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Abstract: The remarkable progress in data aggregation and deep learning algorithms has positioned
artificial intelligence (AI) and machine learning (ML) to revolutionize the field of medicine. AI is
becoming more and more prevalent in the healthcare sector, and its impact on orthopedic surgery
is already evident in several fields. This review aims to examine the literature that explores the
comprehensive clinical relevance of AI-based tools utilized before, during, and after anterior cruci-
ate ligament (ACL) reconstruction. The review focuses on current clinical applications and future
prospects in preoperative management, encompassing risk prediction and diagnostics; intraoper-
ative tools, specifically navigation, identifying complex anatomic landmarks during surgery; and
postoperative applications in terms of postoperative care and rehabilitation. Additionally, AI tools
in educational and training settings are presented. Orthopedic surgeons are showing a growing
interest in AI, as evidenced by the applications discussed in this review, particularly those related to
ACL injury. The exponential increase in studies on AI tools applicable to the management of ACL
tears promises a significant future impact in its clinical application, with growing attention from
orthopedic surgeons.

Keywords: artificial intelligence; machine learning; navigation; anterior cruciate ligament; deep
learning; knee injuries

1. Introduction

Technical developments in orthopedic surgery have resulted in two main contri-
butions: the integration of artificial intelligence (AI) into decision support systems for
diagnosing and treating orthopedic conditions, and the adoption of robotic surgery in
surgical procedures.

The inception of AI dates back to 1956 when Professor John McCarthy first introduced
the concept. Since then, the notion of AI has undergone a transformative evolution,
revealing deep learning (DL) and evolutionary networks that can replicate the functions of
human neuron cells [1].

The remarkable progress in data aggregation and DL algorithms has positioned AI
and machine learning (ML) to revolutionize the field of medicine [2,3]. AI represents the
fourth industrial revolution and is the upcoming frontier in medicine, with the potential to
revolutionize the field of orthopedics and sports medicine. However, the comprehensive
understanding of fundamental principles and the integration of applications are still in
their early stages [4,5].
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AI is becoming more and more prevalent in the healthcare sector, and its impact
on orthopedic surgery is already evident in several fields. AI has found applications in
many aspects of orthopedic surgical care, including its integration into the diagnosis and
classification of fractures, assessment of risks and prediction outcomes, intraoperative
navigation, and robot-assisted surgery.

Recent research efforts aimed at integrating AI into orthopedic surgery and sports
medicine have shown significant potential. These applications hold promise in predicting
the risk of athlete injuries, interpreting advanced imaging, assessing patient-reported
outcomes, reporting value-based metrics, and enhancing the overall patient experience [6,7].
Emerging technologies like AI demand ownership, leverage, and application by orthopedic
surgeons in order to improve the care provided to patients [8]. There are still issues to be
addressed with regard to regulation, ethical application, and AI’s clinical advantage over
conventional statistics and decision-making [9,10].

The knee is involved in nearly half of all injuries in orthopedic sports pathology. Ante-
rior cruciate ligament (ACL) tears are the most common injury among these, accounting
for up to 78% of all sports-related knee pathology [11,12].

Despite the ongoing debate in the literature regarding ACL reconstruction, encompass-
ing various surgical techniques, graft and fixation devices, and rehabilitation approaches,
the procedure is considered safe. It demonstrates reproducibility among knee surgeons,
patient satisfaction, and positive outcomes, even in individuals with high functional
demands [13,14]. Consequently, the application of AI, which has shown a significant
impact in other orthopedic domains for patient care, has not fully achieved its potential in
this context. Moreover, current barriers to the adoption of AI and ML in the treatment of
knee injuries include regulatory hurdles, data privacy concerns, and the imperative need
for thorough validation of AI models within the orthopedic field.

In the management of ACL tears, AI and ML can play a role in improving diagnostics,
accurately predicting individuals at risk of ACL injury or re-injury, identifying complex
anatomic landmarks during surgery, and optimizing pain control and postoperative reha-
bilitation protocols [15,16]. However, interest and understanding of AI and ML in knee
injuries are still little-known and underutilized.

