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Abstract: Knee osteoarthritis is a challenging problem affecting many adults around the world. There
are currently no medications that cure knee osteoarthritis. The only way to control the progression of
knee osteoarthritis is early detection. Currently, X-ray imaging is a central technique used for the
prediction of osteoarthritis. However, the manual X-ray technique is prone to errors due to the lack
of expertise of radiologists. Recent studies have described the use of automated systems based on
machine learning for the effective prediction of osteoarthritis from X-ray images. However, most
of these techniques still need to achieve higher predictive accuracy to detect osteoarthritis at an
early stage. This paper suggests a method with higher predictive accuracy that can be employed
in the real world for the early detection of knee osteoarthritis. In this paper, we suggest the use
of transfer learning models based on sequential convolutional neural networks (CNNs), Visual
Geometry Group 16 (VGG-16), and Residual Neural Network 50 (ResNet-50) for the early detection
of osteoarthritis from knee X-ray images. In our analysis, we found that all the suggested models
achieved a higher level of predictive accuracy, greater than 90%, in detecting osteoarthritis. However,
the best-performing model was the pretrained VGG-16 model, which achieved a training accuracy of
99% and a testing accuracy of 92%.

Keywords: osteoarthritis; transfer learning; X-ray; CNN; VGG-16; ResNeT-50; automated system

1. Introduction

Knee articular cartilage degeneration, also known as osteoarthritis (OA), is a type
of joint disease that develops due to the breakdown of the joint cartilage, affecting 1 out
of 7 adults in the world [1]. It is one of the major causes of disability in the world. The
most common symptoms of this disease are pain and stiffness in the joints, which progress
slowly over time. The most affected joints are the knee and hip joints and the joints of
the fingers [2]. OA is caused by a large amount of mechanical stress on the joints and
a low-grade inflammatory process. This progresses as the cartilage is lost and the bone
underlying it becomes affected [3]. Generally, OA is diagnosed based on symptoms, along
with medical imaging techniques. Recent studies [4–6] have concluded that a single clinical
examination is not reliable for the diagnosis of OA, and knee arthroscopy is often performed
to get a clear idea regarding the progression of OA. These studies have also explained
that knee arthroscopy is an invasive process in which small cameras are inserted through
small incisions for a direct overview of the knee cartilage. Furthermore, these studies
have also shown that non-invasive techniques such as CT scans and MRIs are also used,
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but they are not as accurate as knee arthroscopy because radiologists may not correctly
diagnose the condition due to a lack of expertise. This challenge prompted us to look for
automated diagnostic systems. At present, there is no cure for OA, but there are certain
factors, including biological and environmental risk factors, modifiable and non-modifiable,
that are responsible for the development of OA [7]. OA belongs to the class of big data
problems in terms of data size and complexity, and various machine learning techniques
have been suggested in recent times for developing automated diagnostic systems for
OA. Studies such as [8,9] have suggested the use of regression models for automated OA
diagnostic systems. However, the authors of [7] reported that these models are not able to
handle large, heterogeneous datasets to identify relationships between environmental and
biological risk factors or analyze disease progression in a patient.

Recent advancements in machine learning in healthcare have led us to accelerate and
improve the diagnostic process of various life-threatening diseases, including rheumatology
and OA [10,11]. In this paper, we suggest an advanced automated OA diagnostic system
based on neural networks and transfer learning. Using transfer learning will resolve the
challenges faced by single trained machine learning models. Using transfer learning (TL)
will help in reducing the computational time required for training the model, and this
will also reduce the need for large high-quality datasets for developing a single diagnostic
model, as the TL model will be pretrained. In rheumatology, this technique will help
doctors improve their knowledge of the patient’s disease trajectory, as well as make care-
related decisions and response-to-disease predictions based on immunological signals [10].
This paper contributes to the field of rheumatology as follows:

• This paper suggests and analyzes automated diagnostic and classification methods
for knee osteoarthritis, along with a comparison with single trained machine learning
diagnostic methodologies.

• This paper analyzes the effectiveness of a neural network in the classification of knee
osteoarthritis through relevant performance judgment metrics.

• This paper also investigates the various data augmentation techniques used to train a
model with high predictive accuracy.

