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Abstract: The general world population is aging and patients are often diagnosed with early-stage
lung cancer at an advanced age. Several studies have shown that age is not itself a contraindication
for lung cancer surgery, and therefore, more and more octogenarians with early-stage lung cancer are
undergoing surgery with curative intent. However, octogenarians present some peculiarities that
make surgical treatment more challenging, so an accurate preoperative selection is mandatory. In
recent years, new artificial intelligence techniques have spread worldwide in the diagnosis, treatment,
and therapy of lung cancer, with increasing clinical applications. However, there is still no evidence
coming out from trials specifically designed to assess the potential of artificial intelligence in the
preoperative evaluation of octogenarian patients. The aim of this narrative review is to investigate,
through the analysis of the available international literature, the advantages and implications that
these tools may have in the preoperative assessment of this particular category of frail patients. In
fact, these tools could represent an important support in the decision-making process, especially
in octogenarian patients in whom the diagnostic and therapeutic options are often questionable.
However, these technologies are still developing, and a strict human-led process is mandatory.

Keywords: artificial intelligence; lung cancer; octogenarians; elderly; radiomics; machine
learning; preoperative

1. Introduction

With the aging of the world population, lung cancer is gradually becoming a disease
of old people. Nowadays, the highest incidence is between 75 and 79 years for females and
between 85 and 89 years for males, with more than 40% of new cases diagnosed in patients
aged 75 or more [1]. Therefore, the number of octogenarians with early-stage non-small
cell lung cancer (NSCLC), eligible for surgery, has increased, and it is estimated that 14% of
all resectable NSCLC cases involve patients aged 80 or more.

Meanwhile, the definition of “old patient” has progressively changed over the years.
It was historically defined as a chronological age of 65 years, while, nowadays, it has
been shifted to 75 years [2]. However, it is now believed that the definition of elderly
must be based on patient status and comorbidities considering that a chronological cut-off
is not based on biological or medical evidence. Likewise, age is no longer considered a
contraindication to lung cancer surgery per se, with a series of studies reporting good
results in such patients [3–6].

However, octogenarians show some peculiarities that make surgical treatment more
challenging, with up to 40% of these patients presenting postoperative complications [5,6].
Therefore, an accurate preoperative selection of patients is mandatory to balance the impact
of surgery and the expected outcome.
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Artificial intelligence (AI) can be defined as the set of all computer systems able to
perform complex tasks that normally require human cognitive functions. Overall, the
aim of these techniques in the medical field is to assist the decision-making process by
extracting and interpreting information from massive structured and unstructured data [7].
AI technology has been recently developed worldwide in almost all medical disciplines [8].
Its application in lung cancer treatment currently sounds limitless and is being tested from
cancer screening, diagnosis, and therapy evaluation to outcome prediction. Several trials
and meta-analyses showed improvements in patients’ healthcare due to AI intervention in
several fields [9–11]. In particular, AI-based oncological tools have shown great potential
with performances comparable to or even higher than human capacities [10,11]. However,
a concrete clinical application is still limited due to intrinsic limitations.

The aim of this paper is to present a narrative review of current applications of AI
in the preoperative evaluation and surgical planning of patients undergoing lung cancer
surgery, and to evaluate the implications and advantages that these tools can offer to
octogenarian patients.

2. Materials and Methods

The international literature was searched using PubMed, Scopus, and Cochrane Li-
brary. The research was performed by matching the Medical Subject Heading (MeSH) terms
“artificial intelligence”, “machine learning”, “deep learning” and “radiomics” with the
terms “thoracic surgery”, “lung cancer”, “lung surgery”, “preoperative risk” and “surgical
planning”. Further analysis was performed following the reference lists of all included
articles. All studies published between January 2013 and November 2023 were evaluated
for inclusion. A total of 312 articles were screened after duplicate removal. A total of
252 articles were removed after title and abstract reading. Eighteen papers were excluded
due to non-available full papers (5), articles not in English (3) and articles not deemed
relevant after full-text reading (10). Finally, 42 articles were considered eligible for the
aforementioned scope and were included. The search strategy is shown in Figure 1.
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3. Preoperative Risk Assessment