This review aims to examine the literature that explores the comprehensive clinical rel-
evance of AI-based tools utilized before, during, and after ACL reconstruction, specifically
focusing on the use of AI, ML, and DL, also describing their conceptual differences. The
goal is to address and enhance the detection, treatment, and rehabilitation of individuals
with ACL injuries.

2. AI Tools

AI empowers machines to execute tasks through algorithms driven by pattern recog-
nition and self-correction, utilizing extensive data to refine options and prevent errors.
The four essential elements for implementing AI in medicine include big datasets, high-
performance computers, cloud computing infrastructure, and the development of open-
source algorithms. The utilization of AI in healthcare is continually growing, and its
influence on orthopedic surgery is already evident in various domains. These include
recognizing medical images, predicting risks, and aiding in clinical decision-making
processes [7,8,16].

ML emerged soon after the advent of AI in 1959 as a method to achieve AI objectives.
ML algorithms are capable of learning from data by modifying their internal parameters
and strengthening relevant connections, thereby improving the accuracy of a specific
model. This learning process in ML entails an incremental optimization of a mathematical
model [8,17].

DL represents a more advanced form of ML. It is capable of conducting unsupervised
learning using unstructured and unlabeled data, by filtering out data input from less
relevant variables for targeted prediction. DL is inspired by the neuronal connections in
the human brain and operates through algorithms called artificial neural networks [2,8].
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In Figure 1, some significant steps in the impact of AI from its inception to DL
are illustrated.
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Figure 1. Timeline outlining the major historical steps that have led to the development of artificial
intelligence (AI) up to the advancement of deep learning, with significant impact in the history of
medicine and orthopedics.

AI, ML, and DL offer a variety of application models in the orthopedic field, including
the random forest model, support vector machine, multilayer perceptron, convolutional
neural network (CNN), alternating decision trees, and recurrent neural network [4,15].

Figure 2 illustrates the main points of application of AI tools in the management of
ACL injuries.
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Figure 2. Key applications of AI tools in the management of ACL injuries, presented and dis-
cussed in the following sections (AI = artificial intelligence; CNN = convolutional neural network;
ACL = anterior cruciate ligament; ML = machine learning; MRI = magnetic resonance imaging;
DL = deep learning).
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3. Preoperative Management
3.1. Prediction

AI tools and ML have enabled the development of algorithms to predict ACL injuries.
Pedoia et al. developed a statistical shape modeling based on 3D magnetic resonance
imaging (MRI). This model enables the extraction and comparison of the tibia and femur
shapes in patients, both with and without acute ACL injuries [18]. It is known that certain
features such as intercondylar width and posterior tibia slope are correlated with a higher
risk of injury. However, this statistical shape modeling offers significant potential to
measure these features, providing a detailed account of the surfaces that depict complex
3D deformations.

Johnson et al. have developed a DL-based system aimed at acting as an early alert
mechanism for monitoring athlete workload and the risk of knee injuries by accurately
capturing on-field 3D knee joint movements [19]. The algorithm is based on a pretrained
CNN that analyzes 3D knee joint movements linked to ACL injuries. This is performed
through marker-based motion capture as athletes engage in three sports-related activities:
walking, running, and sidestepping. According to the authors, this DL-based system
represents an initial stage toward establishing techniques for assessing the risk of knee
injuries, including ACL tears, in real time during athletic events.

Taborri et al. developed an approach based on AI to quantify the risk of ACL injury,
assessing leg stability, mobility, and load absorption capacity following a jump, utilizing
inertial sensors and optoelectronic devices [20]. The athlete’s risk factor was determined
using the Landing Error Score System, which showed a strong correlation for predicting
ACL injury.

Tamini et al. employed supervised ML models to construct a predictive mathematical
model for primary ACL injuries, using a set of knee morphological characteristics [21].
Preoperative MRI scans were utilized to measure the anteroposterior lengths of the medial
and lateral tibial plateaus, as well as the lateral and medial bone slope, lateral and medial
meniscal slope, and lateral and medial menisci. An AI-based prediction tool was developed
with Matlab R2019b software, employing an algorithm to formulate the predictive model.
The AI prediction model for primary ACL injury achieved a testing accuracy of over 90%.

