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Abstract: The COVID-19 pandemic has had a profound impact on various aspects of our lives,
affecting personal, occupational, economic, and social spheres. Much has been learned since the early
2020s, which will be very useful when the next pandemic emerges. In general, mobility and virus
spread are strongly related. However, most studies analyze the impact of COVID-19 on mobility, but
not much research has focused on analyzing the impact of mobility on virus transmission, especially
from the point of view of monitoring virus incidence, which is extremely important for making
sound decisions to control any epidemiological threat to public health. As a result of a thorough
analysis of COVID-19 and mobility data, this work introduces a novel measure, the Infection Ratio
(IR), which is not sensitive to underestimation of positive cases and is very effective in monitoring
the pandemic’s upward or downward evolution when it appears to be more stable, thus anticipating
possible risk situations. For a bounded spatial context, we can infer that there is a significant threshold
in the restriction of mobility that determines a change of trend in the number of infections that, if
maintained for a minimum period, would notably increase the chances of keeping the spread of
disease under control. Results show that IR is a reliable indicator of the intensity of infection, and an
effective measure for early monitoring and decision making in smart cities.
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1. Introduction

On 31 December 2019, the World Health Organization (WHO) China Country Office
was informed of cases of pneumonia of unknown etiology detected in Wuhan City, China.
The Chinese authorities identified a new type of coronavirus (novel coronavirus, nCoV),
which was isolated on 7 January 2020. Later, the virus was named SARS-CoV-2 (severe acute
respiratory syndrome coronavirus 2), causing the infamous COVID-19 (COrononaVIrus
Disease 2019) disease. The WHO on 11 March 2020 declared the novel coronavirus outbreak
a global pandemic and on 4 May 2023 stated that COVID-19 no longer constituted a public
health emergency of international concern. After more than three years, a retrospective
look leads us to an unsatisfactory judgment on the many diverse measures and policies
adopted to combat the disease since its inception.

Undoubtedly, human to human interaction is the most prolific method of transmission
of the virus. The only fully effective measure to eradicate the virus in the world is maximiz-
ing social distancing, i.e., global self–isolation. However, this measure entailed bringing the
world to a complete halt for a period (e.g., three weeks). This decision requires an exercise
of collective sanity that humanity is not capable of achieving.

Consequences of the first outbreak were underestimated by most, if not all, coun-
tries, partly due to the great lack of knowledge of the virus and to major concerns
over economic impact. However, history has taught us that in similar situations, adopt-
ing a conservative attitude is preferable to a tolerant one. The question that should
be asked now is whether the impact of a global categorical decision would have been
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less than what we have been stoically enduring since early 2020, having already expe-
rienced a death toll of about 7 million people (with many millions more cases likely
not officially reported—in May 2023, the WHO stated that this figure could be seven
times higher (WHO ‘Director-General’s opening remarks at the media briefing—5 May
2023’. https://www.who.int/director-general/speeches/detail/who-director-general-s-
opening-remarks-at-the-media-briefing---5-may-2023 (accessed on 26 September 2023)).
What is very clear is that if the isolation of everyone cannot be achieved, the next level
is to reach domestic isolation, i.e., the confinement of family units. Should any member
be allowed to violate this containment, though, the measure loses its strength. This is
exactly what has happened and why hygiene, self-protection and social distancing rules
became prominent.

The dynamic nature of cities has led to substantial changes in urban environments,
making the analysis of geo-spatial information more complex [1]. The current capacity
for data generation provides a unique opportunity to comprehend the dynamics of cities
and the behavior of their inhabitants. This information holds invaluable knowledge for
understanding behavioral patterns in the face of anomalous situations, such as those caused
by the pandemic.

Urban mobility encompasses a wide range of transportation options and sources that
help people move around cities efficiently. Some studies related to COVID-19 have focused
on public transportation, such as urban rail systems [2], public buses [3], a combination
of them (e.g., public transit, ride-shares, bikes, and walking [4]), or gendered mobility
patterns [5]. In principle, knowing more about the relationship between increased or
decreased mobility and the incidence of COVID-19 will help us to act more effectively
in future pandemics. Nevertheless, interest in many works has focused on the impact of
COVID-19 on mobility, and few efforts have been directed at assessing how regulating
mobility rates can have positive effects on controlling virus transmission. Examples of these
studies have focused on Taiwan [6], Poland [7], the United States [8], India [9], Spain [10,11],
Japan [12], the United Arab Emirates [13], Saudi Arabia [14], Greece [15], China [16,17],
Indonesia [18], Austria [19], Italy [20], Portugal [21,22], South Africa [23], Costa Rica [24],
and Australia [25], among others.

