yi − y′i

)2

N

where y and y′ are the predicted and actual concentrations of the chemical constituents,
respectively, and N is the number of samples. The root mean square error of cross validation
(RMSECV) and the root mean square error of prediction (RMSEP) were both assessed for
the training and testing datasets, respectively, using freely available R packages for the
aforementioned individual regression techniques. We also assessed the coefficient of
determination (R2) for each of the chemical constituents in the training and testing datasets
for all machine learning techniques, as well as for that of the stacked regression. The F-test
was also used to compare the RMSE values of each individual regression technique at a 95%
level of significance. That is, to assess whether the two regression techniques are statistically
significantly different, a method was adapted from the previous manuscript published
by Payne and Wolfrum [50]. To do this, standard error (SE) values were first calculated
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between the two machine learning algorithms being compared (i.e., SE = RMSE2)—these
are the variance measures. The ratio of these two SE values (i.e., ratio = SE2/SE1) was then
determined ensuring a value greater than 1.0. We calculated the critical F-value using the
correct number of degrees of freedom (e.g., 231 for DM, NH4, and N; 109 for P2O5, CaO,
MgO, and K2O) with a probability confidence level of 0.05. The calculated ratio was then
compared with the F-value obtained at a 95% critical level of significance and using the
correct number of degrees of freedom, as mentioned. Critical F-value calculations were
performed using Free Statistics Calculators version 4.0 [51]. If the obtained ratio is less
than the critical F-value, RMSE values are not significantly different. Detailed calculations
comparing the ratio of the standard errors of the two different machine learning techniques
with that of the critical F-value are provided in Tables S4 and S5.

Another critical parameter used to assess the reliability of the developed statistical
model in this study is the ratio of performance to deviation (RPD), which can be expressed
as the ratio of the standard deviation to the standard error of prediction. RPD is a widely
used statistical parameter that has been commonly used by NIR scientists working on
agricultural products [52]. Model reliability was assessed using three different categories
including excellent, fair, and non-reliable for RPD > 2, 1.4 < RPD < 2; and RPD < 1.4,
respectively [53].

3. Results
3.1. Signal Pretreatment and Descriptive Statistics of the Chemical Components of Poultry and
Cattle Manure

A total of 332 fresh homogenized samples were utilized in the study, comprising of
196 cattle manure and 136 poultry manure, as previously indicated. All 332 samples were
tested for DM, NH4 and N, while 158 samples were tested for P2O5, CaO, MgO and K2O.
The unprocessed NIR spectra of the training and testing set, which plotted absorbance
versus wavelength (500–2500 nm) are shown in Figure 2. Savitzky-Golay smoothing was
applied for preprocessing to reduce the frequency noise while maintaining relevant spectral
information (Figure 3). Similar to the descriptive statistics for the training set (Table 2) and
testing set samples (Table 3), the descriptive statistics for the chemical components of the
manure samples in percent fresh-weight basis (Table 1) reveal a wide range of values for
each chemical constituent.
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Table 2. Descriptive statistics of the chemical components of poultry and cattle manure in fresh-
weight basis (%) of the 232 (for dry matter (DM), total ammonium nitrogen (NH4), and total nitrogen
(N)) and 110 (for P2O5, CaO, MgO, and K2O) samples for the training set. (n = number of samples,
sd = standard deviation, min = minimum value, max = maximum value.)

Chemicals n Mean Median sd Min Max

DM 232 38.035 28.972 20.340 12.690 81.990
NH4 232 0.262 0.091 0.277 0.001 0.968

N 232 1.384 0.675 1.092 0.311 4.152
P2O5 110 0.468 0.225 0.575 0.098 3.020
CaO 110 0.563 0.329 0.556 0.094 3.108
MgO 110 0.222 0.147 0.190 0.068 1.054
K2O 110 1.013 0.862 0.642 0.187 3.845

Table 3. Descriptive statistics of the chemical components of poultry and cattle manure in fresh-
weight basis (%) of the 100 (for dry matter (DM), total ammonium nitrogen (NH4), and total nitrogen
(N)) and 48 (for P2O5, Cao, MgO, and K2O) samples for the test set, which are then set aside for the
final arbitration on the performance of the different models. (n = number of samples, sd = standard
deviation, min = minimum value, max = maximum value.)

