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Abstract: This paper considers scheduling of surgical operations across multiple operating rooms
subject to the limited availability of anaesthetists. The objective is to construct a feasible operations
schedule that has the minimum makespan, i.e., the completion time of all operations. We abstract
the problem into a theoretical server scheduling problem and formulate it in a mathematical form
by proposing an integer programming model. Due to the intractability of its computing time, we
circumvent the exact approaches and develop two approximation methods. Then, the steepest
descent search is adopted for improving the solutions. Computational study suggests that the
proposed methods can produce quality solutions in a few seconds.

Keywords: anaesthesia scheduling; makespan; integer programming; heuristic algorithm

1. Introduction

Medical services in Taiwan are highly accessible with a high coverage of 99% of Na-
tional Health Insurance. Hospital operations are also increasingly competitive. Healthcare
management aims to streamline technical and administrative processes for improving
efficiency, productivity, and quality of the healthcare institutions. Operating theaters are
one of the major resources that need to be efficiently managed because operating rooms
are a type of high-cost units as well as one of the main sources of revenue [1]. Hospitals
perform daily operations of operating theaters under the availability of personnel, space,
and equipment. One of the most important issues of such management is seeking effective
scheduling for maximizing the utilization rate subject to technical, safety, and quality con-
straints. Scheduling in operating rooms has been receiving considerable research attention
for decades (See for instances: Rahimi and Gandomi [1]; Gur and Eren [2], Pinedo [3];
Jung, Kim, and Kim [4]). There is a wide spectrum of research articles on operating room
scheduling problems. In general, such settings are coined as scheduling problems subject
to the constraints of various types of resources (Cardoen, Demeulemeester, and Belie̋n [5],
Lu, Nakao, Shen, and Zhao [6]). We refer the reader to Rahimi and Gandomi [1] for a
state-of-the-art review on this subject.

To improve efficiency, some hospitals adopt lean methods or lean thinking approaches
to streamline processes, eliminate unnecessary steps, and enhance operational performance
and patients’ satisfaction [7–9]. This study focuses on another direction in which the
operations management issues are investigated through mathematical models of resource-
constrained project management and scheduling. Xiang, Yin, and Lim [10] considered
the scheduling problem in three-stage elective surgery cases involving multiple resources.
The major feature of their model lies in the heterogeneous resource requirements for differ-
ent stages, including pre-operative stage, peri-operative stage, and post-operative, of the
surgeries to be scheduled. Belkhamsaa, Jarbouib, and Masmoudi [11] similarly considered
the three-stage multiple-resource scenarios for comprehensive scheduling of selective pa-
tient surgeries. Dios, Molina-Pariente, Fern, ez-ViagasAndrade-Pineda, and Framinan [12]
developed a decision support system for a 1400-bed, 40-room hospitals. Constraints includ-
ing resource capacities, time windows, forbidden rooms, and maximum number of rooms
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a surgeon can attend in a shift. Short-term decisions, medium-term decisions, and manual
modifications are provided. Abedinia, Lia, and Yea [13] focused on the blocking situations
caused by the limited availability of downstream resources such as intensive care units
and post anaesthesia care units. The resource constraints considered by Wang, Meskens,
Duvivier [14] are due to personnel characteristics, like affinity between team members and
team compositions. Vali-Siar, Gholami, and Ramezanian [15] considered a more general
model that involves multiple resources within multiple (5) stages. The addressed resources
include personnel, equipment, and beds (pre-operative holding unit, recovery unit, ward,
and intensive care unit). This paper singles out the issue of anaesthesia to highlight the
availability of anaesthetists and the feature that an anaesthetist is not necessarily present
for the whole session of a surgery. We also note that even the singled-out problem is
computationally hard to solve.