The mobility of individuals during the COVID-19 pandemic differs substantially from
country to country [26,27]. Numerous studies have examined the relationship between hu-
man mobility and COVID-19 transmission using spatio-temporal data. Empirical evidence
suggests that lower rates of COVID-19 infection and mortality are associated with increased
levels of social distancing and reduced usage of public transit modes [28]. Implementing
restrictions on human mobility has been effective in reducing COVID-19 transmission,
although the effectiveness of such policies can vary temporally and spatially across different
stages of the pandemic [29]. For instance, a study based on zip code data from five U.S.
cities estimated that the total cases per capita decreased by 19% for every 10% decrease in
mobility [30]. In a study covering 34 OECD countries, Singapore, and Taiwan, it was found
that reductions of up to 40% in commuting mobility were associated with decreased cases,
particularly during the early stages of the pandemic, in two-thirds of the countries [31].
Another study analyzing data from 52 countries also highlighted a strong link between
mobility measures and transmissibility, supporting the benefits of population-wide social
distancing interventions [32]. In the United States, a reduction of 10% in mobility was
associated with a substantial decrease in case growth (17.5%) two weeks later [33]. In
Europe and the U.S., the impact of social distancing measures resulted in a reduction of
20–40% in infection rates for most European countries and 30–70% for the U.S., observed
two to five weeks after the implementation of mobility reduction [34]. Additionally, mobile
phone location data were used in a longitudinal study to analyze population mobility
and COVID-19 incidence across 314 Latin American cities. The findings indicated that a
10% lower weekly mobility was associated with an 8.6% lower incidence of COVID-19
in the following week [35]. Analysis of mobility data in England and Wales revealed a
strong correlation between mobility reductions and lower excess mortality, considering
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a five-week lag between the two variables [36]. Similarly, a study of the most affected
counties in the U.S. detected decreases in COVID-19 case growth rates due to changes in
mobility patterns, which dropped by 35–63% relative to normal conditions. However, the
impact was not immediately perceived, and reductions in case growth rates were observed
up to 9–12 days later [37]. Other research has identified positive associations between
mobility growth patterns and the increase in the number of COVID-19 cases, with lags of 5
to 7 weeks during the fast growth phase of the pandemic [38]. Interestingly, the number of
new cases daily has been linked to trips taken more than two weeks before, suggesting that
commonly set 14-day mobility restrictions for quarantine may potentially underestimate
the effectiveness of containment policies [39].

Social distancing is effective in reducing virus spread. Therefore, maximizing social
distancing in transportation means minimizing transmission risks. In this context, private
vehicles gained significance among people in need of transportation. However, in big
cities where parking places are scarce or expensive, private cars are not as convenient,
and taxis become an excellent representation of global mobility. Several papers have been
published with the aim of examining the correlation between taxi mobility and the impact
of COVID-19 in specific contexts. For instance, in NYC, researchers focused on identifying
exhaust emission patterns and changes in urban mobility during the lockdown period
in 2020 [40]; another study explored the profound impact of the COVID-19 outbreak on
travel patterns [41]. In Chicago, research has delved into the impact of the pandemic on the
structure of the mobility network of taxis [42], and another study investigated the variation
in taxi tipping rates according to COVID-19 intensity [43].

This study focuses on mobility behavior and on how urban mobility is related to virus
prevalence, both in terms of infections and deaths. Hygiene and self–protection measures
depend on individuals’ willingness, the availability of resources in the market, and the
economic capacity to obtain necessary materials like face masks and hydroalcoholic gels.
Undeniably, maximum social distancing (zero mobility) for a short period of time would
probably have annihilated the virus, unless the virus could survive for a long time under
certain external conditions or could reproduce on its own without a host.