3.2. Diagnosis

Injuries to the ACL, as well as other ligaments and menisci, are highly prevalent and
are commonly diagnosed using knee MRI [22]. AI, particularly DL, has become a widely
studied tool to enhance the capabilities of radiologists in various clinical applications [23,24].
Most DL algorithms designed to identify and describe internal derangement in MRI images
have primarily focused on the knee joint. This emphasis can be attributed to the frequent
occurrence of knee MRI exams, generally high image quality, significant clinical relevance,
relatively straightforward anatomical structures, standardized positioning, and a well-
defined set of common injuries [25].

The diagnosis is mainly based on expert clinical examinations to evaluate the stability
of the knee. Both the Lachman test and the Pivot Shift test are clinical methods that show
high sensitivity and specificity for identifying a complete tear of the ACL [26]. In addition
to confirming an ACL tear, the main advantages of MRI include characterizing the tear
type for surgical decision-making and diagnosing concomitant knee injuries.

In their pioneering study on machine learning models for diagnosing knee ligament
injuries in 2017, Štajduhar et al. appraised two decision-support models that could dis-
tinguish between less severe ACL injuries not necessitating surgery and complete ACL
tears requiring surgical intervention, based on sagittal plane MRI images of the human
knee [27]. The process included extracting a histogram of oriented gradients (HOG) and
gist descriptors from regions of interest around the cruciate ligament area. They tested
two machine learning models, support vector machine (SVM) and random forests, in con-
junction with both methods of feature extraction. To evaluate the model’s generalization,
they applied stratified 10-fold cross-validation repeatedly and calculated the area under the
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curve (AUC) score. Experimental results indicate that a linear-kernel SVM trained on HOG
descriptors exhibited superior generalization properties, achieving an AUC of 89% in diag-
nosing partial-thickness tears and 94% for complete tears. This semi-automated method
underscored the potential of computer-assisted decision support in the semi-automated
diagnosis of ACL injuries in a clinical setting.

Numerous completely automated investigations followed, demonstrating progres-
sively positive outcomes from enhanced algorithms. In a study published in 2018 by Bien
et al., the goal was to develop a deep CNN, MRNet, for interpreting knee MRI exams,
with a focus on detecting a variety of knee injuries, including ACL tears [28]. The dataset
included 1370 knee MRI exams and the network employed sagittal T2-weighted, coronal
T1-weighted, and axial PD-weighted MRI images. The model achieved high accuracy
with AUC values of 97% for diagnosing ACL tears. The study found that the model’s
performance was comparable to unassisted general radiologists in detecting abnormalities,
while clinical experts exhibited improved specificity in identifying ACL tears when assisted
by the model. In fact, radiologists working with the support of the DL algorithm showed
an increased sensitivity of 5%. The research suggests that DL models can enhance the
performance of clinical experts in interpreting medical imaging, emphasizing the potential
for improved diagnostic accuracy.

In a study published by Liu et al. in 2019, the feasibility of employing an automated
DL-based approach for detecting ACL tears in knee MRI was assessed, with arthroscopy
serving as the reference standard [29]. Employing sagittal fat-suppressed proton density
and sagittal fat-suppressed T2-weighted images from a 3-Tesla (T) MRI, the DL approach
demonstrated a sensitivity and specificity of 0.96 each, comparable to clinical radiologists
(sensitivity: 0.96–0.98; specificity: 0.90–0.98). No significant difference in diagnostic per-
formance was observed between the CNN and clinical radiologists, with an overall high
diagnostic accuracy (AUC = 98%).

Other studies published in the same year assessed various CNNs for diagnosing
full-thickness ACL tears. Richardson evaluated the efficacy of a CNN as a substitute for
human readers in a protocol optimization study, using sagittal images in both fat-saturated
(FS) and non-fat-saturated (NFS) conditions [30]. The results showed high performance
with receiver operating characteristic AUC values of 99.8% for NFS and 99.9% for FS. While
both FS and NFS demonstrated excellent sensitivity and specificity, FS sensitivity was
statistically superior. Another study, conducted by Chang et al., assessed the feasibility and
additional benefits of specific network architectures in employing DL for the MRI detection
of complete ACL tears in sports injuries [31]. The evaluation was based on coronal proton
density-weighted MRI images without fat suppression. Different CNN architectures were
employed, with variations in input field-of-view and dimensionality. The model using a
five-slice dynamic patch-based sampling algorithm achieved over 96% test set accuracy,
showcasing the effectiveness of a customized 3D DL approach for detecting complete ACL
tears in MRI scans.

