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Abstract: This study aimed to investigate the effects of wearing extensible and non-extensible
lumbar belt (LB) on biomechanical factors of the sit-to-stand (STD) movement and pain-related
psychological factors affecting office workers with low back pain. Among 30 office workers, 15
with low back pain (LBP) were assigned to the experimental group and 15 healthy adults were
assigned to the control group. The participants performed STD movement in random order of
three different conditions: without LB (Condition 1), with extensible LB (Condition 2), and with
non-extensible LB (Condition 3). Biomechanical variables of STD movement in each condition
were measured using a three-dimensional motion analysis system and force plate. Pain-related
psychological factors were measured only in the experimental group. Among the biomechanical
factors of STD movement, an interaction effect was found in the maximum anterior pelvic tilt angle
and total-phase range of motion of the trunk (p < 0.05). Pain intensity, pain-related anxiety, and pain
catastrophizing were decreased in the conditions with lumbar belts (Conditions 2 and 3) compared
to the condition without LB (Condition 1) (p < 0.05). Extensible and non-extensible lumbar belts
engender biomechanically beneficial effects during STD movement in both office workers with LBP
and healthy office workers. Further, pain intensity, pain-related anxiety, and pain catastrophizing
were decreased in office workers with LBP. Therefore, both types of extensible lumbar belts may be
helpful in the daily life of patients with LBP and office workers.

Keywords: low back pain; sit-to-stand; lumbar belt; biomechanics; pain-related psychology

1. Introduction

Low back pain (LBP) is one of the most common health conditions, which has an
enormous socioeconomic impact [1]. It has been confirmed to be the main cause of disorders
around the world in a recent Global Burden of Disease study [2]. LBP is the pain emerging
on the back of the body, ranging from the lower edge of the 12th rib to the gluteal fold;
the pain is severe enough to limit normal activities for more than a day, regardless of
radiating pain to lower extremities [3]. Balance and ambulatory abilities of patients with
LBP are decreased compared with those of healthy individuals [4], thereby limiting physical
function and engendering inabilities resulting from decreased muscle strength, endurance,
and coordination [5]. Therefore, absence of labor and loss of productivity are common in
patients with LBP because of difficulty to work, absence, etc. [6]. Moreover, as a major
reason for health care costs, the economic impact of LBP is similar to that of other general
high-cost diseases such as cardiovascular diseases, cancer, mental health disorders, and
autoimmune diseases [7]. Eventually, LBP results in extensive economic pressure on
individuals, families, communities, industries, and governments [8].
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Sit-to-stand (STD) movement is a basic activity of daily life necessary for correct
posture, initiation of walking, and personal care [9]; it is the most frequently performed
functional activity [10]. For daily activities and functional independence, STD movement
and stand-to-sit movement are performed ≥60 times on average in a day, and this move-
ment accounts for 56–64% of total lumbar sagittal mobility [11]. The standard anatomical
position of modern humans is the sedentary position considering that modern humans
spend most of their time in this position, including their working and free time [12]. No-
tably, the occurrence rate of LBP has been increased among office workers [13]. In particular,
difficulty in performing the STD movement has been reported frequently in patients with
LBP [14], and this is associated with worsening symptoms of LBP [15]. Considering that
the STD movement is performed constantly in a day, excessive pressure may be exerted on
the physical structure, which could be a risk factor for causing LBP that is persistent [16].
Therefore, it is important for patients with LBP to perform the STD movement accurately,
which makes studies on the STD movement essential [17].

According to several studies, patients with LBP have impaired proprioceptive sense
of the lumbar region [18–20]. This impaired perception could cause LBP and may result
in or sustain joint instability [21]. Hence, wearing a lumbar belt (LB) may be beneficial in
such patients [22]. Wearing a LB increases the pressure exerted on the skin, which provides
additional afferent sensory information to the central nervous system via mechanical
receptors, which may ultimately improve the proprioceptive sense of the lumbar region [23].
In addition, wearing a LB increases mechanical rigidity, which may decrease the structural
load of the spine by limiting lumbar movement [24]. For example, LB can decrease the
stress in viscoelastic structures of the back and the compressive loads on the lumbar
spine [25,26]. Owing to these advantages, office workers use LB to reduce LBP and waist
injury [27]. LB are also used to reduce healthcare costs and improve the functional condition
of individuals suffering from LBP [28]. Similarly, LB are frequently used to prevent LBP as
a convenient and conservative treatment, with a substantially high satisfaction level [29].
However, the potential effects of using a LB for treating LBP remain unclear owing to the
limited evidence in this field and no clear guidelines on LB use for patients with LBP [30].
Therefore, further studies on the biomechanical effects of using LB in patients with LBP are
warranted. In addition, regarding pain-related psychological mechanisms, wearing a LB
provides immediate pain relief and reduces pain-related anxiety [31]. Although wearing a
LB may gradually aid workers, who otherwise have to absent from work because of LBP, in
performing physically demanding work and securing their job, studies on the immediate
and long-term effects of LB in terms of these pain-related psychological mechanisms are
lacking.