The overall structure of the paper is as follows: Section 2 explains the related previous
works in the field of automated diagnostic methods; Section 3 explains the suggested
methodology, followed by an explanation of the results in Section 4. Finally, the paper is
concluded in Section 5.

2. Previous Works

Osteoarthritis affects more than 3% of the population globally and is a major cause
of disability in adults [12]. The diagnosis of OA is currently made through arthroscopy.
Making an effective diagnosis is a complex process and requires a longer training time for a
large dataset [10,12]; thus, automated systems based on machine learning techniques have
been proven to be more efficient in the diagnosis and classification of OA from medical
images. Various studies have been conducted in this regard. The authors in [13] developed
an automated diagnostic system based on multivariate linear regression for detecting knee
osteoarthritis from a sample of 1024 knee X-ray images. This method achieved 82.98%
accuracy in the classification of osteoarthritis. In [14], the authors developed a framework
based on Zernike-based texture analysis and deep learning that improves the accuracy
percentage of diagnostic systems by 11%. In [15], the authors investigated the effect of MRI
and patients’ data on the prediction of knee osteoarthritis based on various deep learning
models. In this study, the best performance in the diagnosis of OA was achieved by the
CVAE model, with an AUC score of 66.99%. The authors of [16] suggested a stacked model
based on the patellar texture and clinical features of radiological images and second-level
machine learning. This model achieved an AUC score of 88.9% in the classification of knee
osteoarthritis. A novel diagnostic and grading tool was developed in [17] for the analysis
of X-ray images of OA based on the Kellgren–Lawrence (KL) grading system. In [18],
the authors developed a novel algorithm based on various machine learning techniques,
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such as logistic regression, KNN, decision trees, and SVM, for the early classification of
knee OA from X-ray images. This algorithm has achieved a classification accuracy of 91%.
In [19], the authors suggest a phono-arthrography (PAG) technique for the detection and
classification of knee OA. This technique is currently in the development phase; however,
initial results have shown great accuracy in the classification of knee OA. The authors
in [20] reported that they had developed a convolutional neural network (CNN) for the
classification of knee OA from X-ray images. In the classification of knee OA from X-ray
images, this model achieved an accuracy of 90.01%, with 90% recall and 87.8% specificity.
The authors in [21] developed and analyzed the effectiveness of the AlexNeT model in
predicting and classifying knee OA from X-ray images. In [22], the authors proposed an
image super-resolution algorithm based on an improved multiscale wide residual network
model for detecting knee OA from knee MRI scans. This algorithm achieved a classification
accuracy of up to 95%. The authors in [23] suggested a localization model integrated
with ONNX and YOLOv2 for the prediction of knee OA from radiographic images. This
integrated model achieved 0.98 mAP for the localization of OA images. In [24], the authors
proposed a fuzzy ensemble feature selection method for the prediction and classification of
knee OA from radiographic images. The suggested method achieved an accuracy of 73.55%
in the classification of OA.

From the studies reviewed, it is evident that most of the currently used knee OA
classification methods rely on the manual interpretation of radiographic images using
the Kellgren–Lawrence (KL) grading approach. However, the efficiency of this approach
is restricted due to time constraints and is less accurate in diagnosing OA [25]. Recent
advancements in computer-aided diagnosis have shown great promise for the diagnosis of
OA, despite the challenges in using single trained machine learning models. This paper
aims at addressing this challenge with the help of transfer learning by utilizing a pretrained
model for diagnosis purposes. Furthermore, in our knee osteoarthritis detection study, we
used transfer learning to fine-tune pretrained models (VGG-16 [26] and ResNet50 [27]) to
classify X-ray images as either showing signs of osteoarthritis or not. The technical novelty
lies in how we adapted and optimized this approach for our specific problem, including
the use of data augmentation techniques to increase the amount of training data and the
incorporation of attention mechanisms to focus the model’s attention on relevant regions
of the image.