As indicated by Gur and Eren [2], operations research or quantitative approaches,
either deterministic or stochastic, have been deployed to formulate and tackle various opti-
mization issues in operating rooms. A few recent works are introduced. Lin and Chou [16]
proposed a hybrid genetic algorithm for minimizing total operating cost that includes the
cost for unused idle time and the overtime cost. The recent work Lin and Li [17] designed
another meta-heuristic artificial bee colony for minimizing under-utilization waste. Two
heuristics based on the shortest processing time first (SPT) rule and the earliest due date
(EDD) rule are also applied for computational comparison. Xiang, Yin, and Lim [10] for-
mulated an integer programming model and proposed an ACO algorithm based upon
a two-level graph, in which the outer level describes the precedence relations among
the surgeries and the inner level describe the whole resources for covering the surgeries.
The proposed ACO algorithm is tested through a simulation platform with a comparison
with the first-in-first-out scheduling policy. González, Vellasco, and Figueiredo Abedinia,
Lia, and Yea [13] formulated an integer programming model for minimizing the likelihood
of blocking at the post-surgery stage. For the three-stage comprehensive scheduling prob-
lem, Belkhamsaa, Jarbouib, and Masmoudi [11] designed an iterative local search and a
hybrid genetic algorithm, which are appraised through real workday benchmark instances.
Computational statistics show that their algorithms attained significant reductions in the
makespan and the total idle time. In the real application formulated in Vali-Siar, Gholami,
and Ramezanian [15], durations of surgery and recovery are uncertain. To hedge against
the uncertainty, they deployed a robust optimization model rather than assuming proba-
bilistic distributions of the durations. A constructive heuristic and a genetic algorithm are
developed to provide quality schedules. Ref. [18] proposed quantum-inspired evolutionary
algorithm for scheduling selective surgical operations to minimize the time for completing
all operations and the number of operations out of term. Gür, Eren and Alakaş [19] used
integrated goal programming and constraint programming methods to minimize the cost
of operating room units, where the cost is measured in negative or positive deviations from
the total available time of each room unit in certain time zones. Comprehensive data sets
from a state hospital are tested to appraise the performance of the proposed methods under
different scenarios. Wang, Meskens, and Duvivier [14] used real data to compare two
widely used approaches, integer programming and constraint programming. They found
that the integer programming model outperforms for weighted sum objectives, while the
constraint programming model has a better performance for the throughput (makespan)
objective function. Wang, Li, Chu, and Tsui [20] decomposed the decisions of operating
room management into surgery-room allocation with assistant surgeon assignment and
surgery scheduling. The objective function of the first stage include room cost and assis-
tant surgeon cost, and the second stage seeks to minimize personnel waiting time cost
and overtime cost. They designed a bound-based algorithm that was test through real
data collected from 2706 thoracic surgeries. Roshanaei, Luong, Aleman, and Urbach [21]
discusses macro decisions across collaborating hospitals and micro decisions within each
hospital. They formulated the decision issues into nonlinear programs and deployed
various reformulation-linearization techniques to form three mathematical models. Zhang,
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Dridi, and El Moudni [22] also considered the capacity constraints of the downstream
intensive care unit. Uncertainty of surgical and recovery durations render a stochastic
programming model, which was then transformed into a deterministic one and handled
by a column generation approach.

In this paper, we investigate a scheduling problem of anaesthesia operations in op-
erating rooms. At present, anaesthetists are not widely available, especially in small or
medium-size hospitals, in some countries. Some anaesthesia operations are performed
by accredited anaesthesia nurses. Therefore, we single out the scheduling issues of anaes-
thesia operations as a first introduction of such limited availability. Decisions of server
scheduling have three folds: assigning jobs to machines, sequencing jobs on each machines,
and determining the starting time of each job on each machine. The model considered in
this paper involves the last two, assuming that job-machine (operation-room) assignment
is settled a priori. The assumption is made from the base that it is not uncommon to have
an operation-room assignment in advance due to eligibility issues, especially when special
equipment and tools are required. We align the mathematical model of server scheduling
and the anaesthesia operations scheduling problem such that the application scenario
has its theoretical ground and the mathematical model is associated with more realistic
applications. To the best of our knowledge, there are models and algorithms proposed for
handling all three decisions simultaneously, or only the last timing decision.