Lung cancer surgery has achieved low mortality and morbidity rates due to the
improvement of surgical and anesthetic techniques, alongside the spread of minimally
invasive surgery [12]. However, there are categories of “fragile” patients in which the
postoperative complication rate remains high. Octogenarians are in this category, with
a postoperative complication rate that exceeds 40% in some studies [5,6,13,14]. Over the
years, many studies have been performed to evaluate the preoperative risk in these patients
to select those fit for surgery [15,16]. In particular, the factors most strongly associated with
lower morbidity appear to be performance status, FEV1 value, minimally invasive surgery,
and limited resections [16,17]. Moreover, the use of artificial intelligence in preoperative
risk stratification has widely diffused, with the development of machine learning-based
algorithms that can efficiently predict morbidity and mortality after general surgery [18].
Similarly, lung surgery models of event prediction were developed with encouraging
results [19–22] (Table 1).

In 2021 Salati et al. [19] created an AI-based predictor of cardiopulmonary complica-
tions after lung resection using 50 preoperative characteristics of 1360 patients undergoing
lung resection. The prediction model was generated by training and testing the XGBoost
ML algorithm, reaching an accuracy of 70% and a positive predictive value of 0.68. Similar
results were also achieved by Huang et al. in a Chinese population study with an AUC
of different ML models ranging from 0.72 to 0.76 [20]. According to the authors, the most
important predictors of postoperative complications were the percentage of predicted
postoperative forced expiratory volume in one second and the ratio of forced expiratory
volume in one second to forced vital capacity.

A good rate of prediction of respiratory failure after lobectomy was achieved by
Bolourani et al. [21]. They built two different ML-based models, achieving 99.7% and
94.4% specificity and 75% and 83.3% sensitivity, respectively. The first model, focused on
a high specificity, was suited for performance evaluation, while the second model, with
high sensitivity, was built for clinical decision making. However, they used an inaccurate
national registry that could lead to misleading results and needs validation for its clinical
translation [21].

Notably, there are no algorithms specifically built for elderly or octogenarian patients,
even though most of these algorithms encompass age as a risk factor for postoperative
complications [18–20,23].

Advanced age has also been evaluated by Chang et al. [22] in their Real-Time Artificial
Intelligence-Assisted System to predict weaning from a ventilator immediately after lung
resection surgery. The model included estimated post-OP lung function, exercise loading,
resting oxygen saturation before the operation, major diseases, severe coronary artery
disease risk factors, smoking or not before the operation, presence of smoking history, and
advanced age. The aim was to guide the anesthesiologist to predict whether patients can
be safely weaned after lung surgery in the operating room. This model showed a good
performance, allowing a shorter decision time and improved confidence, especially in
young physicians. Considering that prolonged weaning is associated with worse clinical
outcomes in elderly patients [24], this tool may be useful in octogenarian patients.

The model developed by Lee HA et al. [25] for the prediction of VO2max in candidates
for lung resection seems of particular interest for the octogenarian category. In fact, the
European Respiratory Society guidelines indicate the VO2max assessment through the
standard cardiopulmonary exercise test as the gold standard to discriminate the operability
of those patients with impaired lung function. The authors set an algorithm for determining
VO2max in patients with limited exercise capacity or in case cardiopulmonary exercise
testing cannot be performed. Their model was able to predict a closer estimation of VO2max
values measured using a CPET than existing equations. This tool could be a valid surrogate
in elderly patients, who are often not able to perform a complete cardiopulmonary exercise
test due to other non-respiratory comorbidities.
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Table 1. Artificial intelligence studies in lung cancer surgery preoperative risk assessment.
ML = machine learning; XGBOOST = extreme gradient boosting; AUC = area under the receiver
operating characteristic curve.