Wearing a LB is benefits workers who want to keep their job despite LBP; however,
there in insufficient evidence on the efficacy and benefits of wearing a LB. In particular,
till date, there have been no studies investigating the effects of a LB on STD movement,
which is an important functional activity for office workers who spend much of the time
in a sitting position and patients with LBP. Therefore, the first aim of this study was
to investigate the effect of wearing extensible and non-extensible LB on biomechanical
factors in office workers with LBP while performing the STD movement. The second aim
was to investigate the effect of wearing extensible and non-extensible LB on pain-related
psychological factors in office workers with LBP while performing the STD movement.
We aimed to provide evidence on the efficacy of using LB for patients and office workers
with LBP and present basic data for preventing and treating LBP. Our hypotheses were as
follows: first, according to the presence or absence of LBP and the conditions of a wearing
LB, the impact on the biomechanical factors of the STD movement will differ; second, there
may be a difference in the effect on pain-related psychological factors associated with the
STD movement in office workers depending on the conditions of a wearing LB.
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2. Materials and Methods
2.1. Participants

Among outpatients and guardians who visited our hospital between April 2020 and
May 2021, office workers aged 20–50 years were recruited. Out of 30 participants, 15
patients with nonspecific LBP were assigned to the experimental group and 15 healthy
adults were assigned to the control group. Age, sex and body mass index (BMI) were
matched between the two groups. Using a previous study with the same design (2 groups
× 3 conditions) as a reference, G-power 3.1.9.4 was used to determine the sample size [31].
The effect size of the total lumbar range of motion (ROM) variables of the manual material
handling task from the previous study was used. A total of 30 subjects were selected based
on the effect size of 0.31, significance level of 0.05, and power of 80% [32].

Inclusion criteria for the experimental group were lumbar or lumbosacral pain without
radiating pain below the knee for at least 4 weeks (nonacute). Exclusion criteria for the
experimental group included spinal surgery, specific lumbar pathology (facture, infection,
tumor, etc.), scoliosis, systemic or degenerative diseases, BMI > 30 kg/m2, hypertension
(systolic blood pressure >140 mmHg; diastolic blood pressure >90 mmHg), history of
nervous system disease, and taking medication that may affect nervous excitability [31].
Exclusion criteria for the control group included history of persistent LBP lasting over
a week within the last year [22]. In addition, patients with neurological or respiratory
diseases that may affect the STD movement or trauma, or pregnant patients were excluded
from both groups [33]. Eligibility for participation was identified using medical records,
imaging studies, and interviews.

After explaining the purpose of the study, the contents of the experiment, and the
degree of exposure during the experiment to all participants in the experiment, a written
informed consent for voluntary participation was obtained. Sex, age, and anthropomet-
ric measurement data of all participants were collected, and pain (Visual Analog Scale,
VAS) [34] and disability (Oswestry Disability Index, ODI) [35] in the experimental group
with nonspecific LBP were additionally investigated. This study was approved by the insti-
tutional review board of Daegu University (040621-201911-HR-025-02) and was conducted
in accordance with the Declaration of Helsinki. The study was also registered in the Clinical
Research Information Service (CRIS) of Republic of Korea for ethical purposes, sharing
information, and promoting transparency in clinical research (clinical trial registration
number: KCT0004970).

2.2. Lumbar Belts

Considering flexibility, comfort, and economical efficiency for use in daily activities
and at work, two types of LB were chosen after consulting orthopedists. Both types of LB
consisted of a two-layered fixable strap made of Velcro. Initial adjustment and placement
of the LB was performed using the internal layer, and final tension was adjusted with the
external layer. The extensible LB (REDIX-K210, Acetech, Seoul, Korea) was composed of
only extensible materials, and the non-extensible LB (REDIX-L350, Acetech, Seoul, Korea)
was composed of non-extensible nylon. Given the variations in physical characteristics
and sizes of participants, ready-made products of three different types (small, medium,
and large) were used. The LB was worn such that the lower edge of the belt did not touch
the thigh when seated and cover the anterior superior iliac spine of the pelvis [22]. The
wearing pressure was standardized at 60 mmHg by measuring with a thin force-sensing
resistor embedded between the LB and the right iliac crest of the participant in a standing
position [36] (Figure 1).
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Figure 1. Measurement of the pressure of the lumbar belt using a force-sensing resistor.

2.3. Experimental Procedure

The temperature and surrounding environment of the experiment room were set
for the participants to feel comfortable. To avoid any disturbance in measurement, the
participants wore sleeveless shirts and shorts, which were light and form-fitting. Prior to
measurement, the examiner conducted anthropometric measurements to assess the general
characteristics of the participants.