The rest of this paper is organized as follows. Section 2 presents the formal statements
of the studied problem in the context of machine scheduling. In Section 3, we formulate
the problem into an integer programming model. Due to the computational intractability,
we develop two heuristic methods for produce approximate schedules in Section 4. Then,
a steepest descent search is adopted for improving the solutions. Computational study is
presented in Section 5 to appraise the performances of the proposed resolution approaches.
We conclude the paper and suggest future research issues in Section 6.

2. Problem Statements

For convenience in description, three operating rooms are considered as an example.
The problem, model, and solution algorithms can be extended for more rooms or more
anaesthetists. The problem is formerly defined as follows. There are three operating
rooms, each k ∈ {1, 2, 3} of which has a set of nk operations Rk = {1, 2, . . . , nk} assigned
to exercise. Each operation j consists of two parts, anaesthesia operation and surgical
operation. The required time lengths are denoted by sj and pj, respectively. Due to
limited availability of resource, only a single anaesthetist is available for carrying out all
anaesthesia operations across the three rooms. In other words, at any time instant, no
two or more anaesthesia operations can be operated simultaneously. All parameters are
assumed to be deterministic, integral, and known a priori. The problem is to determine
a feasible anaesthesia schedule that has a minimum makespan, i.e., all operations are
finished in the shortest time. To illustrate the problem definition, we consider the following
numerical example.

Example 1. Each of the three operating rooms has two operations to perform.

• Room 1 has two operations R1 = {1, 2};
• Room 2 has two operations R2 = {3, 4};
• Room 3 has two operations R3 = {5, 6}.

Their processing lengths of anaesthesia operations and surgical operations are
shown below:

Operations 1 2 3 4 5 6

sj 3 2 3 1 2 2
pj 4 3 5 2 4 4
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We consider two example anaesthesia schedules (1, 3, 5, 2, 4, 6) and (5, 3, 1, 6, 4, 2).
Their Gantt charts are depicted in Figure 1. Although anaesthesia time s1 is longer than
those of s3 and s5 and render two other rooms longer initial waiting times, the final time
point in schedule (1, 3, 5, 2, 4, 6) is only 17, shorter than the makespan 19 of the other
schedule (5, 3, 1, 6, 4, 2).
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Figure 1. Two example schedules.

The abstract model could be considered as a variant of server scheduling on parallel
machines, which was first proposed and investigated by Kravchenko and Werner [23].
In the model, two parallel machines are available for processing a set of jobs, each of
which consists of two parts, setup and processing. Any machine can process a job at a
time, and two two parts of a job should be processed consecutively on the same machine,
i.e., interruptions and migrations to another machine is not permitted. All setups can be
performed only by a single server, or a skilled technician. In the model, the decisions include
dispatching all jobs onto the machines, sequencing the jobs on each machine, and then
determining the starting time of each job on each machine. Limited availability of the skilled
technician restricts the setups on different machines from being overlapped at any time.
A similar scheduling setting is due to the several application contexts addressed in [24–26].
They consider scheduling models that consider machines the primary resources and require
an assortment of other renewable resources like hoister and skilled worker. Operations
or jobs are preemptible, i.e., the jobs are resumable after interruptions. A major difference
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about operation interruption is that server scheduling requires that setup (anaesthesia) and
processing (surgical operation) must be continuous without an inserted idle time.