3. Methodology

This section will explain the general methodology followed in the development of
our transfer learning model. The major components for the development of an efficient
model are defined as data collection and preprocessing, model generation and analysis,
visualization techniques followed to confirm the accuracy of the predictions, and evaluation
metrics for the evaluation of the developed model. In this research paper, we aim to address
the challenge of predicting knee osteoarthritis with high accuracy from knee X-ray images.
Knee osteoarthritis is a chronic joint disease that affects millions of people worldwide and
is characterized by progressive damage to the knee joint. The early detection and predic-
tion of knee osteoarthritis are critical to improving patient outcomes and enabling early
interventions. However, traditional methods for diagnosing knee osteoarthritis involve
subjective evaluations by radiologists, which can be time-consuming and may not always
yield accurate results. Furthermore, several machine learning and deep learning techniques
have recently been developed to automate detection. However, these techniques require
large amounts of labeled data for training and may result in overfitting or poor gener-
alization performance. Transfer learning involves utilizing a pretrained neural network
model on a large dataset for a similar task and fine-tuning it on a smaller dataset for a
specific task. By doing this, the model can leverage the learned features from the pretrained
model to improve its performance on the specific task. Compared to traditional methods,
the transfer learning approach suggested in this paper, offers several advantages. Firstly,
transfer learning enables the model to learn from a large dataset of X-ray images and adapt
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to a smaller dataset of knee osteoarthritis images, resulting in improved accuracy and
reduced training time. Secondly, the pretrained model has learned useful features that can
be transferred to the specific task, reducing the need for extensive data processing and
feature engineering.

3.1. Data Collection and Preprocessing

Data collection is the primary step in developing an efficient transfer learning model
(TL). TL is data-dependent, and without a high-quality training dataset, high-performing
models can also generate low predictive accuracy. One of the largest sources for collecting
high-quality data is Kaggle. The main reason for choosing Kaggle as a data collection
source is that it is a publicly available data source, which makes it easier for researchers to
develop effective solutions. In this study, we also used the dataset from Kaggle, which is
available at [28]. The description of the dataset is given in Table 1.

Table 1. Classification of the dataset used.

Description Number of Images

Training set 2350 X-ray images

Testing set 845 X-ray images

Validation set 641 X-ray images

Total images 3836 X-ray images

The dataset contains 3 folders, namely, the training set, testing set, and validation set,
which further contain 2 subfolders, namely, normal and osteoarthritis. The training set is
used to train the transfer learning model, and the testing set contains previously unseen
data that are used to test the transfer learning model. The validation set is used for fine-
tuning the parameters of the training dataset. Once the dataset is collected, preprocessing is
performed to transform the collected data into a format that can be best used by the transfer
learning models. To ensure the quality of data in the dataset used for training our model,
initially, we started by cleaning the dataset by removing data that contained inconsistencies
or any missing data label values that might affect the results of our model. Furthermore,
several data preprocessing techniques have been applied to enhance the quality of the
images such as:

• Denoising: We applied image denoising techniques to remove noise from the X-ray
images. This is important because X-ray images may have varying levels of noise
due to factors such as the imaging equipment and patient movement during the scan.
Noise can reduce the quality of the images, making it more difficult for the transfer
learning model to accurately identify knee osteoarthritis. We applied the median
filtering technique to remove noise from an X-ray image by replacing each pixel with
the median value of its neighboring pixels. We applied a 2D median filter with a
kernel with the size 5 × 5. This parameter determines the size of the sliding window
used to compute the median value for each pixel. A larger kernel size, such as 5 × 5,
provides more significant noise reduction but may also blur important details in the
image compared to a smaller kernel size, such as 3 × 3. A 5 × 5 kernel size means
that the filter considers a 5-pixel neighborhood around each pixel to compute the
median value. The significance of applying a 2D median filter with a 5 × 5 kernel
size lies in its increased ability to remove noise, such as salt-and-pepper noise, from
X-ray images. However, due to the larger kernel size, there is a trade-off in terms
of preserving the edges and fine details in the images. This can result in a smoother
image that might lose some important features, but it is still found to be effective for
transfer learning models.