Author Objective ML Algorithm Main Results

Salati M
et al. [19]

Prediction of cardiopulmonary
complications in patients undergoing
lung resection

XGBOOST XGBOOST algorithm generated a model able
to predict complications with an AUC of 0.75

Huang G
et al. [20]

Prediction of postoperative
cardiopulmonary complications among
Chinese patients with lung cancer

Logistic regression,
random forest, and
XGBOOST

Three models were developed and validated
with AUCs of 0.728, 0.721, and 0.767 for the
logistic regression, random forest, and
extreme gradient boosting
models, respectively

Bolourani
et al. [21]

To identify risk factors for respiratory
failure after pulmonary lobectomy Random forest

Two ML-based prediction models were
generated and optimized. The first model,
with an accuracy of 99.7% and specificity of
75%, was suited for performance evaluation,
while the second model, with an accuracy of
94.4% and sensitivity of 83.3%, was built for
clinical decision making

Chang YJ
et al. [22]

Predicting whether patients could be
weaned immediately from ventilator
after lung resection surgery

Naïve Bayes

The AI model with the Naïve Bayes Classifier
algorithm had the best testing results with an
accuracy of 0.845, sensitivity of 0.870, and
specificity of 0.838

Lee HA
et al. [25]

To evaluate the usefulness of an ML
model in estimating VO2max in patients
requiring lung resection surgery with
limited exercise capacity or when a
CPET is not possible

Quadratic regression
model

This model provides a closer estimation of
VO2max values measured using a CPET than
other existing equations
(bias: −0.33 mL·kg−1·min−1)

Overall, the accurate selection of octogenarian patients undergoing lung cancer surgery
is demonstrated to be the best way to reduce postoperative events. In this context, artificial
intelligence algorithms seem to be promising for personalizing and optimizing preoperative
risk stratification, providing an effective aid in the preoperative decision-making process.
An effective clinical application is still far from routine practice, and further research is
needed to validate the models.

4. Predictors of Histological Tumor Characteristics

Being able to predict the histological characteristics of lung cancer starting from ra-
diological imaging could be of crucial importance for various aspects of the treatment
pathway. Computed tomography (CT) scans, as well as second-level tests such as 18-
Fluorodeoxyglucose positron emission tomography (18FDG-PET), have a diagnostic speci-
ficity that ranges from 72% to 84.6% [26,27], leading to surgical interventions for benign
pathologies in some cases. Therefore, an accurate assessment of the malignancy of an inde-
terminate pulmonary nodule must be a priority over proposing a primary surgical approach
especially in “fragile” patients such as octogenarians. In fact, the key point in planning
lung cancer treatment is the diagnosis. Sampling sufficient tissue might be difficult or have
excessive risk. For these reasons, AI tools and radiomics predictors have been developed
to discriminate between malignant and benign lung nodules from CT imaging with good
performance [28–31]. Elia et al. [28] were the only ones who specifically implemented a
radiomics-based tool for elderly patients. In their study, radiomics data from 71 old patients
were used to build three different machine learning algorithms for predicting malignant
pulmonary nodules. These algorithms reached good predicting values with an accuracy of
0.83–0.90. The authors concluded that AI can be a valid alternative to invasive diagnostic
procedures in the decision-making process of suspected solitary pulmonary nodules in
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elderly patients. This advancement could be of particular importance in reducing the rate
of elderly patients undergoing pulmonary resection for benign disease.

Spread through Air Spaces

Spread through air spaces (STAS) is emerging as a tumor characteristic correlated
with a worse prognosis, especially in patients undergoing sublobar resections [32,33]. To
date, predicting the presence of STAS has not been possible before staining at the bench.
Being able to know STAS before surgery may allow for a more tailored surgical treatment
avoiding oncologically ineffective sublobar resection or, alternatively, unnecessary large
resections in borderline patients. This is particularly important in octogenarians, where
a higher incidence of morbidity and mortality is reported in lobectomies rather than
wedge/segmentectomies [29] and in whom a limited resection is often the best option [34].

In recent years, several studies have focused on AI-based and radiomics models aimed
at predicting STAS with promising results [35–40] (Table 2).

Table 2. Selected studies using radiomics and machine learning models to preoperatively predict
STAS in lung cancer. STAS = spread through air spaces; AUC = area under the receiving operative
characteristic curve; CI = confidence interval.