After attaching the motion capture markers and preparing for the experiment, the
participants were seated on an adjustable stool with their bare feet placed at a comfortable
width on a force plate installed on the floor (Figure 2a). The height of the stool was adjusted
at 90% of the height of the knee from the floor, which represents the distance from the floor
to the fibular head (Figure 2b). The participants were seated at their preferable comfort
posture and looked forward, with their arm crossed in front of their chests, without covering
the motion capture markers to prevent any disturbance caused by arm swinging [37].
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Following the verbal signal of research assistants operating computers connected
to the data collection system, the participants stood at a pace they chose, stayed in a
comfortable standing position for 3 s, and then sat on the stool again. A demo video was
shown to the participants to make them understand the experimental procedure, and
measurement was performed after practicing the procedure 2–3 times. The participants
performed the STD movement in a manner in which they felt comfortable, with the only
limitation of maintaining the positions of their feet. The initial locations of the feet were
marked using a masking tape, and the STD movement was performed in the same location
for all conditions.

There were three different experimental conditions: not wearing a LB (Condition 1),
wearing an extensible LB (Condition 2), and wearing a non-extensible LB (Condition 3). To
avoid the learning effect, the experimental conditions were set in a random order: partici-
pants picked up cards from a sealed envelope containing cards specifying the experimental
conditions. Biomechanical variables of the STD movement in each condition were mea-
sured for all participants (Figure 3). To improve reliability, mean values of three successful
measurements in each condition were analyzed, such that all participants performed the
STD movement nine times. The measurement was considered successful when all the mark-
ers were visible, and the signals were properly recorded. A 1-min rest was given between
each experiment, and a 5-minute break was given between each condition. Pain-related
psychological variables were measured only in the experimental group immediately after
completion of the STD movement in each condition.
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2.4. Measurement Methods
2.4.1. Measurement of Biomechanical Variables

To collect biomechanical data of physical movement of the participants while per-
forming the STD movement, Qualisys Motion Capture System (Qualisys Medical AB,
Gothenburg, Sweden) and force plate (Kistler, Winterthur, The Switzerland) were used.
The resolution of Qualisys Motion Capture System was 1280 × 1024 pixels, and the sam-
pling frequency was set at 200 Hz. Three-dimensional (3D) space coordinates were obtained
using nonlinear transformation. The sampling frequency of the force plate was set at 2000
Hz. All biomechanical data were measured using Qualisys Track Manager (Qualisys Med-
ical AB) software and was low-pass filtered using a fourth order Butterworth filter with
cut-off frequencies of 25 Hz and 10 Hz. After that, the data were analyzed using Visual3D
software (C-Motion, Germantown, Rockville, MD, USA) [38].

Before implementing the test, calibration was performed to correct potential errors in
the thermographic camera. An examiner attached 36 reflective markers on the participant’s
skin at different locations on the body, referring to a previous study and modifying it for
the purpose of this study [39] (Figure 4). A static test was performed before performing
measurements in the three experimental conditions to check the location of all joints on the
computer in a stationary standing position with bare feet. For this, the participants were
instructed to stand still on the force plate for 2 s. To prevent swinging or detachment, the
markers were fixed using a Kinesio tape, which is not reflective. After the static test, the
length from the lateral malleolus of each ankle to the markers (anterior superior iliac spine,
posterior superior iliac spine, and top of iliac crest) covered by the LB was measured in the
standing upright position, and the distance between each marker was measured using a
flexible ruler. Using this measured distance/length, the markers were reattached to the
same location in other LB conditions.
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2.4.2. Measurement of Pain-Related Psychological Variables

Pain-related psychological variables were measured only in the experimental group in
each condition. Immediately after the STD movement in each condition, participants were
asked to recall the STD movement they just had completed by measuring pain intensity,
pain-related anxiety, and pain catastrophizing. The psychological values of pain-related
anxiety and pain catastrophizing were measured using a tool that can be adjusted to meet
specific biological conditions in a laboratory, as suggested in a previous study [40].

Participants were asked to evaluate pain intensity on an 11-point scale immediately
after performing the STD movement [34]. On this scale, 0 represents no pain and 10
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represents extreme pain. Pain-related anxiety was assessed using the photograph series of
daily activities (PHODA) scale [41]. This included asking and assessing the participants’
level of worry about aggravating waist pain with regard to the STD movement they had just
completed using the following question: “People with pain worry that specific activities
might worsen the pain. What is your level of worry regarding the STD movement possibly
aggravating the pain?” The score was quantified using a 10-cm VAS from 0-point (“none”)
to 10-point (“extremely worried”). Pain catastrophizing was measured by the number of
positive answers to the pain catastrophizing questionnaire [40]. This measurement method,
composed of 6 items, has shown good internal consistency (Cronbach’s alpha = 0.87) in a
previous study [42]. However, since the duration of the STD movement is not enough to
use a frequency scale, a binary method was used for the responses [31].