• Image enhancement techniques: Image enhancement techniques were applied to im-
prove the clarity and contrast of X-ray images. This makes it easier for the transfer
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learning model to identify subtle features of knee osteoarthritis, such as the narrowing
of joint spaces or the presence of osteophytes. We used the histogram equalization
technique, contrast stretching, sharpening filters, and Gaussian smoothing techniques
to enhance the quality of images. Specifically, we used adaptive histogram equal-
ization with the clip limit set to 2.0 and the title grid size set to 8 × 8. Adaptive
histogram equalization computes the equalization locally in small regions (tiles) rather
than globally for the entire image. This allows the method to adapt to local contrast
variations, improving the overall image quality. The clip limit determines the maxi-
mum height of the local histogram that is used for equalization. Any histogram peaks
higher than the clip limit will be “clipped”, and the excess intensity values will be
redistributed uniformly among the other bins in the histogram. This helps in limiting
the amplification of noise. A higher clip limit will allow more contrast enhancement,
but it may also amplify noise. In our work, a clip limit of 2.0 was used, which means
that the maximum height of the histogram is twice the average height. The tile grid
size defines the number of rectangular regions (tiles) into which the image is divided
for local equalization. Each tile is processed independently and then combined to
form the final equalized image. Smaller tile sizes result in more localized equalization,
better adapting to local contrast variations. However, smaller tiles may also cause
visible boundaries between tiles in the final image. A larger tile size reduces this issue
but may not capture local contrast variations as effectively. In our work, an 8 × 8 tile
grid size was used, which means the image is divided into 64 equal-sized rectangular
tiles for processing. Further, contrast stretching was performed by stretching the inten-
sity ranges between the 1st and 99th percentiles of the original intensity range. This
means that pixel values below the 1st percentile are set to the minimum intensity value
(0), and the pixel values above the 99th percentile are set to the maximum intensity
value (255 for an 8-bit image). This approach removes the extreme intensity values
that could be caused by noise or artifacts, focusing on the more relevant intensity
range that covers 98% of the pixel values in the image. It effectively redistributes the
intensity values more uniformly across the available range, enhancing the contrast.
After determining the 1% and 99% percentile values, the image is rescaled so that
its intensity range spans from 0 to 255 (for an 8-bit image). This step ensures that
the full range of intensity values is utilized, maximizing the contrast of the resulting
image. For example, if the 1st percentile corresponds to an intensity value of 20 and the
99th percentile corresponds to an intensity value of 230, then the contrast stretching
operation will rescale all pixel values proportionally, such that the pixel with the value
of 20 becomes 0 and the pixel with the value of 230 becomes 255. To enhance the
edges and fine details in an image and make the transfer learning model capable of
identifying important features from an image, unsharp masking is performed. To
perform unsharp masking, two parameters are defined, the radius and the amount.
The radius parameter determines the size of the Gaussian blur kernel used to create
the blurred image. A larger radius will result in more significant blur, which in turn
will emphasize larger edges and features in the image during the unsharp masking
process. In our model, we used a radius of 2, which means that the Gaussian blur
kernel will consider a 2-pixel-radius neighborhood around each pixel to compute the
blur. Another parameter used is “amount”. This parameter controls the degree of
sharpening applied to the image. It is the scaling factor used to combine the original
image with the difference between the original and blurred images. A higher amount
value will result in more pronounced sharpening, while a lower value will result in a
subtler effect. For our model, we used an amount value of 1.0, which means that the
difference between the original and blurred images is added directly to the original
image, resulting in a moderate level of sharpening. Finally, to reduce noise, a Gaussian
filter is used, which is characterized by two parameters: kernel size and standard devi-
ation. The kernel size determines the size of the filter applied to the image. A larger
kernel size results in more significant blurring, while a smaller size preserves finer
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details. We used a kernel size of 5 × 5, which means that the filter considers a 5-pixel
neighborhood around each pixel. Another parameter, called the standard deviation
with sigma value 1, is used to control the spread of the Gaussian function used to
compute the filter’s weights. A higher sigma value leads to more extensive blurring,
while a lower value retains sharper edges. A sigma value of 1 indicates a moderate
amount of blurring. Gaussian smoothing with these parameters helps reduce noise
while preserving essential image features, which can improve the performance of
transfer learning models.

• Transformation: In our work, image transformation techniques were applied to stan-
dardize and augment the X-ray images for better model training. Firstly, the images
were resized to standard dimensions of 512 × 512 pixels, ensuring consistency across
the dataset and enabling the transfer learning model to effectively process the images.
The images are then divided into batches of 32, which helps optimize the training
process by reducing the memory requirements and allowing the model to learn from
multiple examples simultaneously. To further augment the dataset, image rotation
and flipping techniques were employed. Image rotation involves rotating the X-ray
images by a specific angle, such as 90, 180, or 270 degrees, generating new variations
of the images that help the model generalize better to unseen data. Flipping the
images, horizontally and vertically, also creates new variations, further enhancing the
dataset’s diversity. These augmented images provide the transfer learning model with
additional examples, enabling it to learn more robust features associated with knee
osteoarthritis and improving its overall performance.