Author Objective Models Main Results

Jin W
et al. [35]

To develop and validate a dual-delta
deep learning and radiomics model
based on pretreatment computed
tomography (CT) image series to
predict the STAS in patients with
lung cancer

Multiple machine
learning model

The dual-delta model showed satisfactory
discrimination between STAS and non-STAS
with an AUC of 0.94 in the internal cohort
and 0.84 and 0.84 in two external
validation cohorts

Lin MW
et al. [36]

To develop a STAS deep learning
(STAS-DL) prediction model in lung
adenocarcinoma with tumors smaller
than 3 cm and a consolidation-to-tumor
(C/T) ratio less than 0.5

Deep learning model
(STAS-DL) and
radiomics-based model

The proposed STAS-DL yielded the best
performance with an AUC of 0.82 and an
accuracy of 74%, and it was superior to the
physicians with an AUC of 0.68. Moreover,
STAS-DL achieved the highest standardized
net benefit compared with the other methods

Han X
et al. [37]

To develop and validate a CT-based
radiomics model for predicting STAS in
stage IA lung adenocarcinoma

Clinical/CT model,
radiomics-based model
and MixModel

The radiomics model achieved good
performance with an AUC of 0.812 in the
training set and 0.850 in the test set. The
MixModel showed AUCs of 0.822 and 0.865
in the training and test cohorts, respectively

Tao J
et al. [38]

To compare the efficacy of five
noninvasive models, including a
three-dimensional (3D) convolutional
neural network (CNN) model, to
predict STAS in NSCLC, and to obtain
the best prediction model to provide a
basis for clinical surgery planning

Clinicopathological/CT
model, conventional
radiomics model,
computer vision model,
3D CNN model, and
combined model

For predicting STAS, the 3D CNN model was
superior to the others achieving an AUC of
0.93 (95% CI: 0.70–0.82) in the training cohort
and 0.80 (95% CI: 0.65–0.86) in the
validation cohort

Bassi M
et al. [39]

To test a radiomics-based prediction
model of STAS in a heterogeneous CT
dataset, applicable to daily
clinical practice

Radiological model,
radiomics-based model,
and mixed model

Radiomics, radiological, and mixed
radiomics-radiological models reached an
accuracy of 0.66 ± 0.02 after internal
validation. In external validation, the best
model was the mixed model with 0.78
accuracy, 0.89 sensitivity, 0.64 specificity and
an AUC of 0.79

Chen D
et al. [40]

To assess the value of radiomics in
predicting STAS in stage I lung
adenocarcinoma

Radiomics model
The model exhibited good performance
with an AUC of 0.63 (CI 0.55–0.71) in internal
validation and 0.69 in external validation
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Jiw W et al. [35] developed a dual-delta deep learning and radiomics model using
preoperative CT scans of 674 patients with a diagnosis of lung cancer. The model showed
good prediction power between STAS and non-STAS, yielding an AUC of 0.94 (95% CI,
0.92–0.96), 0.84 (95% CI, 0.82–0.86), and 0.84 (95% CI, 0.83–0.85), respectively, in the internal
validation cohort and two different external validation cohorts. Lin et al. [36] tested a deep
learning model for STAS prediction in ground glass-predominant lung adenocarcinoma
in a retrospective cohort of 581 patients. They achieved satisfactory performance with
an AUC of 0.82 and an accuracy of 74%. Similar results were achieved by other studies,
with accuracy ranging from 0.66 to 0.93 [37–40]. However, results seem strictly dependent
on CT characteristics and scarcely reproducible, with only one study attempting to use
radiomics tools in a heterogeneous dataset [39]. These limitations make radiomics tools
hardly applicable in daily clinical practice at present.

Other studies tried to predict an extended panel of histological characteristics using
radiomics and AI. Some of them included visceral pleural invasion [41], EGFR mutation [42],
and PD-L1 expression [43]. Results are still experimental and their utility in preoperative
evaluation of patients is currently debated.

5. Surgical Planning

Surgical planning is a crucial step for a successful surgery. In recent years, sur-
geons have been assisted with a variety of computational tools for a tailored approach to
surgery [44]. In lung cancer surgery, these tools encompass computed tomography vascular
reconstructions, 3D models, and others [45]. New advanced technology is particularly
important in minimally invasive surgery and in pulmonary segmentectomy, where anatom-
ical variants are not infrequent [46]. In fact, the use of 3D CT-based models for preoperative
planning has been demonstrated to reduce the risk of unnecessary resection of lung tissue,
save operative time to find segmental planes and vessels, lower the risk of bleeding, and
decrease the overall operating room costs [47,48]. More recently, artificial intelligence
instruments have been proposed for better and more in-depth planning. These include
automatic segmentation of the tumor area and vascular planes in 3D CT reconstructions
and virtual reality tools.