Afterward, in 2020, studies on CNN applied to the diagnosis of ACL injuries have
increased, confirming their promising results. In research conducted by Zhang et al., a
2D sagittal proton density-weighted spectral attenuated inversion recovery sequence at
both 1.5 Tesla and 3.0 Tesla was employed [32]. A CNN based on the architecture of 3D
DenseNet was constructed and tested alongside two other algorithms (VGG16 and ResNet).
The customized 3D DL architecture achieved a sensitivity of 98%, a specificity of 94%,
and an accuracy of 96%, outperforming ResNet (95%) and VGG16 (86%). Another study
by Germann et al. conducted a study detailing a tailored approach for the automatic
identification of ACL tears, which was tested using coronal and sagittal fat-suppressed
fluid-sensitive MRI images, with arthroscopic surgery serving as the reference standard [33].
In tests on a uniform internal dataset that included MRI scans at both 1.5 Tesla and
3.0 Tesla, the CNN exhibited high accuracy, with a sensitivity of 99%, a specificity of
94%, and an AUC of 97%. However, when the CNN was evaluated on a more varied exter-
nal dataset containing 234 knee MRI exams from over 50 different institutions, there was a
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drop in diagnostic accuracy, with the system achieving a sensitivity of 93%, a specificity of
87%, and an AUC of 90%.

Until that time, the majority of CNNs focused on a binary classification of ACL as
intact or torn. However, in 2020, Namiri et al. introduced a multi-class CNN that adopted
a more comprehensive method by categorizing the severity of ACL injuries into four
different patterns: intact, partial-thickness tear, full-thickness tear, and post-reconstruction
ACL graft [34]. This CNN showed high accuracy, with a sensitivity range of 97% to 100%
and a specificity of 100% for identifying ACL grafts. For intact ACLs, the CNN achieved
sensitivities between 89% and 93%, with specificities ranging from 88% to 90%. In the case
of full-thickness ACL tears, the CNN showed sensitivities of 76% to 82% and specificities
of 94% to 100%.

Since 2021, there has been an exponential increase in studies on custom architecture
CNNs for the diagnosis of ACL injuries applied to MRI, and currently there are various
DL models developed, such as VGG16, VGG19, U-Net, AdaBoost, XGBoost, Xception,
MRPyrNet, Inception ResNet-v2, RadImageNet, and Inception-v3 DTL [35–51]. Awan et al.
introduced a method that utilizes a tailored 14-layer ResNet-14 configuration of a CNN,
which processes data in six distinct directions. This approach incorporates techniques
of class balancing and data augmentation [35]. The AUCs for intact ACLs, partial tears,
and complete ruptures were reported as 98%, 97%, and 99.9%, respectively. Li et al.
conducted a study emphasizing the significant advantage of DL-based MRI sagittal plane
detection in diagnosing ACL injury [35]. The method achieved high sensitivity (96.78%),
specificity (90.62%), and accuracy (92.17%), with results comparable to those obtained
through arthroscopy, indicating no substantial difference.

Recently, algorithms have been developed on increasingly larger populations. Mi-
namoto et al. specifically discussed the development of an algorithm designed to detect
ACL ruptures, utilizing a large dataset of nearly 20,000 MRI scans [44]. The algorithm
demonstrated a notable performance with AUC values reaching 0.939, a sensitivity of 87%,
and a specificity of 91%. Notably, this algorithm underwent testing on external populations
from different countries, where it consistently exhibited strong performance with AUC
values of 0.962 and 0.922, respectively.

The use of DL has been evaluated not only in diagnosing ACL injuries but also in
recognizing the anatomical structures of the knee. In a study published in 2023 by Kulseng
et al., they explored the application of DL segmentation for knee anatomy, specifically
targeting 13 anatomical classes, utilizing an MRI protocol consisting of four 3D pulse
sequences [52]. The DenseVNet neural network was employed, and five input combinations
of sequences were trained. The DL network demonstrated high accuracy in labeling all
anatomical structures of the knee joint (bone medulla, PCL, ACL, muscle, cartilage, bone
cortex, arteries, collateral ligaments, tendons, meniscus, adipose tissue, veins, and nerves),
showcasing potential clinical utility for preoperative evaluation and pathology detection.