To analyze the behavior of individuals as subjects in motion who are capable of contacting
and potentially infecting others, New York City (NYC) has been selected as a representative
urban area that mirrors the dynamics of mobility in many metropolises worldwide. There are
various sources of information that could be provided to an analytical model to comprehend
mobility dynamics during a pandemic, ranging from individual-level data generated at any
time (representing a vast volume of information) to statistically significant samples obtained as
subsets. In a modern, technologically advanced city, transportation serves as a highly reliable
indicator of mobility patterns. Data generated by cab trips are valuable as they encourage
distancing compared to other means of public transportation, such as buses or subways.
To provide a bounded temporal context for the analysis of the pandemic’s irruption and
its relationship to mobility, data generated by NYC cabs during the year 2020 (the period
of greatest uncertainty in which the first wave occurred) will be analyzed. This analysis
could be easily extrapolated to other years, as well as to other metropolises. Moreover, its
reproducibility in the event of a new pandemic outbreak is significant.

As mentioned above, most studies have focused on the impact of COVID-19 on
mobility, but not much research has focused on analyzing the impact of mobility on virus
transmission, especially from the point of view of monitoring virus incidence, which is
extremely important for making sound decisions to control any epidemiological threat
to public health. Therefore, the goal of this research is to show that it is also possible to
measure the impact of mobility policies on COVID-19 incidence in advance, which is very
useful for controlling the spread of the disease.

The rest of the document is organized as follows: Section 2 presents the sources of
information (COVID-19 and mobility data) and introduces the Infection Ratio measure;
Section 3 shows the results of the analysis of mobility data from New York City cabs
during 2020 and the evolution of COVID-19 data in the same city; Section 4 discusses the
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relationship between infections and mobility, highlights the strong association between
both variables, and introduces the role of the Infection Ratio in monitoring the impact of the
pandemic; finally, the main conclusions and future work are described in the last section.

2. Methods
2.1. COVID-19 Data

The first case of the COVID-19 pandemic in NYC was confirmed on 29 February
2020 (as the first laboratory-confirmed case), though later research showed that the novel
coronavirus had been circulating since January [44]. The Health Department provides a
repository that contains updated data on coronavirus disease 2019 (COVID-19) in NYC.
The numbers of infected and deceased people were smoothed by applying seasonal trend
decomposition via locally estimated scatterplot smoothing (STL) [45] to the original data in
order to isolate trends from seasonal and noise effects.

2.2. Mobility Data

NYC boasts one of the largest taxi mobility databases, with easy full access from the
New York City Government web site [46]. The data used were collected and provided
to the NYC Taxi and Limousine Commission (TLC) by technology providers authorized
under the Taxicab and Livery Passenger Enhancement Programs (TPEP/LPEP). Taxi trip
records include fields capturing pick-up and drop-off dates/times, pick-up and drop-off
locations, trip distances, itemized fares, rate types, payment types, and driver-reported
passenger counts.

The data included trips from the five boroughs of NYC (Manhattan, the Bronx, Brook-
lyn, Queens, and Staten Island) and amounted to 28,667,765 trips. Extensive cleaning was
necessary to ensure a high-quality dataset for analysis, as outlined in Figure 1 (modules
named Filters, Missing and Transformation). The Taxi Zone Shape file was used to filter
pick-up and drop-off locations identified by latitude and longitude to exclude trips outside
the area of interest. Trips with distances smaller than 0.1 or greater than 85 miles (the
longest one-way trip within the area is approximately half this distance) were removed as
they were considered far outliers. Trips with fares smaller than USD 1 were also eliminated,
and all fare inconsistencies were filtered based on the day of the week and time. Subse-
quently, all coordinates were transformed into zone codes, as depicted in Figure 2, with
colors corresponding to the respective borough. The final dataset included trips that had
both pick-up and drop-off within the zones identified in the map, amounting to a total of
28,102,750 trips (a decrease of about 2%).
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2.3. The Infection Ratio

Basic (R0) or effective (Rt) reproduction numbers are epidemiological metrics used to
measure the contagiousness or transmissibility of infectious agents. However, the values
are often estimated by using ordinary differential equations. Therefore, the calculation and
interpretation are not straightforward, and although they remain valuable concepts, they
should be applied with caution [47] and considering a long list of recommendations that
depend on the phase of the pandemic [48]. In fact, many countries have adopted concepts
that make it easier for society to understand the status and evolution of the pandemic. For
example, the cumulative incidence rate per 100,000 population has been postulated as an
understandable indicator of the improvement or worsening of the pandemic situation.