5.1. 3D Reconstruction Models

One of the issues with 3D pulmonary reconstruction is that manual or semi-automatic
tools are time-consuming and can only be performed by experienced personnel. Thus,
AI methods have been proposed to automatically identify pulmonary nodules and lung
structures and create the 3D model, improving accuracy and time efficiency [49–57].

Regarding automatic pulmonary nodule detection, a great number of AI models
have been proposed generally based on convolutional neural networks (CNNs) [49–52].
Compared with traditional computer-aided diagnosis (CAD) techniques, CNN methods
have a better performance in detection, segmentation, and classification due to their capacity
to learn from verified data [49]. Specifically, they present a lower false positive rate than
traditional CAD tools. However, even if the number of false positives has decreased, it
remains the limiting factor for their wider clinical application.

Lancaster et al. [50] compared an automatic deep learning algorithm for nodule
detection and segmentation in 283 participants from the Moscow lung cancer screening
program. CTs were also analyzed by five experienced thoracic radiologists, and the results
were compared with the AI model. The authors found that the AI tool had fewer negative
misclassifications than most radiologists, but more positive misclassifications. Similar
results were found by Li L. [51] in their analysis of 346 healthy subjects. The AI system
showed a higher detection rate than two-radiologist readings (86.2% vs. 79.2%; p < 0.001)
but the false positive rate was also considerably higher than that of double reading (1.53 per
CT vs. 0.13, p < 0.001). Zhi L. et al. [52], in their analysis of 32 open-source deep learning
models, concluded that the high false positive rate of CNN models can be reduced with a
higher quality of CT image data.
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Regarding lung structure reconstruction, Chen et al. [53] recently presented their novel
fully automated reconstruction algorithm for vessel and bronchial detection based on AI.
Their algorithm was used to create a 3D model using non-contrast CT images of 20 patients
retrospectively enrolled and compared to a manual approach. The AI model achieved
good performance with an overall accuracy of 0.70, compared with 0.80 of the manual
approach, and accurate vessel and bronchi detection (85% by the AI model vs. 80% by
the manual model). The median time consumption of the AI algorithm was only 280 s.
The authors concluded that AI may achieve high identification accuracy in a short time
frame. The same group developed an AI-based chest CT semantic segmentation algorithm
that recognized segmental pulmonary vessels to provide a semi-automated approach for
operation planning [54].

Interestingly, automated segmentation of the lung parenchyma produced worse per-
formances than vessel and bronchi recognition, allowing a correct segmentation in 72.7% of
patients. Reasons for parenchyma segmentation failure were identified in severe emphy-
sema and fibrosis/pneumonitis [55].

Overall, automatic detection and segmentation of lung nodules is feasible, some
with AI models that are already commercially available. However, these tools cannot be
automatically used alone safely but they require human supervision considering the high
number of false positive misclassifications still being produced. Even if specific studies
have not been performed yet, it is probable that those automatic tools may have worse
performances in elderly patients than the standard considering the higher prevalence of
benign pulmonary nodules in this population [58]. Similarly, there are no specific studies on
3D lung models reproducing lung segments in elderly patients, but available data suggest
that these tools may be less accurate in octogenarian patients due to the higher rate of senile
emphysema and interstitial lung disease [59], low-quality CT imaging for motion artifacts,
or the absence of intravenous contrast [60].

5.2. Virtual Reality

Virtual reality (VR) refers to all computer- and AI-based techniques used to simulate
reality and thus allow interactions between human and virtual 3D interfaces. With its
fast development in all fields, the advantages of its possible application in healthcare are
obvious. VR creates unlimited expectations in surgical fields, where its potential in training
and perfecting techniques seems endless. However, performances are still unsatisfactory
and its distribution in daily clinical practice is still utopic.