• Sampling: In this work, the sampling technique played a crucial role in selecting a rep-
resentative subset of X-ray images for training the transfer learning model. Stratified
sampling was employed to create a balanced dataset with respect to factors such as
age, gender, and disease severity. Stratified sampling works by dividing the entire
population of X-ray images into distinct groups, or strata, based on these factors. From
each stratum, a proportional number of samples are randomly selected to ensure
the adequate representation of all the groups in the final dataset. By using stratified
sampling, the transfer learning model is trained on a diverse and representative set of
examples, preventing any potential bias that could arise from an imbalanced dataset.
This method ensures that the model is exposed to a broad range of cases, including
different age groups, genders, and varying degrees of disease severity, which leads
to more accurate and reliable predictions for different subgroups of patients. Overall,
the application of stratified sampling contributes to a more robust and generalizable
transfer learning model that can accurately predict knee osteoarthritis across various
patient populations.

• Feature extraction: Feature extraction is carried out to identify the important fea-
tures for the model to predict knee osteoarthritis. In this study, we used pretrained
VGG16 [26] and ResNeT50 [27] models, which were trained on millions of natural
images, to extract features from the knee X-ray images. By fine-tuning the VGG16
and ResNeT50 models on the knee X-ray images, the transfer learning model learns
to identify the key features associated with knee osteoarthritis, such as joint space
narrowing and osteophyte formation.

In our transfer learning models, we developed several helper functions using Python
libraries, including TensorFlow, scikit-learn, NumPy, and Matplotlib, to streamline the
model’s workflow and improve efficiency. These helper functions focus on specific tasks,
such as loading and preprocessing images, creating confusion matrices, and predicting and
plotting results. The primary purpose of the “load and prep image” function is to load an
image, preprocess it, and prepare it for input into the transfer learning model. To achieve
this, the function first reads the image file using TensorFlow’s tf.io.read_file function. It then
decodes the image into a tensor using tf.image.decode_image. After decoding the image,
the function resizes it to the desired shape with tf.image.resize, ensuring that all images
have a consistent size when fed into the model. Lastly, the pixel values are scaled to range
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between 0 and 1 by dividing them by 255. This standardized preprocessing ensures that the
images are in the appropriate format for the model. The “make confusion matrix” function
is designed to compute and visualize the confusion matrix based on the predicted and true
labels. It first calculates the confusion matrix using scikit-learn’s confusion_matrix function.
The resulting matrix is then visualized using Matplotlib’s imshow function. The colormap,
normalization, and labels can be customized according to the user’s preferences. Optionally,
the function can save the confusion matrix plot as an image file. This function provides a
clear visual representation of the model’s performance, helping identify any discrepancies
or areas that need improvement. The “pred and plot” function is a combination of the “load
and prep image” function and the model’s prediction capabilities. It starts by using the
“load and prep image” function to process the input image, ensuring it is in the appropriate
format for the model. Next, the function utilizes the trained model’s predict method to
make a prediction on the preprocessed image. Depending on the problem, the function can
handle single-class or multi-class classification. Once the prediction is made, the function
plots the image using matplotlib.pyplot.imshow, with the predicted class displayed as the
title. This function allows users to quickly visualize the model’s prediction on any given
image, making it easier to understand the model’s performance. These helper functions
provide several advantages, such as reusability, consistency, and modularity. They enable
the efficient reuse of code across multiple models, simplify maintenance and debugging by
breaking down complex tasks, and ensure that common tasks are performed consistently
throughout the entire codebase. This approach leads to more consistent results, reduced
output variance, and an overall more efficient and reliable transfer learning model.