Werner and Kravchenko [27] showed that to minimize the makespan is NP-hard, even
if there are only two machines and all setups take a unit of time. Hasani, Kravchenko
and Werner [28] solved the problem by proposing mixed integer programs based on two
different block models. Inspired by the application of pilot training program scheduling,
Cheng, Krachenkov, and Lin [29] considers the model where preemptions are allowed.
Setups and operations can be split into different numbers of pieces with the applications
in pilot training. The training courses of a trainee consist of two parts, the first part must
be attended with a coach and the second part can be carried out independently by the
training. Both parts are divided into 30-min or 60-min sessions. Hong [30] considered
scheduling issues in multiple operating rooms with eligibility constraints, i.e., assignment
of surgical operations to operating room takes into account equipments sufficiency and
technical conditions. Heuristics based on the least-load room first was deployed to produce
approximate schedules. Cheng, Kravchenko, and Lin [31] considered a specific model
in which the decisions of job assignment and job sequencing are already resolved and
given a priori. The case with two machines is solvable by a polynomial-time dynamic
programming algorithm. It is interesting that the problem becomes strongly NP-hard when
there is an arbitrary number of machines. Cheng, Kravchenko, and Lin [32] further showed
that the problem remains NP-hard if there are three machines and designed a pseudo-
polynomial time algorithm for the case with a constant number of machines. The problem
of anaesthesia scheduling considered in this paper reflects the variant in which only job
assignment is given to three machines. We need to determine a sequence of jobs and start
times of jobs simultaneously on each machine, confining to the non-overlap constraint
about setups across all machines. The problem is also intractable to solve.

3. Mixed Integer Programming Model

The model is formulated on the decisions that if the setup of a job precedes that of
another job. Define binary variables xij = 1, if job i precedes job j; 0, otherwise. Denote
tj the start time of operation j. Then, the completion time of operation j is given as
Cj = tj + sj + pj. We want to minimize the makespan

MIP: Minimize Cmax (1)

subject to a set of constraints as given below.
For any two operations i, j ∈ Rk of the same room, where k ∈ {1, 2, 3}, we have

xij + xji = 1, (2)

tj ≥ ti + si + pi + M(xij − 1), (3)

and
ti ≥ tj + sj + pj + M(xji − 1), (4)

Constraints (2) enforce the disjoint choices about either i precedes j or j precedes i.
Constraints (3,4) define the start time of each operation. If operation i indeed precedes
operation j, i.e., xij = 1, then tj ≥ ti + si + pi confining that the start time of anaesthesia
j is no less than the completion time of operation i. Also, we have xji = 0, which makes
Constraints (4) true, nullifying the binding effects of the constraints. The case of xji = 1 is
discussed in symmetric way.

For operations i ∈ Rk1 and j ∈ Rk2 with k1 6= k2, we note the flexibility for overlapping
the anaesthesia operation of a room with the surgical operation of another room. The above
set of constraints are adapted as:

xij + xji = 1, (5)

tj ≥ ti + si + M(xij − 1), (6)
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and
ti ≥ tj + sj + M(xji − 1), (7)

The makespan is confined by the completion of any operation j in any room:

Cmax ≥ tj + sj + pj, ∀j ∈ R1 ∪ R2 ∪ R3; (8)

Ranges of decision variables and auxiliary variables are defined:

xij ∈ {0, 1}, ∀i 6= j; (9)

tj ≥ 0, ∀j ∈ R1 ∪ R2 ∪ R3. (10)

The studied problem is thus defined by Equation (1) through Equation (10) as model MIP.
In some application scenarios, the sequence of operations in each room is already

determined. We call the model MIP2. The problem at the first glance seems to be much
simplified. Unfortunately, the decision problem has been proved to be computationally
challenging by Cheng et al. (2017). The provisions of fixed sequences are realized in the
following constraints.

xi,j = 1, ∀i < j ∈ Rk, k = 1, 2, 3. (11)

For j < j′ ∈ Rk1 and i ∈ Rk2 with k1 6= k2, if xij = 1 then we have xij′ = 1. The logic is
described as:

xi,j ≤ xij′ , ∀j < j′ ∈ Rk1 , i ∈ Rk2 , k1 6= k2. (12)

Model MIP2 is thus defined by Equation (1) through Equation (12).

4. Heuristic Algorithms

Since MIP and MIP2 are both computationally intractable. However, the decision
time is usually limited. Therefore, in this section, we design heuristic algorithms to produce
satisfactory schedules in a timely manner to reflect practical demands.