In the lung cancer field, studies including VR for preoperative evaluation are lim-
ited [48,61–66] (Table 3). In 2018, Frajhof et al. [61] first evaluated VR as a preoperative tool
to improve decision making and surgical planning in a challenging video-assisted thora-
coscopic surgery case. Perkins et al. [62] developed a mixed-reality tool that provided 3D
visualization of the lung structures and allowed for interaction with the model to simulate
lung deflation and surgical instrument placement. The authors concluded that the tool may
facilitate accurate and faster identification of small lung nodules, potentially avoiding the
need for additional invasive preoperative nodule localization procedures. Tokuno et al. [64]
transposed their dynamic simulation system (Resection Process Map) for anatomic pul-
monary resection. This VR tool has the useful capacity to mimic the deformation of lung
structures, including vessels and bronchi, upon deformation and manipulation of the lung
such as fissure opening. Ujiie et al. [64] developed a VR navigation with head-mounted
displays that generated virtual dynamic images based on patient-specific CT. They evalu-
ated its utility for the surgical planning of lung segmentectomy in a case. Their tool did not
allow for lung manipulation but only an immersive experience with the use of the entire
visual field instead of a series of digital 3D images.
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Table 3. Articles using AI and VR tools for intraoperative planning in lung resections. AI = artificial
intelligence; 3D = three-dimensional; CT = computed tomography; VR = virtual reality; MR = mixed
reality; AR = augmented reality.

Author Objective N Patients AI-VR Tool Results

Sardari
Nia P
et al. [48]

To demonstrate the feasibility of
interactive 3D CT
reconstructions for preoperative
planning and intraoperative
guiding in video-assisted
thoracoscopic lung surgery

25

Three-dimensional
intraoperative vision of
CT reconstruction of
the pulmonary
anatomy

Preoperative 3D reconstruction of
pulmonary vessels corresponded with
the intraoperative findings in all
patients, revealing anatomic variations
in 4 (15.4%) patients. This contributed
to the safety and accuracy of
anatomic resections

Frajhof L
et al. [61]

To develop a platform that
allows for seeing, manipulating,
and rotating anatomic models in
full 3D dynamic reproduction
before the surgical procedure for
improving decision making and
surgical planning

Case report
VR
MR
AR

Display of patient’s 3D data through
VR, MR, and AR is a useful tool for
surgical planning by providing the
surgeon with a true and spatially
accurate representation of the
patient’s anatomy

Perkins SL
et al. [62]

To facilitate noninvasive lung
nodule localization by using 3D
mixed-reality visualization
technology

3 MR

Mixed-reality visualization during
surgical planning may facilitate
accurate and rapid identification of
small lung lesions during minimally
invasive surgeries and reduce the
need for additional invasive
preoperative localization procedures

Tokuno J
et al. [63]

To develop a novel simulation
system that generates dynamic
images based on patient-specific
computed tomography data

18 Resection Process Map
(original software)

The Resection Process Map accurately
delineated 98.6% of vessel branches
and all the bronchi, generating a
virtual dynamic image for each
patient reflecting the intraoperative
deformation of the lung. The median
time required to obtain the images
was 121.3 s

Ujiie H
et al. [64]

To investigate the potential
utility of this VR simulation
system in both preoperative
planning and intraoperative
assistance

Case report
VR surgical navigation
system using a
head-mounted display.

The VR software with the use of the
head-mounted display allowed
surgeons to visualize and interact with
real patient data
in true 3D, providing a unique
perspective

Sadeghi
AH
et al. [65]

First dedicated artificial
intelligence-based and
immersive 3D VR platform for
preoperative planning of
video-assisted thoracoscopic
segmentectomies

10 PulmoVR
(3D VR software)

Potential benefit of additional
VR-guided planning for video-assisted
thoracoscopic segmentectomies. In
40% of the cases, the surgical strategy
was adjusted due to the 3-dimensional
VR-based evaluation of anatomy

Bakhuis W
et al. [66]

To investigate the added clinical
value of PulmoVR for
preoperative planning in
pulmonary segmentectomy

50 PulmoVR
(3D VR software)

The surgical plan was adjusted in 52%;
the tumor was localized in a different
segment in 14%; more lung-sparing
resection was planned in 10%; and
extended segmentectomy, including
1 lobectomy, was performed in 28% of
cases after VR evaluation

Sadeghi et al. [65] first performed a prospective observational pilot study in 10 patients,
aimed at assessing the clinical applicability of their AI-based 3D VR platform for lung
segmentectomy. In their study, the surgical strategy was adjusted according to VR-based
evaluation in 40% of the cases. This result suggests the potential impact that VR-guided
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planning may have in the preoperative phase. The trend has been recently confirmed
by Backius et al. [66] in a cohort of 50 patients undergoing pulmonary segmentectomy.
They observed an adjustment in the surgical plan in 52% of patients after VR visualization
compared with CT scan evaluation only. In particular, the tumor was localized in a different
segment in 14% of cases.