The images obtained after preprocessing are depicted by Figure 1.
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3.2. Model Architecture

In this study, we employed a transfer learning model based on a sequential convo-
lutional neural network (CNN), Residual Network 50 (ResNeT-50), and Visual Geometry
Group 16 (VGG-16) [27,28]. Initially, we trained the models individually and then passed
the output to the next models for generating transfer learning models. Transfer learning
(TL) is defined as a technique in which a model is trained on a task or dataset, which, by
default, is the ImageNet database, and reused on a second related task for predictions. In
TL, we first train a base network, which, in our case, is a sequential CNN, on a base task,
and then we transfer the learned features to a second network, which will be trained on a
larger dataset. The block diagram of the proposed methodology is shown in Figure 2.
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This technique will only work if the feature of the dataset is general and suitable to
both the base and target models, instead of being specific to the base model [29,30]. Here,
we used transfer learning to fine-tune the pretrained VGG-16 and ResNeT-50 models with
the sequential CNN as the base model. In our TL model, there is a source domain (SD)
with a learning task (LT) and a target domain (TD) with a learning task (LL). Let the target
prediction function be defined as (TP(.)) in TD; with the help of the knowledge in SD and LT,
the TL model tries to improve the learning of the target prediction function by the technique
defined by [31]. In our model, the domain is defined as a pair, such as {λ, Z(Y)}, and this
domain follows the rule SD 6= TD, ⇒ either λSource 6= λTarget or ZSource(Y) 6= ZTarget(Y).
This means that, in our TL model, in between the source model (CNN) to the target model
(VGG-16 or ResNeT-50), the features or distributions are different. In addition, let a task be
defined as the pair {β, Z(M|Y)} such that LSource 6= LTarget ⇒ either βSource 6= βTarget or Z
(MSource|YSource) 6= Z (MTarget|YTarget). This means that both the source and target domains
are equal, along with having the same learning tasks, so this will behave as a classical
machine learning problem. When we have different domains, it means that either the
features between the domains are different or the marginal distributions between them are
different. When the learning tasks are different, then either the label spaces between the
domains are different or the conditional probability distributions are different. This can be
further understood by the document classification problem as described in [32].

Another model used in transfer learning is a pretrained VGG-16 model. VGG-16
consists of a total of 16 layers, out of which 5 layers are pooling layers having dimensions
of 112 × 112, 56 × 56, 28 × 28, 14 × 14, and 7 × 7. The pooling layers are used for
extracting features from the layers in a way such that extraction from pooling layer-1 will
transform the image into a grid of size 112 × 112, in which each grid has a feature vector
corresponding to the activation function in the activation map [33]. The major reason
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for choosing VGG-16 in our work is that this model is already pretrained on the ILSVRC
dataset [33], containing more than 1 million images with different categories, which makes
the VGG network capable of representing many objects.

In a VGG-16 model, the process of convolution is defined as:

Z(a, b) = (M ∗ N)(a, b) = ∑
l

∑
j

M(l, j)N(a− l, b− j) (1)

where l and j are defined as the kernel’s dimensions, and (a, b) are defined as the dimensions
for the matrix for which the convolution is calculated [26,34]. After the calculation of
convolution, each convolutional layer is followed by a ReLU layer that uses the maximum
pooling layers for sampling purposes. Consider a dataset having S samples as Q(1), R(1),
. . . , Q(S), with R(S) used to train the model. Then, the cost function for the model is
calculated as [26]:

λ(φ,α) =

[
1
S

s

∑
i=1

(
1
2
‖Mφ,α

(
Qi − Ri

)
‖

2
)]

+
Y
2

fk−1

∑
k=1

hk

∑
i=1

hk+1

∑
j=1

(
φ
(k)
ij

)2
(2)

where Mφ,α is defined as the neural network model, φ(k)
ij is defined as the connection

weights between the layers, and α is the bias term of the hidden layers of the neuron. This
equation helps in reducing weights, which further helps in preventing the overfitting of
the model. The overall architecture of the TL model is presented in Figure 3.

After VGG-16, the pretrained ResNeT-50 model is used. The ResNeT network belongs
to a family of residual networks that are 50 layers deep. A typical ResNeT-50 architecture
consists of 5 convolutional blocks, including smaller convolutional blocks of 1, 3, 4, 6, and
3 blocks, respectively. These building blocks are defined as:

Z = T
(
y, Fj

)
+ y (3)

where y and Z represents the input and output vectors of the layers, and the function T is
defined as the learning ability of the model during training [35]. The input to the model
is given as an image of size 224 × 224, and the first block of the model will render an
output of 64 feature maps with the size 112 × 112 pixels. As the convolution progresses,
the number of features increases with the depth of the network. In the end, the network
extracts 2048 features with a size of 7 × 7 pixels. Finally, the classification is performed by
the average pooling layer and fully connected layers with a SoftMax function, which is
defined as [35]:

φ
(
λy
)
=

exp
(
λy
)

∑p exp
(
λp
) (4)

We selected VGG16 and ResNet50 as the pretrained models for detecting knee os-
teoarthritis from X-ray images using transfer learning because of their proven effectiveness
in similar medical image analysis tasks and their complementary strengths. VGG16 has
shown impressive results in various medical image classification tasks, including skin
lesion classification and lung nodule detection [36]. Its ability to learn meaningful features
from medical images made it a suitable choice for our study on knee osteoarthritis detection.
Additionally, VGG16’s relatively simple architecture allows for easier interpretation and
customization, which can be advantageous when adapting the model for domain-specific
tasks such as osteoarthritis detection. ResNet50, on the other hand, has demonstrated
exceptional performance in a wide range of image classification tasks, including those
involving medical images. The residual connections in ResNet50 enable the model to learn
more complex features, which can be beneficial when dealing with subtle variations and
patterns present in medical images such as X-rays. This ability to learn intricate features
allows ResNet50 to potentially capture the nuances required for accurate knee osteoarthritis
detection. By employing both VGG16 and ResNet50, we aimed to leverage their comple-
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mentary strengths: VGG16’s simple architecture for easier customization and ResNet50’s
ability to learn complex features for capturing subtle patterns in X-ray images. This com-
bination increased the likelihood of achieving better performance in knee osteoarthritis
detection compared to using a single pretrained model or other models that might not have
these specific advantages.
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While there are other pretrained models available, such as InceptionV3 [37] or Effi-
cientNet [38], we focused on VGG16 and ResNet50 due to their successful track records in
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medical image analysis tasks and the unique characteristics that make them well-suited for
detecting knee osteoarthritis from X-ray images using transfer learning.

For our transfer learning model using VGG16 and ResNet50, we experimented with
different hyperparameter configurations to optimize performance. The key hyperparame-
ters we focused on were the learning rate, batch size, and the number of epochs. We tested
various learning rates, such as 0.001, 0.0001, and 0.00001, to determine the most suitable
value. After evaluating the model’s performance, we chose a learning rate of 0.00001, as it
has been proven to work well in practice for fine-tuning pretrained models. In addition
to the learning rate, we also experimented with various batch sizes, such as 16, 32, and
64, to find the optimal balance between the training speed and performance. After testing
these values, we selected a batch size of 32, as it provided the right balance between the
efficient use of computational resources and good model generalization. Furthermore, we
tested different numbers of epochs, such as 20, 30, and 50, to find the best trade-off between
model performance and overfitting. After evaluating the results, we chose 30 epochs, as
this value provided good results while minimizing overfitting.

To fine-tune these hyperparameters, we followed a systematic approach, namely,
grid search or random search. In grid search, we tested all possible combinations of
hyperparameter values within a predefined range. For example, we trained the model
with a learning rate of 0.00001, a batch size of 16, and 20 epochs, and then moved on
to the next combination (e.g., 0.00001 learning rate, 16 batch size, and 30 epochs) until
all possible combinations had been evaluated. In random search, we randomly selected
hyperparameter values within a specified range and trained the model with these values.
We repeated this process for a fixed number of iterations until a stopping criterion was met.
By evaluating the performance of the model with different configurations, we selected the
best-performing combination that balanced performance and efficiency for detecting knee
osteoarthritis from X-ray images using transfer learning with VGG16 and ResNet50.

In our study, we chose specific hyperparameters for fine-tuning the pretrained VGG16
and ResNet50 models. The selection of these hyperparameters was based on their ability
to balance performance and efficiency, as well as their demonstrated success in similar
tasks. For the learning rate, we chose a value of 0.00001. This learning rate is smaller
than the default values often used, such as 0.001 or 0.01. The smaller learning rate was
selected because it allows for more gradual and stable updates of the model weights during
fine-tuning. A higher learning rate, such as 0.01, might cause the model to overshoot the
optimal weights and fail to converge, while a lower learning rate, such as 0.000001, could
result in an excessively slow training process. The chosen learning rate of 0.00001 provides
a balance between stability and training speed, making it suitable for fine-tuning pretrained
models for knee osteoarthritis detection. Regarding the batch size, we opted for a value
of 32. A smaller batch size, such as 8 or 16, might lead to slower convergence, as the
model’s weight updates would be based on fewer samples. Conversely, a larger batch size,
such as 64 or 128, might negatively impact the model’s ability to generalize to new data,
as the weight updates would be averaged over a larger number of samples, potentially
smoothing out important patterns. By choosing a batch size of 32, we aimed to strike a
balance between the speed of convergence and the model’s ability to generalize well to
new data in the context of knee osteoarthritis detection.