A basic heuristic is focused on reducing idle times that are resulted in overlapped
anaesthesia operations. The first approach is to re-arrange the anaesthesia operations
across all rooms in non-decreasing order of their lengths sj. Break ties by arranging the
operations in non-decreasing order of surgical operation lengths pj. Then, each operation is
assigned one by one to its room. In other words, the operation with minimum anaesthesia
duration has the priority. To describe the heuristics, we define Tk,1 as the time point of the
completion of the last anaesthesia operation on room k. Similarly, Tk,2 is the time point of the
completion of the last surgical operation on room k. Note that the difference between Tk,2 and
Tk,1 is the length of the last surgical operation. The steps of our SPT-based heuristic is given
in Algorithm 1. An anaesthesia operation can start only if its room is not occupied and the
anaesthesia operations of two other rooms are finished. This is prescribed in Line 5.

Algorithm 1: SPT-based heuristic

1 Re-index the jobs of R1 ∪ R2 ∪ R3 such that s1 ≤ s2 ≤ · · · ≤ sn;
2 Let Tk,1 = Tk,2 = 0 for k = 1, 2, 3;
3 for j = 1 to n do
4 Find the room k∗ that operation j belongs to;
5 start = max{Tk∗ ,2, maxk 6=k∗{Tk,1}};
6 Tk∗ ,1 = start + sj;
7 Tk∗ ,2 = Tk∗ ,1 + pj;

8 Cmax = maxk=1,2,3{Tk,2};
9 Return Cmax and Stop.

The second approach is to let the least loaded room have the priority to perform its
next shortest anaesthesia operation. Algorithm 2 outlines the scheduling steps. To avoid
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overlapped anaesthesia operations, the newly assigned anaesthesia operation should
follow the last anaesthesia operations on two other rooms. This requirement is reflected in
maxk 6=k∗{Tk,1} of Line 7.

Algorithm 2: Least-load-based heuristic

1 Re-index the jobs of Rk, k ∈ {1, 2, 3} such that s1 ≤ s2 ≤ · · · ≤ snk ;
2 Let sn1+1 = sn2+1 = sn1+1 = ∞;
3 Let `1 = `2 = `3 = 1;
4 Let Tk,1 = Tk,2 = 0 for k = 1, 2, 3;
5 for j = 1 to n do
6 Find the room k∗ that satisfies Tk∗ ,2 = mink=1,2,3{Tk,2};
7 start = max{Tk∗ ,2, maxk 6=k∗{Tk,1}};
8 Tk∗ ,1 = start + s`k∗ ;
9 Tk,2 = Tk,1 + pj;

10 `k∗ = `k∗ + 1;

11 Cmax = maxk=1,2,3{Tk,2};
12 Return Cmax and Stop.

The above two heuristic algorithms assigns operations to rooms from different aspects.
Preliminary computational study suggests that the elapsed run times are negligible, mean-
ing that there is room allowing further improvements. Since availability of the anaesthetist
is the major concern in scheduling, a plan is intrinsically represented as a permutation of
all anaesthesia operations. Therefore, we endeavour to swap operations to see if better
schedules are attainable. The steepest descent method is applied, see Algorithm 3. Given
a sequence, we enumerate all possible swaps and take the best one, i.e., resulting in the
largest reduction in the makespan (Line 9). The procedure iterates the improvement process
until no more reduction is possible (Lines 15 and 16).

Algorithm 3: Steepest descent improvement

Data: σ = (σ1, σ2, . . . , σn), a sequence of all anaesthesia operations
1 Let improved = 1;
2 repeat
3 best_i = best_j = 0;
4 best_Cmax = ∞;
5 for i = 1 to n− 1 do
6 for j = i + 1 to n do
7 Derive σ′ from σ by swapping σi and σj;
8 if Cmax(σ′) < best_Cmax then
9 best_Cmax = Cmax(σ′);

10 best_i = i;
11 best_j = j;

12 if best_Cmax < Cmax(σ) then
13 Update σ by swapping σbest_i with σbest_j;
14 else
15 improved = 0;

16 until improved == 0;
17 Return σ and Cmax(σ), and Stop.