Chemicals n Mean Median sd Min Max

DM 100 35.546 27.240 19.396 11.255 82.480
NH4 100 0.262 0.105 0.276 0.001 1.086

N 100 1.334 0.663 1.099 0.255 3.650
P2O5 48 0.497 0.211 0.612 0.091 2.437
CaO 48 0.602 0.401 0.561 0.120 2.503
MgO 48 0.237 0.176 0.179 0.062 0.705
K2O 48 1.044 0.825 0.668 0.307 2.649
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3.2. Root Mean Square Error of Cross-Validation (RMSECV) and R2 Analyses of the Seven
Chemical Components of Fresh Homogenized Samples in the Training Set

Various SVR kernels including linear, polynomial, and radial outperformed all other
machine learning techniques in the training set for all chemical components (Tables 4
and 5). SVRLin performed optimally in MgO and K2O components (RMSECVMgO = 0.074%,
R2

MgO = 0.786, RMSECVK2O = 0.252%, R2
K2O = 0.820), most specifically using the RM-

SECV parameter. SVRPoly performed optimally well in DM (RMSECVDM = 4.543%,
R2

DM = 0.946). SVRRad, on the other hand, performed optimally in NH4, N, P2O5, and
CaO (RMSECVNH4 = 0.066%, R2

NH4 = 0.943, RMSECVN = 0.254%, R2
N = 0.946, RM-

SECVP2O5 = 0.176%, R2
P2O5 = 0.849, RMSECVCaO = 0.232%, R2

CaO = 0.779) (Tables 4 and 5).
Overall, SVRPoly (RMSECVaverage = 0.817%, R2

average = 0.851) and SVRRad
(RMSECVaverage = 0.819%, R2

average = 0.866) were the best-performing algorithms across all
components in the training set. Overall, results of our study show that SVRPoly is not sig-
nificantly different than that of the other variants of SVR (i.e., SVRLin and SVRRad), LASSO,
as well as ENET by comparing the RMSECV values. SVRPoly is not, however, significantly
different than that of RIDGE, PLS, RF, RPART, and XGB across all chemical components.

Table 4. Comparison of the root mean square error of cross validation (RMSECV) (% wet weight)
among the seven chemical components (i.e., dry matter (DM), total ammonium nitrogen (NH4), total
nitrogen (N), P2O5, CaO, MgO, and K2O) of the fresh homogenized samples using various machine
learning techniques (SVRLin = support vector regression with linear kernel; SVRPoly = support
vector regression with polynomial kernel; SVRRad = support vector regression with radial kernel;
LASSO = least absolute shrinkage and selection operator; RIDGE = ridge regression; ENET = elastic
net regression; PLS = partial least squares; RF = random forests; RPART = recursive partitioning and
regression trees; XGB = boosted trees). Best results are indicated in bold.

Algorithm DM NH4 N P2O5 CaO MgO K2O Average

SVRLin 5.461 0.077 0.291 0.198 0.300 0.074 0.252 0.950
SVRPoly 4.543 0.070 0.296 0.207 0.264 0.077 0.258 0.817
SVRRad 4.656 0.066 0.254 0.176 0.232 0.079 0.269 0.819
LASSO 5.930 0.087 0.315 0.218 0.313 0.090 0.283 1.034
RIDGE 10.189 0.128 0.536 0.289 0.364 0.108 0.624 1.748
ENET 5.928 0.087 0.315 0.218 0.312 0.089 0.284 1.033
PLS 6.787 0.093 0.387 0.256 0.352 0.106 0.296 1.182
RF 6.880 0.092 0.380 0.285 0.317 0.093 0.348 1.199