4. Intraoperative Application

The intraoperative application of AI and ML has led to the development of navigation
systems and anatomical segmentation.

Navigation in ACL surgery refers to the use of computer technology for the develop-
ment of procedures for surgical planning and guiding or performing surgical interventions.
This technology enhances the precision of tunnel placement and facilitates the evaluation
of kinematics and stability after ACL reconstruction (ACLR) [53,54].

In ACL reconstruction, navigation can be achieved through two approaches: image-
based and image-free [55]. The image-based method employs either pre-operative com-
puted tomography (CT) scans or intra-operative X-ray fluoroscopy, which provide real-time
imaging during the surgical procedure but also expose the patient to ionizing radiation. On
the other hand, the image-free technique usually relies on 3D bone morphing technology
that utilizes an optical tracking system without the need for radiation exposure.
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The literature cites a variety of systems, the most prevalent being PRAXIM-Medivision
(La Tronche, France), Orthopilot (BrainLab, Munich, Germany), Vectorvision (BrainLab,
Munich, Germany), and KneeNav (Pittsburgh, PA, USA), among others. Specifically for
kinematic analysis, non-invasive inertial sensors that attach to the skin, suitable for clinical
use like KiRA (Orthokey, Florence, Italy), have been developed [53].

The initial use of intraoperative navigation in arthroscopy was primarily directed
toward optimizing tunnel positioning in ACLR to enhance graft kinematics and isome-
try. This is crucial as tunnel malposition significantly contributes to ACLR graft failure,
emphasizing the value of navigation in improving the precision of tunnel placement [56].

Numerous studies have demonstrated that navigation can enhance the precision of anatom-
ical tunnel orientation and placement in ACLR surgery when compared to conventional arthro-
scopic tunnel placement, including comprehensive systematic reviews [53,54,57–59]. The pri-
mary benefits are observed in the femoral tunnel and in surgeries performed by less experienced
surgeons [60,61].

Another highly valuable application of the navigator during ACLR is when pre-
serving remnants in ACL surgery, as these remnants can impact the visualization of the
footprints [62]. Additionally, it proves beneficial in revision ACLR surgeries, where the
presence of previous tunnels and fixation devices can make the accurate placement of the
new graft more challenging [63,64].

The main advantages of using the navigation system include the accuracy and repro-
ducibility of the femoral tunnel. These systems can be used to improve safety, minimize
the risk of a short femoral tunnel, and prevent posterior wall breakage [55,65].

Navigation has emerged as the method of choice for intraoperative assessment of
knee kinematics, as it enables a quantitative evaluation of the knee joint’s multidirectional
laxity [15,54]. Its use has indeed been employed for evaluations of anteromedial vs. trans-
tibial reconstruction, single bundle vs. double bundle, and reconstruction with the addition
of an anterolateral tenodesis [66–70].

However, despite the usefulness of intraoperative navigation, both for the quality of
bony tunnels and for kinematic assessments, its clinical use is currently very limited, with
almost exclusive application in the realm of research [53]. Indeed, the surgical application of
current systems can require increased exposure to imaging radiation and is more invasive,
time-consuming, and expensive [63,71].

5. Postoperative Care and Rehabilitation

ML and AI are playing an increasingly significant role in postoperative care and reha-
bilitation after ACLR, offering the possibility to personalize and optimize treatments [15].