2.5. Data Processing

To analyze the biomechanical data, the STD movement was classified into three
timepoints and two phases (Figure 5). Using parameters of ground reaction force (GRF)
measured from the force plate, three timepoints were decided. Initiation point [43] and
seat-off point [44] were determined on the basis of the vertical GRF parameter, and the
termination point [45] was determined on the basis of the anterior-posterior (A-P) GRF.
The minimum and maximum values of the GRF data were used for calculating potential
changes in the parameters of the STD movement. Initiation point was defined as a 5%
change in threshold value from the baseline value of vertical GRF in a seated-still position,
and termination point was defined as a 7.5% change in threshold value from the final value
at A-P GRF standing-still position [46]. The seat-off point was set as the maximum value of
vertical GRF [45]. Each phase was classified as follows: flexion phase (from initiation point
to seat-off point); extension phase (from seat-off point to termination point) [47]. Each
STD movement was normalized to 101 data points ranging from the initiation point to the
termination point [33]. The maximum value obtained during the STD movement was used
for joint angle and GRF. The values of flexion phase, extension phase, and total phase were
used for the ROM.
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2.6. Statistical Analysis

The data collected in this study were analyzed using SPSS 22.0 for windows (IBM
Corp., Armonk, NY, USA). Normality of the data were tested using the Shapiro–Wilk test.
General characteristics of the participants were analyzed using descriptive statistics, and
homogeneity between the two groups was tested using independent t-test and Chi-square
test.

Two-way repeated analyses of variance (ANOVA) (2 Group × 3 Conditions) were
performed to evaluate the presence of lower back pain and changes depending on the
conditions of wearing a LB. In cases where the interaction was significant, ANOVA was
used for each group to determine the difference between the conditions. If there was
a significant difference between conditions, a post hoc analysis was performed using
an independent t-test for each condition. Differences between groups in each condition
were confirmed using Bonferroni correction. Least square difference (LSD) was used for
comparison of the main effect. In cases where both the interaction and main effects were
significant, only interaction was analyzed. To identify pain-related psychological variables
according to the conditions in the experimental group, one-way repeated ANOVA was
performed, and LSD was used for post-hoc analysis. The level of statistical significance (α)
was set at 0.05, and when the interaction was significant, the significance level of Bonferroni
correction (α) was set a 0.017.

Cohen’s d formula was used for the effect size corresponding to the effect detected
in the interaction, main effect, and post-hoc analysis [48]. The effect size was calculated
using G-power 3.1.9.4. In the ANOVA, the effect size “f ” was interpreted as “small” for
0.10, “medium” for 0.25, and “large” for 0.40. In the independent t-test, the effect size “d”
was interpreted as “small” for 0.20, “medium” for 0.50, and “large” for 0.80 [49].

3. Results
3.1. Analysis of General Characteristics of the Experimental and Control Groups

General characteristics of the experimental and control groups are presented in Table 1.
There was no significant difference in the general characteristics of participants between
the two groups (p > 0.05).

Table 1. General characteristics of the experimental and control groups.

Variable CG (n = 15) EG (n = 15) p

Sex (Male, %) 9 (60.0) 8 (53.3) 0.500 †

Age (years) 34.53 (4.40) 35.60 (5.19) 0.549 ‡

Height (cm) 171.40 (9.83) 170.20 (8.08) 0.718 ‡

Weight (kg) 70.60 (12.50) 67.40 (14.60) 0.525 ‡

BMI (kg/m2) 23.85 (2.26) 23.02 (3.38) 0.437 ‡

VAS (score) 3.80 (0.86)
ODI (%) 19.60 (4.42)

Onset (month) 43.06 (33.35)

* p < 0.05, † Chi-squared test, ‡ independent t-test. BMI: body mass index, CG: control group, EG: experimental
group, ODI: Oswestry Disability Index, VAS: Visual Analog Scale.

3.2. Analysis of Biomechanical Variables According to the Conditions of Wearing a Lumbar Belt in
the Experimental and Control Groups

There was an interaction effect in the maximum anterior pelvic tilt angle (p < 0.05,
f = 0.79) (Table 2). From the post-hoc analysis, a significant difference was found (p < 0.017,
d = 1.00) between the two groups in Condition 1 (without LB), but no significant difference
was found (p > 0.017) in Conditions 2 and 3 (with LB) (Figure 6). There was an interaction
effect in the trunk total-phase ROM (p < 0.05, f = 0.41) (Table 2). From the post-hoc analysis,
a significant difference was found (p < 0.017, d = 0.96) between the two groups in Condition
1 (without LB), but no significant difference was found (p > 0.017) in Conditions 2 and 3
(with LB) (Figure 6).
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Table 2. Analysis of biomechanical variables of the sit-to-stand movement according to the lumbar belt conditions in the
experimental and control groups.