5. Computational Study

In this section, we present a computational study to validate the efficiency and ef-
fectiveness of the proposed integer programming models and the solution algorithms.
The experiments are implemented on a personal computer with an Intel(R) Core(TM) i5-
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8400 CPU at 2.80 GHz and 8.0 GB RAM. The operating system is Windows 10. All the
programs are coded in Python language. The MIP was implemented and solved by off-shell
optimization solver Gurobi Version 9.0.3 under a provision license for educational purposes.

In the experiments, all parameters are integer. Lengths of anaesthesia operations (sj)
were generated from integer uniform distribution [1, 10]. Lengths of surgical operations
(pj) were generated from two different uniform distributions, [1, 20] or [1, 50] to contrast
the relative lengths when compared with anaesthesia operations. The sizes of test instances
are determined by the number of operations in each room (nk). In the first set of exper-
iments, we consider nk ∈ {2, 3, 5, 7} and all solution methods will be tested. When the
number of operations is larger, the integer program takes a longer time before reaching
optimal solutions. The second set of experiments exercise only approximation methods on
nk ∈ {10, 20, 30}, which are large enough for practical situations. For each combination of
nk and pj, five independent data sets were generated and tested.

In Tables 1 and 2, the results of all methods are summarized for pj ∈ [1, 20] and
pj ∈ [1, 50]. For the integer program MIP, we keep track of the number of instances
optimally solve (#opt), the elapsed run time in seconds (time), and the optimal makespan
(Cmax). The cited values of time and Cmax are obtained by averaging the corresponding
values over the instances optimally solved. Four approximate methods, namely SPT-based
heuristic, Least-load-based heuristic, and their counterparts equipped with the steepest
descent improvement procedure. The column entitled gap (%) contains the gap between
approximate solutions and optimal solutions calculated in percentages as

ZA − Z∗

ZA × 100%, (13)

where ZA is the approximate solution and Z∗ the optimal one. When the run time is less
than 0.01 s, it is indicated by a “-”. The statistics indicate that the SPT-based heuristic and
the Least-load-based heuristic runs fast. However, the deviations from the optimal values
are not satisfactory. Especially, results of the SPT-based heuristic is inferior (more than
30%), although the basic idea is quite intuitive and easy to implement. The phenomenon
could be attributed to the idle periods introduced to one room when shorter operations are
consecutively assigned to another room. Performance of the Least-load-based heuristic
is about 16–18%. It outperforms the SPT-based heuristic because this heuristic gives the
least load room the priority to assign an operation so that the idle space in the schedule
can be squeezed up to a certain extent. While the two heuristics yield initial schedules,
there is room for further improvements. The second phase deploys the steepest descent
improvement procedure. The solution quality is significantly strengthened. The gaps drop
to around 4–8%. Especially, when the relative lengths between anaesthesia and surgical
operations are significant, i.e., sj ∈ [1, 10] and pj ∈ [1, 50], the gaps are around 2% except
for the outlier case with nk = 7. We note that the MIP solved 3 (respectively, 2) out of
the 5 instances with 7 (respectively, 8) operations of each room. In other words, when
the problem size increases the exact method cannot find optimal solutions within the
specified time limit. An overall appraisal suggests that the proposed two-phase heuristics
are effective and efficient when compared with the exact method.

Table 1. Results for si ∈ [1, 10] and pi ∈ [1, 20].

Method IP SPT LL SPT+SD LL+SD

ni Opt Time Cmax Time Cmax Gap (%) Time Cmax Gap (%) Time Cmax Gap (%) Time Cmax Gap (%)

2 5 0.10 40.2 - 52.6 23.57 - 48.4 16.94 0.01 42.8 6.07 - 42.8 6.07
3 5 0.23 57.6 - 83.8 31.26 - 69.6 17.24 0.02 61.4 6.19 - 60.0 4.00
5 5 3.99 90.0 - 136.8 34.21 - 108.6 17.13 0.07 98.0 8.16 0.04 95.0 5.26
7 3 1084.29 123.0 - 197.0 37.56 - 146.2 15.87 0.17 130.8 5.96 0.14 129.4 4.95
8 2 1084.32 137.8 - 218.0 37.08 - 164.8 16.38 0.2 147.4 6.51 0.16 149.0 7.52