5.1. Postoperative Care

The potential risks brought about by opioid usage in post-operative pain have focused
research attention on the management of opioids [72]. The exploration of factors influencing
postoperative opioid administration, especially in the aftermath of trauma, addresses a
prevalent challenge of opioid misuse [73]. This issue is marked by frequent complications,
and it necessitates a proactive approach. In this context, AI and ML emerge as pivotal
tools [74]. Utilizing these technologies enables the development of predictive models,
optimizing opioid dosage based on individualized data. Healthcare professionals can
identify at-risk patients, personalize pain management, and mitigate adverse effects by
using AI and ML, thus revolutionizing postoperative care. This transformative potential
underscores the significance of integrating AI and ML into the medical landscape to
enhance patient outcomes and avoid the complications associated with opioid use in the
context of postoperative pain [75]. Bharat et al. studied big data and ML to prevent and
monitor opioid overdoses, addressing challenges and risks. The research group relates that
collaboration between pharmaceutical agencies is essential to improve access to existing
resources and implement predictive models that personalize the diagnosis, prognosis, and
treatment recommendations [76]. ML predictive analysis can estimate the ideal dosage



Healthcare 2024, 12, 300 8 of 16

of drugs needed for pain control based on previous data. Anderson et al. utilized ML
methods, including a gradient-boosting machine, to predict prolonged opioid use following
ACLR. By analyzing Military Health System data on 10,919 patients, they developed and
validated four models, with the gradient-boosting machine exhibiting the highest predictive
power. Key features influencing opioid use included preoperative morphine equivalents,
deployment time, age, and race. The model offers a clinical decision-support tool for
identifying at-risk patients and preventing opioid overuse [77]. However, the lack of
details and transparency in creating ML models limits the usefulness of the research.
Improvements in documentation and sharing of source code are recommended to advance
in this crucial healthcare field [78].

The immediate postoperative period in knee surgery includes the option to perform a
femoral nerve block (FNB) for pain management [79]. The FNB, often combined with the
sciatic nerve block, demonstrates the most opportunities for decreasing opioid consumption
and alleviating pain severity [80]. Tighe et al. present an ML approach for predicting
the need for postoperative FNB following ACLR. Analyzing perioperative data from
349 patients, ML classifiers, including logistic regression and tree algorithms, outperformed
traditional methods, achieving a high area under the receiver operating curve. Despite
overfitting concerns, ML shows promise in predicting severe postoperative pain and the
necessity of peripherical nerve block, highlighting its potential over conventional statistical
methodologies in medical data analysis [81].

Cryotherapy, in addition to being an effective method to contrast postoperative inflam-
mation, pain, and swelling, represents a valuable resource in the field of pain management
and rehabilitation. This technique, utilizing therapeutic cold, can help limit the inflam-
matory response, alleviate discomfort, and promote swift recovery after surgery [82].
Rashkovska et al. examined the regulation of temperature in cryotherapy [83]. The authors
propose a noninvasive real-time prediction system for inner-knee temperature during
cryotherapy after ACLR, utilizing computer simulations and ML. Model trees, with input
from skin sensors, show excellent predictive accuracy and meet real-time response require-
ments, validated with in vivo patient temperature data collected during cryotherapy with
specific sensors.

5.2. Rehabilitation

Post-operative rehabilitation plays a fundamental role in the return to athletic activity,
particularly for athletes but also for all patient categories undergoing ACLR. It contributes to
muscular recovery and re-injury prevention, while also supporting psychological recovery,
ensuring that athletes regain confidence in their movements and achieve performance
safely and effectively [82]. Some exercises performed during the return-to-play phase can
be recorded and measured using specific parameters. Corban et al. studied the drop vertical
jump (DVJ) using a motion capture system (Microsoft Kinect V2). The study revealed that
an increase in peak coronal angles and a decrease in peak sagittal angles during the DVJ
were associated with a higher risk of noncontact ACL injuries [84].

Dagget et al. retrospectively studied a motion capture system, analyzing algorithm-
derived scores to objectively assess mobility, alignment, and readiness in post-ACLR
patients. An innovative 3D motion capture system (DARI Motion, Overland Park, KS,
USA), cleared by the Food and Drug Administration (FDA), was used to obtain biome-
chanical parameters of each body motion [85]. The findings suggest that assessing multiple
biometric variables is crucial to avoid relying solely on super-compensatory mechanisms
and underscores the potential of non-invasive motion capture technology in enhancing
the objectivity and frequency of progress assessments for a more tailored and effective
rehabilitation approach. The research highlighted challenges in monitoring progress due to
the absence of established guidelines or objective assessment methodologies.