6. Future Applications and Limitations

AI is becoming part of healthcare settings in several fields [8]. Its advantages include
the possibility for the fast and accurate processing of large datasets and even the chance to
learn and predict new data by identifying hidden patterns. In particular, AI technologies
have shown remarkable potential to enhance the preoperative evaluation of the patient
and to assist thoracic surgeons and anesthesiologists in the decision-making process [67].
This aspect seems to be particularly important considering the aging of the population and
the necessity to perform surgery on patients aged 80 or older. In fact, an accurate selection
of octogenarian patients undergoing lung surgery is mandatory to reduce perioperative
morbidity and mortality.

AI models have shown great potential for predicting respiratory and cardiovascular
complications after lung surgery and thus predicting which patients will benefit from
a surgical treatment [19–21,23]. However, clinical studies in this field are limited and
often monocentric with a restricted number of patients and pilot algorithms. This makes
the current clinical application of AI tools in preoperative settings still hypothetical and
experimental. Further and more robust research is needed for concrete use in daily clinical
practice in the future.

Different is the advancement of AI in the thoracic imaging field, which is one of the
most studied AI applications [68]. In fact, several studies have been conducted both in the
automated detection of lung nodules and in the risk assessment for lung cancer [28–31]
with good results. In this field, the application of AI technology seems closer, and several
commercial AI programs for lung nodule detection and segmentation are already available.
In the context of a tailored approach, an interesting and emerging field concerns the pos-
sibility of STAS prediction. In fact, being able to predict STAS may prevent unnecessary
lobar resections in marginal patients or oncologically ineffective sublobar resection if possi-
ble [32,33]. This is particularly important in octogenarian patients, who are characterized
by a higher incidence of morbidity and mortality in lobectomies compared to sublobar lung
resections [29]. Unfortunately, we are far from a reliable preoperative prediction of STAS,
which remains a histological characteristic tested postoperatively. Limitations in a future
clinical transition lie in the heterogeneity of studies and datasets that make comparison
and reproducibility very difficult [37–40]. Moreover, many studies are monocentric and do
not include external validation, making their applicability questionable [39].

Overall, it is predictable that AI as well as other technological innovations will be part
of the future of healthcare. However, there are several concerns that need to be addressed
before a concrete and widespread application. First of all, studies are still experimental,
and more validation research is needed to understand the real impact of AI in this specific
surgical context. In fact, the robustness and stability of AI models are still too dependent
on input data, and the heterogeneity of databases may affect their diagnostic performance.
Second, AI systems are not able to solve complex or uncommon diagnostic challenges or
personalize treatment options, making the role of physicians still central in the decision-
making process. Third, specific laws regarding the legal responsibility of AI-based decisions
have not been drawn up yet, limiting the possibility of concrete use in daily clinical practice
at the moment.

7. Conclusions

The traditional medical methodology of searching for detailed information to achieve
a definitive diagnosis with strong scientific evidence cannot be replaced yet. The role of
the physician in the diagnosis and treatment is not questioned at all, and there is no other
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choice than allowing them to persist in a stronger and stronger status. Additionally, new
technologies and unexplored fields of knowledge offer opportunities to reduce human
errors and increase quality performance. The most recent advancements in AI suggest a
break in stale habits and a change in the outdated paradigm. In fact, these tools provide
invaluable support to physicians in the decision-making process and, if properly used,
they could help to reduce errors and therefore increase healthcare standards. This could be
particularly applicable to fragile patients, such as octogenarians, in whom the diagnostic–
therapeutic path is often questionable. On the other hand, too much optimism in growing
technologies without a strict human-led creative process is unacceptable as well.
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