Variable

Condition 1
(No LB)

Condition 2
(Extensible

LB)

Condition 3
(Non-Extensible

LB)
P (f)

Post-Hoc

CG EG CG EG CE EG Group
(G)

Condition
(C) G x C

Maximum trunk flexion
(deg)

47.07
(10.33)

41.74
(7.26)

47.36
(10.86)

46.05
(6.21)

48.06
(9.47)

45.97
(7.01) 0.338 0.022 *

(0.41) 0.100 C1 < C2, C1 <
C3

Maximum anterior pelvic
tilt (deg)

36.27
(7.10)

44.73
(9.58)

46.16
(8.40)

45.38
(9.57)

48.33
(7.39)

46.30
(9.43) 0.528 <0.001 *

(0.99)
<0.001 *
(0.79)

CG: C1 < C2,
C1 < C3

C1: CG < EG
Maximum hip-joint flexion

(deg)
104.21
(8.69)

107.13
(9.94)

111.81
(10.19)

112.14
(9.60)

115.04
(10.54)

112.89
(8.04) 0.939 <0.001 *

(0.87) 0.162 C1 < C2, C1 <
C3, C2 < C3

Maximum knee-joint
flexion (deg)

77.93
(7.99)

83.40
(9.65)

76.43
(7.71)

81.25
(8.81)

76.16
(8.14)

81.78
(9.67) 0.095 0.019 *

(0.38) 0.832 C1 > C2, C1 >
C3

Maximum ankle-joint
flexion (deg)

11.16
(5.84)

9.48
(3.70)

10.90
(5.47)

11.27
(5.77)

11.94
(4.83)

10.48
(6.80) 0.608 0.472 0.364

Trunk flexion-phase ROM
(deg)

7.48
(4.34)

4.55
(3.72)

1.65
(2.85)

0.76
(3.26)

1.14
(3.06) 0.54 (2.43) 0.056 <0.001 *

(0.92) 0.315 C1 > C2, C1 >
C3

Trunk extension-phase
ROM (deg)

24.99
(8.42)

19.58
(5.85)

9.98
(7.56)

7.57
(5.22)

4.33
(3.13) 3.36 (2.50) 0.101 <0.001 *

(2.35) 0.123 C1 > C2, C1 >
C3, C2 > C3

Trunk total-phase ROM
(deg)

13.47
(5.95)

8.14
(5.26)

6.65
(6.62)

3.85
(3.03)

3.54
(3.40) 2.46 (2.96) 0.052 <0.001 *

(1.50)
0.016 *
(0.41)

CG: C1 > C2,
C1 > C3, C2 >

C3
EG: C1 > C2,

C1 > C3
C1: CG > EG

Hip-joint flexion-phase
ROM (deg)

24.97
(6.43)

26.69
(6.46)

30.59
(5.93)

32.93
(6.55)

30.89
(6.05)

31.92
(5.31) 0.416 <0.001 *

(1.12) 0.648 C1 < C2, C1 <
C3

Hip-joint extension-phase
ROM (deg)

99.90
(7.52)

105.27
(9.95)

109.62
(6.39)

110.00
(10.67)

110.48
(7.44)

113.92
(9.69) 0.279 <0.001 *

(0.98) 0.202 C1 < C2, C1 <
C3, C2 < C3

Hip-joint total-phase ROM
(deg)

104.73
(8.69)

109.32
(7.39)

110.82
(8.09)

111.88
(10.39)

112.77
(6.95)

114.39
(9.45) 0.345 0.003 *

(0.55) 0.452 C1 < C2, C1 <
C3, C2 < C3

Knee-joint flexion-phase
ROM (deg)

5.00
(1.99)

6.48
(2.04)

4.87
(1.94)

6.45
(2.04)

4.60
(2.33) 6.50 (2.10) 0.011 *

(0.52) 0.896 0.857 EG > CG

Knee-joint
extension-phase ROM

(deg)

76.19
(10.88)

79.95
(11.94)

75.24
(12.32)

76.66
(10.59)

74.34
(9.71)

75.06
(9.96) 0.608 0.020 *

(0.41) 0.357 C1 > C2, C1 >
C3

Knee-joint total-phase
ROM (deg)

80.72
(10.86)

84.64
(10.97)

76.21
(10.28)

82.32
(9.72)

77.51
(9.83)

80.85
(9.97) 0.220 0.002 *

(0.50) 0.386 C1 > C2, C1 >
C3

Ankle-joint flexion-phase
ROM (deg)

6.57
(2.63)

6.86
(1.79)

6.45
(3.80)

5.58
(1.83)

6.88
(2.81) 5.68 (1.86) 0.473 0.211 0.150

Ankle-joint
extension-phase ROM

(deg)

11.99
(3.48)

10.42
(3.10)

11.49
(4.89)

9.89
(3.69)

11.39
(4.91) 9.77 (4.02) 0.237 0.524 0.999

Ankle-joint total-phase
ROM (deg)

15.24
(4.66)

14.81
(4.26)

15.10
(4.62)

14.71
(3.85)

14.94
(4.55)

14.28
(3.25) 0.697 0.855 0.970

Anterior-posterior GRF
(N/kg)

−46.42
(12.41)

−41.85
(12.69)

−48.35
(10.48)

−47.78
(12.71)

−48.29
(13.26)

−48.87
(10.42) 0.701 0.040 *

(0.38) 0.291 C1 < C2, C1 <
C3

Medial-lateral GRF (N/kg) 68.58
(14.78)

63.34
(17.79)

69.11
(12.91)

63.54
(13.61)

66.76
(12.07)

61.50
(10.63) 0.262 0.386 0.994

Vertical GRF (N/kg) 588.44
(38.37)

572.12
(31.94)

596.84
(29.14)

579.49
(45.78)

603.27
(43.55)

590.32
(30.24) 0.212 0.009 *

(0.43) 0.906 C1 < C3

* p < 0.05; f, effect size “f ”. CG: control group, EG: experimental group, ROM: range of motion, C1: Condition 1, C2: Condition 2, C3:
Condition 3.