Taking into consideration that the latent period is about 3.1 days (immediately after
infection), the prodromal infective period is about 2 days, and the early infective period
lasts around 5 days [49], it becomes possible to visualize the evolution of the pandemic
by analyzing a novel measure introduced in this work: the Infection Ratio (IR). The IR is
calculated as the ratio of people infected during a period of three days and not capable of
infecting others (denoted λ) to the number of people infected during the preceding 14 days
with the potential to infect others (denoted µ).

Infection Ratio (IR) =
λ

µ
(1)

The advantage of the IR lies in its ability to account for potential biases in the number of
infections, particularly underestimation. The assumption is that this bias remains constant
over the three days when infected persons are recorded and the previous fourteen days
when individuals with the capacity to infect are counted, i.e., it is not likely that reported
cases have varying levels of underestimation over the 17-day period.

Let π be the infection underestimation factor. Typically, both λ and µ, represent-
ing reported infection values, tend to be lower than the actual values. Should there be
any variation in underestimation over time, it is expected to be gradual, given the
consistent nature of reported values during this duration. Including π in Equation (1):
IR = (λ + πλ)/(µ + πµ) = λ/µ implies that the true values are assumed to be π percent
higher. Therefore, such variations are not substantially impacting the calculated IR, and as
a result, the bias has a negligible effect on the IR values.
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3. Results

A critical limitation in our understanding of the COVID-19 pandemic is that we cannot
trust statistical data provided by local and state governments, since the true number of
infections does not correspond to the number of confirmed tests (many infected people
were never tested because they did not have access to testing or had no symptoms and did
not even know they were infected, though they were still able to transmit the virus). Such
asymptomatic infections were estimated to be 15–70% of total infections (source: Centers
for Disease Control and Prevention, U.S. Department of Health and Human Services [50]),
although more precise models for NYC state that the proportion of symptomatic cases
ranges from 13 to 18% [51], i.e., 82–87% of cases are asymptomatic. Several models have
been developed to estimate the true daily number of infections, and the figures are surpris-
ingly generous. For example, Figure 3 shows estimates from the Institute for Health Metrics
and Evaluation (IHME) model [52] for the year 2020 for New York State. Estimations are
sometimes about four times greater than the reported data. In addition, the reported case
figures on a given date do not necessarily show the number of new cases on that day, due to
delays in updating data, and not all countries use the same criteria for counting infections
and deaths. For example, by the end of December 2020 in Germany, a country with around
84 million inhabitants, 1.7 million positive cases and some 33,000 deaths had been reported,
while in Bangladesh, a country with 165 million inhabitants, only half a million infected
people had been informed (data gathered and processed from the COVID-19 Dashboard by
the Center for Systems Science and Engineering at Johns Hopkins University) [53].
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In general, COVID-19 data have been collected worldwide on such diverse criteria that
they cannot provide general, reliable conclusions based on quantitative measures; instead,
qualitative conclusions should be drawn with higher degree of abstraction with respect to
the data in specific regions, i.e., based on the behavior of the data (relative measures) rather
than on their values.

Figure 4 shows the evolution of COVID-19 during the first wave in 2020 in NYC. It
shows the approximate number of days from the beginning (zero values) to the maximum
peak value (30 and 21 days, for infected and deceased persons, respectively), and then from
the maximum to a stable minimum value (70 and 79 days, respectively). The total number
of confirmed cases during the first 100 days (30 + 70) is 209,000, while the number of deaths
(21 + 79) is 18,400 (almost 9%).

From the perspective of decision making timeliness, it does not appear reasonable that
it takes about 3 weeks to implement measures to mitigate the number of infections, and an
additional 16 days to observe their impact. This delay in response does not demonstrate
alacrity and decisiveness on the part of political authorities. By reducing this timeframe
from three weeks to one week, the number of infections during the first wave could have
been drastically reduced. An analysis involving 10 different countries found that fast
decisions are critical, and if taken early enough, an up to 40% reduction in mobility would
be sufficient to control the level of infections [54].

https://COVID19.healthdata.org/
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At this juncture, it is important to highlight that the probability density function of the
incubation period, defined as the period (in days) from virus exposure to the onset of symp-
toms, does not follow a normal distribution; instead, it has been modeled using lognormal,
Weibull, and Gamma distributions. As the incubation period is estimated to be between 4.5
and 5.8 days, and the onset of symptoms occurs between 9.7 and 14.2 days [55], to minimize
the risk of infection requires a minimum isolation period of 14 days (95% CIs) from the
time of infection (uncertainty increases towards the tail of the lognormal distribution).