RPART 9.338 0.126 0.540 0.373 0.365 0.112 0.446 1.614
XGB 5.683 0.082 0.346 0.243 0.303 0.092 0.326 1.011

PLS, the traditionally used technique in the NIR analysis did not perform optimally
well across all seven chemical components in the training set (RMSECVaverage = 1.182%,
R2

average = 0.771) (Tables 4 and 5). RPART (RMSECVaverage = 1.614%, R2
average = 0.656) and

RIDGE (RMSECVaverage = 1.748%, R2
average = 0.736) were the least performing techniques in

the training set across all chemical components (Tables 4 and 5). SVRPoly is not significantly
different than that of SVRRad using the RMSECV values for the DM chemical constituent.
However, it was found that SVRPoly is significantly different than that of SVRLin and the
rest of the other machine learning algorithms in the same chemical component.

For NH4 and CaO, SVRRad is not significantly different than that of SVRPoly but is
significantly different than that of SVRLin and all other machine learning techniques. For
N, SVRRad is significantly different than that of all other algorithms.

As mentioned earlier, SVRRad is the most optimally performing algorithm for P2O5.
The SVRRad for this chemical component was found to be not significantly different than
that of SVRLin but is significantly different than that of the rest of the machine learning
algorithms. SVRLin is the most optimally performing machine learning technique for MgO
and was found to be not significantly different than that of SVRPoly and SVRRad but
is significantly different than that of the other machine learning algorithms. Similar to
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MgO, SVRLin was found to have garnered the most optimally performing algorithm in the
training set for K2O. This SVRLin for this chemical constituent is not significantly different
than that of the SVRPoly, SVRRad, LASSO, and ENET. However, it is significantly different
than that of RIDGE, PLS, RF, RPART, and XGB.

Table 5. Comparison of R2 in the training set among the seven chemical components: dry matter
(DM), total ammonium nitrogen (NH4), total nitrogen (N), P2O5, CaO, MgO, and K2O of the fresh ho-
mogenized samples using various machine learning techniques (SVRLin = support vector regression
with linear kernel; SVRPoly = support vector regression with polynomial kernel; SVRRad = support
vector regression with radial kernel; LASSO = least absolute shrinkage and selection operator; RIDGE
= ridge regression; ENET = elastic net regression; PLS = partial least squares; RF = random forests;
RPART = recursive partitioning and regression trees; XGB = boosted trees). Best results are indicated
in bold.

Algorithm DM NH4 N P2O5 CaO MgO K2O Average

SVRLin 0.923 0.922 0.930 0.818 0.661 0.786 0.820 0.837
SVRPoly 0.946 0.937 0.928 0.817 0.713 0.806 0.810 0.851
SVRRad 0.945 0.943 0.946 0.849 0.779 0.817 0.783 0.866
LASSO 0.910 0.900 0.918 0.796 0.652 0.743 0.776 0.814
RIDGE 0.795 0.813 0.801 0.748 0.590 0.684 0.720 0.736
ENET 0.910 0.901 0.918 0.797 0.653 0.748 0.775 0.815
PLS 0.885 0.891 0.879 0.733 0.586 0.675 0.749 0.771
RF 0.875 0.886 0.880 0.729 0.648 0.762 0.695 0.782

RPART 0.775 0.789 0.757 0.584 0.529 0.645 0.509 0.656
XGB 0.917 0.911 0.899 0.770 0.672 0.748 0.721 0.805

3.3. Root Mean Square Error of Prediction (RMSEP) and R2 Analyses of the Seven Chemical
Components of Fresh Homogenized Samples in the Testing Set

To independently assess the performance of the training set, statistical analyses of the
testing set data were performed. SVRRad performed optimally well as compared to the
other algorithms for the MgO chemical constituent (RMSEPMgO = 0.078%, R2

MgO = 0.837)
(Tables 6 and 7).