There was a main effect of wearing a LB in the maximum trunk flexion angle, the
maximum hip-joint flexion angle, and the maximum knee-joint flexion angle (p < 0.05,
f = 0.38–0.87) (Table 2). Regarding maximum trunk flexion angle and maximum knee-joint
flexion angle, significant differences were found between Conditions 1 and 2 and between
Conditions 1 and 3 (p < 0.05). Regarding maximum hip-joint flexion angle, significant
differences were found among all conditions (Conditions 1, 2, and 3) (p < 0.05).

There was a main effect of wearing a LB in trunk flexion phase and extension phase
ROM (p < 0.05, f = 0.92, 2.35) (Table 2). With regard to trunk flexion-phase ROM, signifi-
cant differences were found between Conditions 1 and 2 and between Conditions 1 and
3 (p < 0.05). Regarding trunk extension-phase ROM, significant differences were found
among all conditions (Conditions 1, 2, and 3) (p < 0.05).

There was a main effect of wearing a LB in hip-joint flexion-phase, extension-phase,
and total-phase ROM (p < 0.05, f = 0.55 to 1.12) (Table 2). Regarding the hip-joint flexion-
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phase ROM, significant differences were found between Conditions 1 and 2 and between
Conditions 1 and 3 (p < 0.05). With regard to hip-joint extension-phase and total-phase
ROM, significant differences were found among all conditions (Conditions 1, 2, and 3)
(p < 0.05).
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There was a main effect between the groups with regard to the knee-joint flexion-
phase ROM (p < 0.05, f = 0.52) (Table 2), and a significant difference was found between
the experimental and control groups (p < 0.05). There was also a main effect of wearing a
LB in knee-joint extension-phase and total-phase ROM (p < 0.05, f = 0.41, 0.50) (Table 2).
Significant differences were found between Conditions 1 and 2 and between Conditions 1
and 3 (p < 0.05).

There was a main effect of wearing a LB in anterior-posterior GRF and vertical GRF
(p < 0.05, f = 0.38, 0.43) (Table 2). With regard to anterior-posterior GRF, there were signifi-
cant differences between Conditions 1 and 2 and between Conditions 1 and 3 (p < 0.05).
Further, there was a significant difference between Conditions 1 and 3 in vertical GRF
(p < 0.05).

3.3. Analysis of Pain-Related Psychological Variables According to the Conditions of Wearing a
Lumbar Belt in the Experimental Group

There were significant differences between the conditions of wearing LB in VAS,
PHODA, and pain catastrophizing in the experimental group (p < 0.05, d = 0.83 to 2.00)
(Table 3). From the post-hoc analysis results, there were significant differences between
Conditions 1 and 2 and between Conditions 1 and 3 (p < 0.05) (Table 3).
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Table 3. Analysis of pain-related psychological variables in the experimental group.

Variable Condition 1
(No LB)

Condition 2
(Extensible LB)

Condition 3
(Non-

Extensible LB)
p (f ) Post-Hoc

VAS 4.07 (0.88) 3.27 (0.70) 3.47 (0.74) 0.001 * (0.83) C1 > C2, C1 > C3
PHODA 4.27 (0.59) 3.20 (0.68) 3.40 (0.51) <0.001 * (2.00) C1 > C2, C1 > C3

PC 2.53 (0.64) 1.80 (0.41) 1.87 (0.35) 0.001 * (0.97) C1 > C2, C1 > C3

* p < 0.05; f, effect size “f ”. C1: Condition 1, C2: Condition 2, C3: Condition 3, PC: pain catastrophizing, PHODA: photograph series of daily
activities, VAS: Visual Analog Scale.

4. Discussion

The purpose of this study was to investigate the effect of wearing extensible and
non-extensible LB on biomechanical factors of the STD movement in office workers with
LBP and on pain-related psychological factors. From the results obtained, an interaction
effect between the presence of LBP and LB use was found in the biomechanical factors
of the STD movement. In addition, a positive effect of wearing a LB was found on the
pain-related psychological factors. Extensible and non-extensible LB had similar overall
effects.