Figure 5 shows the curves of the daily distances traveled by cabs during the period
from 2017 to 2020, inclusive. Gaussian smoothing using a 7-day sliding window with
a central mean was applied to generate the curves, thus avoiding bias due to variations
in mobility on weekdays and weekends. At first sight, the most notable aspect is the
significant decrease in mobility that occurred progressively in 2020, lasting for 41 days and
reaching a minimum equivalent to 8% of mobility with respect to the pre-pandemic period
(baseline). This minimum was sustained for only 20 days, after which mobility slowly
started to rise, ranging between 15% and 30% of the baseline throughout the second half of
the year.

Healthcare 2024, 12, x FOR PEER REVIEW 8 of 13 
 

 

At this juncture, it is important to highlight that the probability density function of 
the incubation period, defined as the period (in days) from virus exposure to the onset of 
symptoms, does not follow a normal distribution; instead, it has been modeled using lognor-
mal, Weibull, and Gamma distributions. As the incubation period is estimated to be between 
4.5 and 5.8 days, and the onset of symptoms occurs between 9.7 and 14.2 days [55], to minimize 
the risk of infection requires a minimum isolation period of 14 days (95% CIs) from the time 
of infection (uncertainty increases towards the tail of the lognormal distribution). 

Figure 5 shows the curves of the daily distances traveled by cabs during the period 
from 2017 to 2020, inclusive. Gaussian smoothing using a 7-day sliding window with a cen-
tral mean was applied to generate the curves, thus avoiding bias due to variations in mobil-
ity on weekdays and weekends. At first sight, the most notable aspect is the significant de-
crease in mobility that occurred progressively in 2020, lasting for 41 days and reaching a 
minimum equivalent to 8% of mobility with respect to the pre-pandemic period (baseline). 
This minimum was sustained for only 20 days, after which mobility slowly started to rise, 
ranging between 15% and 30% of the baseline throughout the second half of the year.  

 
Figure 5. Daily distance traveled by cabs during 2017, 2018, 2019 and 2020 in NYC. 

Analysis of the variability of mobility of individuals in relative terms can shed light 
on the impact of contact limitation on the number of infections. Instead of distances, Figure 6 
depicts the number of taxi passengers versus the evolution of the number of infections 
and deaths. By identifying an approximate inflection point in the graph that denotes a 
deceleration in the growth rate of confirmed cases, an estimate is placed around day 82, 
aligning with mobility levels around 17% of normal (pre-pandemic) values. This specific 
point (marked in orange) signifies the onset of the declining phase leading up to the peak 
in confirmed cases, occurring 16 days later. Subsequently, mobility remains under 17% 
until day 252 (second point highlighted in orange). After this period, mobility surpasses 
17%, coinciding with a resurgence in confirmed cases and stabilizing approximately 16 
days later, followed by a significant increase. 

Figure 5. Daily distance traveled by cabs during 2017, 2018, 2019 and 2020 in NYC.

Analysis of the variability of mobility of individuals in relative terms can shed light on
the impact of contact limitation on the number of infections. Instead of distances, Figure 6
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depicts the number of taxi passengers versus the evolution of the number of infections
and deaths. By identifying an approximate inflection point in the graph that denotes a
deceleration in the growth rate of confirmed cases, an estimate is placed around day 82,
aligning with mobility levels around 17% of normal (pre-pandemic) values. This specific
point (marked in orange) signifies the onset of the declining phase leading up to the peak in
confirmed cases, occurring 16 days later. Subsequently, mobility remains under 17% until
day 252 (second point highlighted in orange). After this period, mobility surpasses 17%,
coinciding with a resurgence in confirmed cases and stabilizing approximately 16 days
later, followed by a significant increase.
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4. Discussion

The adopted measures did not have an immediate impact, meaning that their imple-
mentation was not visibly reflected in population movement over the following days. For
instance, when the state of emergency was declared on 7 March 2020, in New York State,
mobility started to slowly decline, reducing to 10–20% towards the end of March [56], about
a week before reaching the peak of infections.