Stacked regression outperformed all other machine learning techniques in the DM,
NH4, N, P2O5, CaO, and K2O chemical constituents (RMSEPDM = 4.088%, R2

DM = 0.965,
RMSEPNH4 = 0.055%, R2

NH4 = 0.966, RMSEPN = 0.217%, R2
N = 0.965, RMSEPP2O5 = 0.269%,

R2
P2O5 = 0.875, RMSEPCaO = 0.309%, R2

CaO = 0.743, RMSEPK2O = 0.373%, R2
K2O = 0.736)

(Tables 6 and 7). For DM and NH4, stacked regression is significantly different than that
of all other machine learning algorithms using the RMSEP values of the aforementioned
algorithms. For N, on the other hand, stacked regression was found to be not significantly
different than that of SVRRad, but is significantly different than that of all the other
machine learning approaches. For P2O5 and MgO, stacked regression was found to be not
significantly different than that of SVR kernels, LASSO, ENET, and PLS, but is significantly
different than that of RIDGE, RF, RPART, and XGB using their respective RMSEP values.

For CaO, on the other hand, stacked regression, which is the best-performing tech-
nique, was found to be not significantly different than that of SVRLin, SVRRad, LASSO,
ENET, PLS, RF, and RPART, but is significantly different than that of SVRPoly, RIDGE, and
XGB. Lastly, using K2O and across all chemical components, stacked regression was found
to be not significantly different than that of all other machine learning algorithms. Using
the developed calibration model from the stacked regression, the predicted vs. measured
concentrations of the chemical constituents show good linearity in the test set (Figure 4a–g).
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Table 6. Comparison of the root mean square error of prediction (RMSEP) (% wet weight) among
the seven chemical components: dry matter (DM), total ammonium nitrogen (NH4), total nitrogen
(N), P2O5, CaO, MgO, and K2O of the fresh homogenized samples using various machine learning
techniques (SVRLin = support vector regression with linear kernel; SVRPoly = support vector regres-
sion with polynomial kernel; SVRRad = support vector regression with radial kernel; LASSO = least
absolute shrinkage and selection operator; RIDGE = ridge regression; ENET = elastic net regression;
PLS = partial least squares; RF = random forests; RPART = recursive partitioning and regression trees;
XGB = boosted trees). Best results are indicated in bold.

Algorithm DM NH4 N P2O5 CaO MgO K2O Average

SVRLin 6.909 0.075 0.343 0.306 0.322 0.096 0.399 1.207
SVRPoly 5.158 0.078 0.346 0.307 0.410 0.091 0.398 0.970
SVRRad 5.005 0.091 0.252 0.275 0.373 0.078 0.374 0.921
LASSO 7.154 0.082 0.368 0.317 0.335 0.091 0.412 1.251
RIDGE 9.307 0.102 0.505 0.390 0.394 0.107 0.472 1.611
ENET 7.103 0.083 0.370 0.317 0.335 0.090 0.412 1.244
PLS 8.647 0.097 0.449 0.320 0.349 0.092 0.441 1.485
RF 5.987 0.091 0.339 0.449 0.380 0.121 0.471 1.120

RPART 11.284 0.130 0.566 0.507 0.377 0.145 0.466 1.925
XGB 5.642 0.082 0.279 0.458 0.407 0.133 0.414 1.059

Stack Reg 4.088 0.055 0.217 0.269 0.309 0.092 0.373 0.772

Table 7. Comparison of the R2 in the testing set among the seven chemical components: dry
matter (DM), total ammonium nitrogen (NH4), total nitrogen (N), P2O5, CaO, MgO, and K2O of
the fresh homogenized samples using various machine learning techniques (SVRLin = support
vector regression with linear kernel; SVRPoly = support vector regression with polynomial kernel;
SVRRad = support vector regression with radial kernel; LASSO = least absolute shrinkage and
selection operator; RIDGE = ridge regression; ENET = elastic net regression; PLS = partial least
squares; RF = random forests; RPART = recursive partitioning and regression trees; XGB = boosted
trees). Best results are indicated in bold.