4.1. Analysis of Interactions between Groups and Conditions of Wearing a Lumbar Belt

An interaction effect was found between the ROM of the trunk and maximum anterior
pelvic tilt angle in the STD movement. There was an interaction effect in the ROM of
the total phase of the trunk. As a result of post-hoc analysis, trunk ROM in Condition 1
(without LB) was significantly smaller in the experimental group compared with that in
the control group. Trunk ROM was decreased in Conditions 2 and 3 (with LB) compared
with that in Condition 1 (without LB) in both experimental and control groups, with no
significant difference between the two groups. Previous studies have reported that the
lumbar ROM decreases in patients with LBP while performing the STD movement [50].
The trunk ROM was significantly lower in the experimental group in this study, which
is consistent with the result of the previous study. With regard to the biomechanical
factors, it was reported that continuously wearing a LB reduces the ROM of the trunk
in various loads and movements [51,52]. Hence, it was considered that these effects of
the LB reduced the ROM of the trunk in both the experimental and control groups while
performing the STD movement. Given the large effect size and regardless of LBP, LB are
effective in reducing the ROM of the trunk. In addition, there was an interaction effect in
the maximum anterior pelvic tilt angle. According to the post-hoc analysis, in Condition
1 (without LB), the maximum anterior pelvic tilt angle was significantly larger in the
experimental group compared with that in the control group. Considering the maximum
trunk flexion angle, these differences in the maximum anterior pelvic tilt angle are thought
to be protective in patients with LBP, which thereby reduce trunk flexion and maintain
a rigid lumbar region. The maximum anterior pelvic tilt angle was increased only in the
control group in Conditions 2 and 3 (with LB) compared with Condition 1 (without LB),
with no significant difference between the two groups. In a previous study that analyzed
the effect of a LB on the lumbar ROM and lumbopelvic rhythm, it was reported that
wearing LB limits the lumbar ROM and alters the lumbopelvic rhythm [24]. In this study, a
LB was worn to cover the pelvis such that the lower edge of the LB covered the ASIS and
lilac crest. Therefore, the ROM of the trunk decreased in both groups, and it is thought
that the rigidity resulting from wearing the LB affected the spine–pelvis junction. In STD
movement, anterior driving power that accelerates the center of mass (COM) of the body
is generated by trunk flexion [53]. Trunk ROM was decreased in the experimental group
while wearing the LB, but it is thought that the anterior driving power that accelerates
the COM of the body, which is necessary to perform the STD movement, was generated
by the increased maximum trunk flexion angle. Although there was no change in the
maximum trunk flexion angle in the control group while wearing LB, the trunk ROM was
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decreased. Therefore, the maximum anterior pelvic tilt angle was increased owing to the
rigidity resulting from wearing a LB. Consequently, the decreased ROM of the trunk in
Conditions 2 and 3 (with LB) compared with Condition 1 (without LB) in both groups and
the increased maximum anterior pelvic tilt angle in the control group could be explained
by the rigidity resulting from wearing LB. A large effect size was shown in the difference
between the maximum anterior pelvic tilt angle and ROM of the trunk in the experimental
and control groups in Condition 1 (without LB). Given the large effect size, it is thought
that the difference between the maximum anterior pelvic tilt angel and the ROM of the
trunk demonstrates that the STD movement is performed differently in the experimental
and control groups.

4.2. Analysis of the Main Effect between the Two Groups

A main effect between the two groups was found in the ROM of knee-joint flex-
ion phase of the STD movement. The knee-joint ROM was significantly increased in
the experimental group compared with that in the control group. To perform the STD
movement correctly, coordinated behavior of the lumbopelvic complex is required [33].
When performing the STD movement, a healthy individual completes the standing process
by simultaneously bending the spine and hip joint and then simultaneously extending
them [54]. In this study, it was found that the subjects from the control group performed
the STD movement using the trunk and hip joint while the subjects from the experimental
group used the knee joint more. Considering the large effect size, large ROM of the knee
joint in flexion phase is one of the features of the STD movement in the experimental group.
Although this is not statistically significant, the maximum flexion angle of the trunk in
the experimental group was smaller during the STD movement than that in the control
group. A previous study also reported decreased lumbar ROM and maximum flexion in
patients with LBP [50]. In addition, the maximum anterior pelvic tilt angle and ROM of the
hip joint were bigger in the experimental group compared with that in the control group,
which is similar to a previous study that also reported increased ROM of the hip joint [55].
Likewise, subjects in the experimental group performed the STD movement with a rigid
lumbar region by increasing anterior pelvic tilt angle and decreasing trunk flexion angle
and ROM. This is thought be a result of a protective strategy undertaken by patients with
LBP to avoid further stress on the pain area and reduce load to the posterior lumbar region
by reducing the trunk flexion angle and movement. In a previous study, it was stated
that the lower extremities are involved in possible compensation exercises in patients with
LBP [56]. Further, in this study, it is thought that the STD movement was performed by
increasing the flexion angle and ROM of the knee-joint to compensate for the decreased
flexion angle and ROM of the trunk.