-: The run time is less than 0.01 s.
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To learn more about the performances of the proposed approximation methods, we
tested more instances with 10, 20 and 30 operations assigned to each room. The results are
summarized in Tables 3 and 4. The improvement trend is pretty consistent. The second-
phase procedure significantly reduces the scheduling spans. Moreover, the average run
time for solving an instance that has 30 operations assigned to each room is less than
4 s. The efficiency renders the decision makers agility in producing quality schedules
and the possibility for rescheduling when interruptions and emergency cases present for
immediate reactions.

Table 2. Results for si ∈ [1, 10] and pi ∈ [1, 50].

Method IP SPT LL SPT+SD LL+SD

ni Opt Time Cmax Time Cmax Gap (%) Time Cmax Gap (%) Time Cmax Gap (%) Time Cmax Gap (%)

2 5 0.23 82.6 - 106.8 22.66 - 91.2 9.43 - 85.8 3.73 0.02 85.0 2.82
3 5 0.31 121.4 - 158.6 23.46 - 130.0 6.62 0.03 123.4 1.62 0.01 122.6 0.98
5 5 4.79 187.6 - 250.8 25.20 - 199.0 5.73 0.09 189.8 1.16 0.07 187.8 0.11
7 5 22.99 234.4 - 353.2 33.64 - 269.4 12.99 0.16 254.6 7.93 0.19 254.8 8.01
8 5 209.57 280.4 - 400.6 30.05 - 299.0 6.22 0.24 282.4 0.71 0.21 284.0 1.27

Table 3. Heuristic results for si ∈ [1, 10] and pi ∈ [1, 20].

Method SPT LL SPT+SD LL+SD

ni Time Cmax Time Cmax Time Cmax Imprv. (%) Time Cmax Imprv. (%)

10 - 277.6 - 206.0 0.18 182.8 34.15 0.16 183.6 10.87
20 - 557.0 - 451.0 1.52 377.2 32.28 1.15 378.2 16.14
30 - 991.8 - 671.0 4.44 554.0 44.14 4.75 548.4 18.27

Table 4. Heuristic results for si ∈ [1, 10] and pi ∈ [1, 50].

Method SPT LL SPT+SD LL+SD

ni Time Cmax Time Cmax Time Cmax Imprv. (%) Time Cmax Imprv. (%)

10 - 499.8 - 385.2 0.15 346.6 30.65 0.17 348.6 9.50
20 - 968.0 - 872.8 0.87 722.6 25.35 0.87 722.8 17.19
30 - 1494.4 0.01 1209.6 3.57 1065.0 20.73 3.46 1062.4 12.17

6. Conclusions

In this paper, we have formulated scheduling decisions of anaesthesia operations in
three operating rooms subject to the limited availability of a single anaesthetist. From a
theoretical view point, the problem is computationally challenging to solve. We presented
a mixed integer programming (MIP) to prescribe the mathematical notion of the studied
problem. The model also allows direct problem solving using off-shell software when the
problem scale is small. For instances with more operations, we developed two-phase heuris-
tic algorithms. Computational statistics have evinced the efficiency and effectiveness of the
approximation methods, suggesting the potential significance for practical deployment.

For further research, we can extend the model to an arbitrary number of anaesthetists
and an arbitrary number of operating rooms. For such more realistic scenarios, the problem
is much more complicated since the single-anaesthetist three-room problem is already
computationally intractable. To produce a workable, a decent heuristic could be designed
by dispatching a free anaesthetist with the lowest recency to the room or operation that is
ready for processing. We leave the extension and its algorithm design/implementation
for the next stage of research work. Relaxation of the assumption that operations already
assigned to operating theaters could be relaxed and made as part of the decisions. In-
corporating eligibility constraints concerning facility and personnel renders the problem
scenarios more comprehensive models. With new features and relaxations, the problem
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will become harder to tackle and thus demand efficient and agile solution approaches for
attaining better performances.
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