Algorithm DM NH4 N P2O5 CaO MgO K2O Average

SVRLin 0.919 0.944 0.928 0.770 0.673 0.716 0.656 0.801
SVRPoly 0.948 0.946 0.924 0.772 0.470 0.766 0.658 0.783
SVRRad 0.950 0.896 0.951 0.852 0.564 0.837 0.689 0.820
LASSO 0.892 0.924 0.900 0.781 0.649 0.761 0.624 0.790
RIDGE 0.812 0.868 0.808 0.660 0.527 0.678 0.517 0.696
ENET 0.894 0.923 0.899 0.781 0.648 0.771 0.624 0.792
PLS 0.839 0.894 0.851 0.742 0.611 0.748 0.557 0.749
RF 0.915 0.897 0.913 0.568 0.676 0.709 0.677 0.765

RPART 0.683 0.787 0.752 0.351 0.594 0.433 0.539 0.591
XGB 0.924 0.916 0.937 0.658 0.552 0.612 0.729 0.761

Stack Reg 0.965 0.966 0.965 0.875 0.743 0.792 0.736 0.863
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Figure 4. Predicted vs. measured concentrations of chemical constituents expressed as % wet weight
of the fresh cattle and poultry manure for (a) dry matter, (b) total ammonium nitrogen (NH4), (c) total
nitrogen (N), (d) P2O5, (e) CaO, (f) MgO, and (g) K2O using the stacked regression ensemble approach.
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It can be observed that comparing the experimentally determined value of K2O in
the testing set (i.e., 1.044 % wt) (Table 3) with that of RMSEPK2O by stacked regression
(i.e., 0.373 % wt) (Table 6) generated ~36% fluctuations in the K2O. Disparities in the
RMSEP values relative to the mean value of the experimentally determined K2O, may
be primarily due to the skewed distribution of the K2O chemical measurement results
(Figure S10e), as well as the small sample size in the testing set (n = 48). Such disparities in
the results could be further improved by taking K2O chemical measurements spanning wide
concentration values, as well as increasing the number of samples in the testing set analyses,
particularly the poultry manure samples. It should also be noted that during the splitting
of the data into training and testing sets, we took into serious consideration an equal
distribution of cattle and poultry manure samples in the aforementioned datasets to avoid
biases. Such random stratification may lead to a skewed distribution of the K2O chemical
measurements leading to fluctuations in the RMSEP values relative to the mean value of
the experimentally generated K2O chemical results. This is an inherent disadvantage of
data splitting. That is, the predictive accuracy of the model is primarily determined by
the function of the resulting sample size as a result of data splitting [54]. Fluctuations in
the RMSEP values relative to the mean values of the experimentally determined chemical
results for the other components (e.g., P2O5, CaO, and MgO) may probably be explained by
the same aforementioned justification (Figure S10d,f,g). It is also worth further exploring
and considering the possible limitations of an ICP for the analysis of P2O5, CaO, MgO, and
K2O that might lead to the abovementioned disparities in the results. Common limitations
of an ICP (i.e., ICP-OES in particular) may include sample drift, poor precision, non-ideal
limit of detection, and inaccurate identification that may limit accurate and precise analysis
of the analyte of interest [55–58]. ICP-MS, on the other hand, may suffer from severe matrix
effects [59].

While a generally acceptable linearity (R2) can be observed between the stacked
regression predicted vs. measured concentrations for most of the chemical constituents,
a lower R2 value (i.e., 0.743) for the CaO component was obtained (Table 7). This may
be attributed to several factors such as the skewed distribution of the CaO chemical
measurement values (Figure S10d), as well as the small sample size in the testing set
(n = 48). Thus, as mentioned earlier, this limitation can be improved by increasing the
sample size of the testing set data and also expanding the concentration matrices to include
a wide range of CaO measured values [54–59].