4.3. Analysis of the Main Effects of the Conditions of Wearing Lumbar Belts

The maximum trunk flexion angle of the STD movement increased significantly in
Conditions 2 and 3 (with LB) compared with that in Condition 1 (without LB). Maximum
flexion angle, extension-phase ROM, and total-phase ROM of the knee joint were sig-
nificantly decreased. LB may decrease the stress on posterior viscoelastic structures or
compression load on the lumbar region [25,26]. This may decrease the load on specific
spinal structures as an effect of lumbar movement limitation due to increased mechanical
rigidity caused by the LB [51,52]. Further, it is thought that the maximum trunk flexion
angle was increased as a protective strategy to decrease the effect of the reduced trunk
flexion angle in order to avoid stress in the pain area by wearing a LB. Therefore, the
compensation effect that occurred in the knee joint also decreased.

The flexion-phase and extension-phase ranges of motion during the STD movement
were significantly decreased in Conditions 2 and 3 (with LB) compared with that in Condi-
tion 1 (without LB). In addition, the maximum flexion angle and ROM of the hip joint were
increased significantly. Several previous studies have reported decreased ROM of the trunk
due to rigidity resulting from wearing a LB [57–59]. The same results were also observed
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in this study, wherein the ROM of the trunk was decreased in Conditions 2 and 3 (with
LB). Considering the large effect size, it is thought that the LB is effective in decreasing
the ROM of the trunk. In this study, the maximum trunk flexion angle was maintained
despite wearing the LB. However, because of the rigidity resulting from wearing the LB,
the spinopelvic area became rigid, thereby resulting in forward inclination of the pelvis
and increased flexion angle and ROM of the hip joint.

4.4. Analysis of Pain-Related Psychological Variables According to Lumbar Belt Conditions

In the experimental group, positive effects of wearing a LB on pain-related psycho-
logical variables were found while performing the STD movement, with the two types of
LB showing similar effects. Pain intensity measured by VAS was significantly decreased
in Condition 1 (without LB) compared with that in Conditions 2 and 3 (with LB). The
possible mechanisms of pain relief of the LB include decreased ROM [60,61], improved
proprioceptive sense or motor sense [62,63], and strengthened trunk [51,60,64]. Results
of this study are in accordance with those of a previous study that reported a significant
decrease in pain after wearing a LB for an hour for three weeks [65]. However, as the
decrease did not reach the 30% threshold, which is considered to be clinically important in
the measurement of pain and disability [66], further scientific and systematic studies on
the effects of wearing LB on pain intensity are warranted.

Pain-related anxiety and pain catastrophizing were significantly decreased in Condi-
tion 1 (without LB) compared with that in Conditions 2 and 3 (with LB). This is thought
to be because of the mechanical support provided by the LB, which affects pain and
pain-related psychology. According to previous studies, motivational situations from
exposure-based treatment have an impact on long-term changes in fear of pain [67]. The
decreased pain intensity, pain-related anxiety, and pain catastrophizing could reduce dis-
abilities by increasing self-efficacy, which may lead to gradual exposure to labor at work
and maintaining these activities at work [68]. Further, as per the biomechanical analysis,
the LB benefits office workers in achieve this purpose. The hypothesis that the mechanical
support provided by a LB may result in muscle weakness leaves some room for contro-
versy [69]. However, according to the psychological studies, the LB does not induce a
wrong compensatory sense [70]. According to a recent systemic review, long-term use of
a LB does not necessarily result in the deterioration of trunk muscles [69]. Furthermore,
intermittent use of a LB may reduce the probability of trunk muscle weakening [71]. In
this study, the effect size of wearing a LB on pain-related psychological factors was large.
Therefore, it is thought that wearing a LB may be psychologically helpful for office workers
to gradually increase their activity, return to the workplace, or maintain a job.

4.5. Limitations

There are several limitations of this study. First, the number of subjects was relatively
small. Second, only the immediate effect, not the long-term effect, of wearing a LB was
investigated. Third, movement of each spinal segment or compensation effect of the
thoracic vertebrae were not considered because the spine was investigated as a whole.
Forth, there was a restriction on the height of the stool and the location of the feet since
this study only focused on the effect of the LB on STD movement. Therefore, if the height
of the stool and the location of the feet were not restricted, different results could have
been obtained. Fifth, as there are various types and designs of LB, there may be differences
in the obtained results depending on the differences in extensibility and design of the LB.
Therefore, further studies with more subjects, different LB designs, biofeedback LB and
using the placebo effect study methods are warranted.

5. Conclusions

Wearing an extensible or a non-extensible LB has beneficial effects on the biome-
chanical factors of the STD movement in both office workers with LBP and healthy office
workers. This is attributed to reduced ROM of the trunk joint during the STD movement in
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office workers with LBP and healthy office workers. Moreover, wearing a LB engendered
pain-related psychological advantages resulting in immediate reduction of pain intensity,
pain-related anxiety, and pain catastrophizing in office workers with LBP. Extensible and
non-extensible LB provide comfort and functionality suitable for use at work. Therefore,
both LB would be helpful in the daily activities of patients with LBP, the laborious activities
of office workers, and the return of office workers on leave due to LBP.
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