Strength deficits at specific angles and power, especially near full extension, indicate
the need for comprehensive rehabilitation [86]. Richter et al. utilized a data-driven approach
without expert knowledge, achieving over 70% accuracy in predicting movements post-
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ACLR, in contralateral limbs, and in healthy controls, but not all subjects exhibit a ‘true
normal’ movement and classifiable pattern [87]. While many studies explore the association
between movement patterns and athletic performance on injury risk, evidence-based
guidelines are insufficient to define movement deficits or normal ranges of motion [88].
Accessible motion capture systems emerge as practical and cost-effective options for large-
scale screening of ACL re-injury risk during the return-to-play phase, and this could be
integrated with ML and AI systems.

The persistence of the risk of re-injury after ACLR is a key concept, requiring careful
assessment to ensure a safe and sustainable return to sports. The risk factors associated with
revisions or graft re-rupture after reconstruction are numerous. The careful identification
and management of these factors are crucial to reduce the risk of revisions or new injuries
after ACLR [89]. An effective tool could be applied in this context to support clinical practice
and decrease the re-injury rate. Pillitteri et al. investigated the correlation between internal
load and external load, and their impact on injury risk prediction using ML approaches.
The review shows an association between external load, internal load, and re-injury risk,
highlighting the effectiveness of the ML approach [90]. Other predictive models about
re-injury have been studied.

Martin et al. externally validated an ML model developed using data from the
Norwegian Knee Ligament Register (NKLR) and Danish Knee Ligament Registry (DKLR)
to predict the risk of ACL revision [91]. The model, applied to patients from the DKLR,
demonstrated similar concordance but poorer calibration at one and five years post-primary
surgery compared to the NKLR test data [92]. Despite dissimilarities in surgical techniques
and injury characteristics between registries, the NKLR algorithm exhibited consistent
performance. A calculator has been developed to estimate the risk of ACL revision, enabling
risk stratification at the point of care based on only five variables [92]. This marks the first
external validation of an ML model for predicting ACL revision, supporting its potential
use in diverse patient populations. Martin et al. recently introduced an ML model that
relates registries [93]. The combined ML examination of data from the NKLR and DKRR
enabled the prediction of the risk of ACL reconstruction revision with moderate accuracy.
Despite this, the algorithms generated were not as user-friendly and did not demonstrate
better accuracy than the earlier model that was exclusively based on NKLR patient data,
even though it analyzed a patient cohort of nearly 63,000. This suggests that merely
increasing the number of patients in existing knee ligament registers may not enhance
predictive capability. The observed ceiling effect could prompt future modifications, aiming
to improve the inclusion of variables for more effective predictions. The research stimulates
the need to create national registries and increase the number of patients.

In response to the impossibility of in-person rehabilitation during the COVID-19
pandemic, a telerehabilitation program utilizing an AI brace was implemented for patients
undergoing ACLR. The tele-AI patients, receiving remote rehabilitation, demonstrated
superior short-term outcomes with higher International Knee Documentation Committee
scores (IKDC) and Knee Injury and Osteoarthritis Outcome Scores (KOOS) at various
intervals compared to the face-to-face patients undergoing hospital-based rehabilitation [94].
Notably, the tele-AI group exhibited a higher Tegner Activity Scale (TAS) after one year.
This suggests that home-based telerehabilitation, especially during the pandemic, may
offer effective and comparable clinical results to traditional in-person rehabilitation [95].

6. Education and Training

The growing importance of computer-assisted surgery has not only brought about
fundamental changes in the skills required by surgeons but has also spurred the develop-
ment of innovative educational methods [96]. Virtual reality (VR) simulators are designed
to provide surgeons with a platform where they can refine their surgical techniques and
improve their expertise in a safe, diverse, and highly realistic setting [97,98]. For these
simulators to be fully effective as educational instruments, they need to have the capability
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to automatically assess performance and provide feedback. The latest advancements in
this area depend on the application of DL [99].

Module-based simulation training offers additional training time and enhances tech-
nical skills. Simulation training enables individuals to refine their skills in a less stressful
environment, all without posing any risk to patient safety [100]. The most widely used VR
simulator in the field of knee arthroscopy is VirtaMed Arthro (Zurich, Switzerland), which
is a passive haptic system [101].