3.4. Ratio of Performance to Deviation (RPD) Analyses of the Testing Test

Based on the RPD analyses, stacked regression generated excellent models for DM,
NH4, N, P2O5, and overall across all seven chemical constituents in the testing set
(RPDDM = 4.745, RPDNH4 = 5.002, RPDN = 5.062, RPDP2O5 = 2.274, RPDaverage = 3.232)
(Table 8). Fair models were obtained, on the other hand, for CaO and K2O using stacked
regression (RPDCaO = 1.814, RPDK2O = 1.788). A fair model was also obtained for MgO
using ENET (RPDMgO = 1.988). Overall, results using the RPD analyses show that the
generated models in the testing set across all chemical components and machine learning
techniques can be categorized as either excellent or fair with the stacked regression per-
forming exceptionally robust across all chemical components (RPDaverage = 3.232) (Table 8).
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Table 8. Comparison of the ratio of performance to deviation (RPD) in the testing set among the
seven chemical components: dry matter (DM), total ammonium nitrogen (NH4), total nitrogen (N),
P2O5, CaO, MgO and K2O of the fresh homogenized samples using various machine learning tech-
niques (SVRLin = support vector regression with linear kernel; SVRPoly = support vector regression
with polynomial kernel; SVRRad = support vector regression with radial kernel; LASSO = least
absolute shrinkage and selection operator; RIDGE = ridge regression; ENET = elastic net regression;
PLS = partial least squares; RF = random forests; RPART = recursive partitioning and regression trees;
XGB = boosted trees). Best results are indicated in bold.

Algorithm DM NH4 N P2O5 CaO MgO K2O Average

SVRLin 2.807 3.545 3.202 2.000 1.745 1.855 1.674 2.404
SVRPoly 3.761 3.545 3.175 1.993 1.370 1.965 1.676 2.498
SVRRad 3.875 3.042 4.355 2.223 1.503 2.293 1.783 2.725
LASSO 2.711 3.357 2.985 1.931 1.677 1.962 1.621 2.321
RIDGE 2.084 2.704 2.175 1.570 1.423 1.664 1.415 1.862
ENET 2.731 3.348 2.973 1.930 1.675 1.988 1.620 2.324
PLS 2.243 2.841 2.450 1.913 1.609 1.938 1.514 2.073
RF 3.240 3.054 3.241 1.363 1.475 1.478 1.417 2.181

RPART 1.719 2.124 1.942 1.208 1.487 1.236 1.432 1.593
XGB 3.438 3.357 3.943 1.336 1.380 1.347 1.612 2.345

Stack Reg 4.745 5.002 5.062 2.274 1.814 1.938 1.788 3.232

4. Discussion

No studies have comprehensively investigated and compared the role of various ma-
chine learning techniques including stacked regression for the simultaneous quantification
of DM, NH4, N, P2O5, CaO, MgO, and K2O contents in both cattle and poultry manure
collected from livestock production. While previous studies have traditionally utilized
a PLS approach for the analysis of the abovementioned chemical constituents using NIR
systems [14,60,61], alternative machine learning algorithms may provide better and more
accurate results.

Since the optimization of results for this study is highly dependent on the choice
of the hyperparameters used, a rigorous and exhaustive grid search approach was used
covering an extensive range of values (Table S1). Once hyperparameter values were
optimized (Table S2), we then tested and compared the performance of various machine
learning techniques.

As shown in this study, PLS, the traditionally used technique in NIR analysis, did
not perform fairly well as compared to stacking various machine learning techniques
(Tables 6–8). While PLS offers several advantages including the ability to handle missing
data and intercorrelated predictors, as well as having a robust calibration model, it offers
several disadvantages such as difficulty in interpreting loadings of independent variables,
as well as that the learned projections are the results of linear combinations of all vari-
ables in the independent and dependent datasets, making it challenging to interpret the
solutions [62–64].

In general, a large number of samples are required to develop a robust calibration
model in PLS [65]. In one study, however, a sample size of 100 may be sufficient to
achieve acceptable power for moderate effect sizes [66]. While PLS generated an excellent
model reliability across all seven chemical constituents (RPDaverage = 2.073) (Table 8), its
performance is less superior as compared to the stacked regression technique.