Several observations surface from Figure 6: (a) the 21 days prior to the initial orange
point are highly dependent on the promptness of intervention measures, suggesting a
possible need for rapid actions, which would have had a large impact on the area under the
curve (i.e., the total number of infections); (b) understanding the impact of reduced mobility
in NYC on the growth rate of confirmed cases (the first orange dot) aids in approximating
the levels of sustained mobility necessary to prevent a recurrence similar to the subsequent
surge in infections (the second orange dot). In order to significantly curtail the infection
count, mobility needed to be restricted to a maximum of 17%. Conversely, surpassing
this threshold resulted in a noticeable upswing in infections. Clearly, any value ranging
between 8% (the minimum value reached in Figure 5) and 17% (indicating a shift in the
trend in Figure 6) could be considered a viable critical threshold for mobility. The specific
value of this threshold will depend on the region being studied but serves as a reference to
illustrate the critical importance of mobility in determining a downward or upward trend
change in the number of infections. Nonetheless, regardless of the threshold, it takes about
two weeks for the consequences of reduced or increased mobility to begin to be felt.

Plotting the IR for the period of interest yields a curve that serves as a reliable indicator
of the evolution of the overall intensity of infection. In Figure 7, the IR clearly shows
the tragic month of March. When the IR is greater than 1, it indicates that the power of
infection during the next two weeks will surpass the current level. On 23 March (day 82),



Healthcare 2024, 12, 517 9 of 12

the IR falls below 1, leading to a decline in the number of infections two weeks later. From
the beginning of May, the curve appears to stabilize, but a closer examination reveals
oscillations with an increasing trend (see red arrow). By 8 September (day 252), the IR
exceeds 0.25 again, meaning that for every four people infected during a two-week period,
one person will be infected within the following three days. As observed in the figure,
this increase in IR corresponds to a rise in the number of infected people and deaths. On
the other hand, this situation is also reflected from day 252 onwards in Figure 6, when
mobility exceeds 17%. Furthermore, the peak of IR (9–10 March) occurs approximately
three weeks before the peak of positive cases (first week of April), indicating its importance
as a measure for early decision making. Throughout different phases (waves) of the
virus spread, close monitoring of indicators is essential, as their significance lies in the
analysis of their evolution rather than the specific numerical values. A monitoring of the
evolution of the IR from May to September would have revealed in advance the worsening
of the situation.
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As a result of this analysis, we can conclude that the use of direct measures such as
the number of infections or deaths is not sufficiently effective for decision making, mainly
due to the difference between reported and actual infections, as criteria for counting deaths
due to COVID-19 have varied between countries (e.g., in Spain, deaths in nursing homes
were not reported. (‘Poor data obscures COVID-19 death toll at Spain’s nursing homes’.
REUTERS. 7 July 2020). However, the analyzed data clearly demonstrate an association
between the degree of mobility restriction and the spread of the virus. The use of relative
measures, such as mobility variability or the novel infection ratio, could be more effective
in measuring the pulse of a pandemic, especially regarding the impact of social distancing
on the number of infections.

5. Conclusions

The mobility data are highly representative and of excellent quality, but the same
cannot be claimed for the data on infections and deaths. Consequently, the data should be
analyzed very carefully. Relying solely on the number of reported infections for decision-
making is ineffective, as there could be a significant disparity between the reported and
actual number of infections.

Mobility has proven to be an excellent indicator for monitoring the dynamics of a
pandemic. Existing research has demonstrated a strong correlation between mobility
patterns and fluctuations in the number of infections and deaths. However, less attention
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has been devoted to the impact of mobility on virus transmission and how controlling
mobility may be a powerful tool for preventing the spread of the disease in advance.

Utilizing relative measures such as the Infection Ratio is valuable as it mitigates
the impact of underreported cases and aids in effectively monitoring the virus’s spread
while assessing the efficacy of implemented policies. Results show that the IR is a reliable
indicator of the intensity of infection and an effective measure for early monitoring and
decision making. Although this study is specific to the characteristics of the analyzed city,
variations in values across different environments do not undermine the interpretation and
quality of the obtained results.

Future research endeavors will focus on expanding the application of the Infection
Ratio measure to diverse viral infections, populations of varying sizes, and geographical
settings, provided that adequate and comprehensive datasets become available. These
efforts aim to enhance the versatility and reliability of the measure for proactive monitoring
and response strategies in potential future pandemics and infectious disease scenarios.
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