In a study published by Beaudoin et al., knee arthroscopy simulation training with self-
learning modules demonstrated an enhancement in skills among untrained participants.
Improvements were observed in various areas, procedure time, camera path length, and
overall scores [100].

Current active haptic technology, such as Arthro Simbionix (Göteborg, Sweden), which
utilizes motors to simulate tactile feedback, falls short in exhibiting adequate face validity
or achieving the level of complexity found in passive haptic systems within high-fidelity
arthroscopy simulators [102].

A study published by Tronchot et al. showed that skills developed on a hybrid VR
simulator could be successfully transferred to bench-top and cadaveric models [103]. This
suggests that training with a VR arthroscopy surgical simulator has the potential to safely
improve arthroscopic skills in the operating room.

It is currently recognized that VR simulators may play a critical role in the evolution of
surgical training, with the ultimate goal of enhancing the quality of patient care [103–105].
With surgical and educational applications, an algorithm has been developed that auto-
matically segments the arthroscopic frame to offer surgeons added contextual awareness.
The U-NET algorithm is a CNN tailored for biomedical image segmentation. It processes
arthroscopic video footage, using it as an input to create a segmented image that delineates
the anatomical structures the surgeon observes during the procedure, all in real time [106].

7. Ethical Considerations and Critical Aspects

The inception of AI in the mid-20th century aimed to simulate human cognitive
abilities; today, ML sophistication enables data gathering, analysis, and problem-solving.
In medicine, AI, through algorithms and robotics, influences decision-making and surgical
precision. Ethical concerns include patient privacy, algorithm biases, and cybersecurity.
AI in medicine, particularly orthopedics, holds transformative potential, aiding in patient
care, risk assessment, diagnosis, and surgical procedures. However, rapid advancements
bring ethical challenges, necessitating regulatory standards. Ethical concerns include
avoiding discrimination, addressing biases in AI algorithms, ensuring patient privacy,
and maintaining informed consent. Automation may lead to deskilling and reliance on
AI, raising concerns about potential system failures. Cybersecurity and accountability
issues also arise, emphasizing the need for continuous monitoring, regulatory updates, and
ethical considerations in AI applications in orthopedics. While the idea of fully autonomous
medical practice through computer technology seems distant, the evolving field of AI
in orthopedics is making significant strides. Currently, AI operates under augmented
intelligence, with human oversight crucial for the supervision and monitoring of datasets.
Ongoing debates reflect the early stage of development, anticipating more complex ethical
dilemmas as AI technology progresses in orthopedics [107].

AI in healthcare, driven by machine learning and deep neural networks, raises sig-
nificant concerns about patient privacy and bias. The 2015 agreement between DeepMind
and the UK National Health Service, later found to violate data protection laws, highlights
these privacy issues. Bias in AI, stemming from biased training data, can lead to systematic
errors, especially for underrepresented groups. Adversarial attacks pose a serious threat,
impacting medical diagnosis, insurance claims, and drug approvals. Regulating AI now
may prevent risks but hinder innovation. Solutions include amending regulatory practices,
but challenges like deskilling clinicians, data reliance without context, and underestimating
medical decision uncertainty remain [7].
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8. Conclusions and Future Perspectives

In the management of ACL tears, AI tools can play a role in improving diagnostics,
accurately predicting individuals at risk of ACL injury or re-injury, identifying complex
anatomic landmarks during surgery, and optimizing pain control and postoperative reha-
bilitation protocols. Specifically, following an extensive examination of DL in the context
of ACL injury diagnosis, it can be asserted that the AI image-assisted diagnostic system,
designed for the analysis and processing of multiparametric MRI, proves advantageous for
clinical decision-making, alleviates the workload of physicians, improves efficiency, and
decreases the likelihood of misdiagnosis. Furthermore, the application of ML and AI in re-
habilitation enables a highly personalized and dynamic approach. The continuous learning
capability of ML contributes to consistently improving predictions and recommendations,
optimizing long-term outcomes. Figure 3 illustrates a diagram with the main steps in the
management of ACL injury, from preoperative care to rehabilitation, integrated with AI
tools that have broader clinical applications, with the potential for further implementation
in the future.
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