Models with different hyperparameters or configurations were ranked on the basis of
their optimum R2 and RMSE values. That is, models (i.e., machine learning algorithms)
with the lowest RMSE and highest R2 values were highly ranked (Figures S1–S7). As was
evident, PLS was not the top-performing algorithm for each of the chemical components in
the workflow rank. The top-performing models were not guaranteed to be included in the
Level 2 modeling.
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In the stacking procedure implemented in this study, all these models with their
corresponding prediction values were stacked together, and a Level 2 model via elastic net
was fitted on each of the Level 1 model that became the predictors; stacking coefficients or
weights were then determined for each stack member where the only non-zero coefficients
were retained to be used for final prediction on the test set (Table S3).

Stacked regression is a very powerful approach that has been successfully applied
to a wide array of fields including anticancer drug response prediction, prediction of
photosynthetic capacities, image quality assessment, and mortality forecasting, among
others [67–70]. The aforementioned technique has also shown its superior performance
in several agricultural applications such as in the estimation of the leaf area index, wild
blueberry yield prediction, and crop yield prediction, among others [71–73]. However, its
particular application in the simultaneous prediction of these seven important chemical
components in fresh cattle and poultry manure has not been studied. This study has shown
the robust performance of this approach as compared to PLS and other traditionally used
machine learning techniques such as SVR (linear, polynomial, and radial), LASSO, RIDGE,
ENET, RF, RPART, and XGB. Future studies may consider the effects of various signal
preprocessing techniques, as well as wavelength selection strategies for each algorithm
prior to stacked regression.

5. Conclusions

Machine learning techniques have proven to be reliable for qualitative and quantitative
NIR analysis in a wide range of industries, including agriculture. However, PLS remains
the most widely utilized for quantitative prediction of specific sample features. In addition,
investigations into the composition of manure have been mostly exclusive to specific
components. The results of the current study demonstrate the effectiveness of stacked
regression for the simultaneous determination of seven manure chemical components. The
technique’s prediction results based on the RPD, RMSEP, and R2 values were evaluated
as excellent and outperformed several other machine learning techniques including PLS.
Therefore, our study supports the use of stacked regression analysis as a stand-alone
technique for analyzing poultry and cattle manure, exhibiting proof-of-principle and
superior features amenable to machine learning.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/chemosensors10100410/s1: Figure S1: Workflow rank of the
machine learning technique used in the dry matter analysis for the stacked regression; Figure S2:
Workflow rank of the machine learning technique used in the total ammonium nitrogen (NH4)
analysis for the stacked regression; Figure S3: Workflow rank of the machine learning technique used
in the total nitrogen (N) analysis for the stacked regression; Figure S4: Workflow rank of the machine
learning technique used in the P2O5 analysis for the stacked regression; Figure S5: Workflow rank
of the machine learning technique used in the CaO analysis for the stacked regression; Figure S6:
Workflow rank of the machine learning technique used in the MgO analysis for the stacked regression;
Figure S7: Workflow rank of the machine learning technique used in the K2O analysis for the stacked
regression; Figure S8: Histograms for the 332 samples; Figure S9: Histograms for the 232 samples;
Figure S10: Histograms for the 110 samples; Table S1: Ranges of hyperparameters used in tuning of
best results for various machine learning techniques. A space-filling design with a grid number of 100
is used. There were 100 equally spaced values between (including) each hyperparameter’s minimum
and maximum values that were used for tuning. For hyperparameters that are meaningful only when
the values are integers, i.e., the latent variable (LV) in partial least squares (PLS), non-integer values
are just skipped during tuning; Table S2: Optimized parameters obtained from different machine
learning models; Table S3: The top 10 (or 7) highest weighted (stacking coefficient) members of a
stacked ensemble of different models with non-zero coefficients for each of the chemical contents:
dry matter (DM), total ammonium nitrogen (NH4), total nitrogen (N), phosphorus pentoxide (P2O5),
calcium oxide (CaO), magnesium oxide (MgO), and potassium oxide (K2O); Table S4: Statistical
significance table that compares the ratio of the standard errors between two algorithms with that of
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the critical F-value in the training set; Table S5: Statistical significance table that compares the ratio of
the standard errors between two algorithms with that of the critical F-value in the testing set.
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