As for the number of epochs, we decided on 30 epochs for our training process. A
smaller number of epochs, such as 10 or 15, might not provide the models with enough
exposure to the data for them to learn the relevant features for knee osteoarthritis detection,
leading to underfitting. On the other hand, a higher number of epochs, such as 50 or 100,
could result in overfitting, where the model becomes too specialized in recognizing the
training data and loses its ability to generalize to unseen data. By training the models for
30 epochs, we aimed to minimize the risk of overfitting while ensuring that the models
were sufficiently exposed to the training data to learn the relevant features for accurate
knee osteoarthritis detection.
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Finally, we employed the Adam optimizer for fine-tuning the models. The Adam
optimizer was chosen over other optimization algorithms, such as SGD (Stochastic Gra-
dient Descent) or RMSprop [39–41], due to its ability to adapt the learning rate for each
parameter individually and effectively handle sparse gradients. These characteristics make
the Adam optimizer particularly suitable for fine-tuning pretrained models in transfer
learning settings, as it can efficiently and adaptively update the model weights.

3.3. Visualization Method

Visualization is important for any study, as it provides a much deeper analysis of the
output obtained. This also helps in determining relationships between real-world entities
and confirming the accuracy of the developed model on the dataset. For this paper, we
have used the Grad-CAM visualization [42] technique. This visualization technique was
used because it provides a better understanding of any prediction failures and helps in
the identification of any bias while outperforming previous benchmarks. This technique is
also effective in the analysis of the backpropagation algorithm, where the downsampled
relevance maps are upsampled to generate a relevance heatmap. Studies such as [42]
have shown that the Grad-CAM technique required no retraining and can be applied to
many CNN architectures. Furthermore, the Grad-CAM technique is class-specific and can
produce separate visualizations for each class present in the images.

To generate Grad-CAM, we need to first define the gradient with respect to the feature
maps of the convolution layers, which is defined by [43]:

Qp = ∑
R

Sp
R

1
X ∑

k
∑
L

YR
KL (5)

where Qp is defined as the global average pooling transformation score, and Y is defined
as the feature map. After the calculation gradient is complete, global average pooling is
performed to generate weights, which are defined as [43]:

β
p
R =

1
X ∑

k
∑
L

∂Qp
∂YR

KL
(6)

where β
p
R is defined as the weights generated, and ∂Qp

∂YR
KL

is defined as the convolutional

layer.

4. Results and Discussion

Initially, we started with our base sequential CNN model. Before loading the X-ray
image training data into the model, data augmentation was carried out. As our models are
data-dependent, high-quality images must be passed through the model to achieve good
predictive accuracy. Data augmentation helps in improving the predictive accuracy of the
model by adding more training data to the transfer learning model, thereby preventing
data scarcity for the models. Data augmentation also helps in reducing the overfitting of
the data and increasing the generalization ability of the models, which further improves
the issues related to the class imbalance. The data augmentation performed is summarized
in Table 2.

Once the data augmentation is performed, the X-ray images are passed through the
sequential CNN base model. This model is trained with the default ImageNet weights for
30 epochs of batch size 32. The validation split was set to 0.10, and the shuffle was set to
True. With the developed model, we validated it through different datasets. This helped us
in developing a reliable model based on its predictions on the validation data. To assess the
external validity of our model, we conducted a validation process using a separate test set.
We randomly split our dataset into training, validation, and test sets, with a 70-15-15 split,
respectively. To provide specific details about the performance of our transfer learning
model on the test set, we first need to evaluate the model using various evaluation metrics,
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such as accuracy, precision, recall, F1 score, and specificity. These metrics help us better
understand the model’s performance in different aspects, such as correctly identifying
positive cases, avoiding false positives, and balancing precision and recall. After training
and fine-tuning the model using the training and validation sets, we applied the model to
the test set, consisting of 845 X-ray images. By evaluating the model’s performance on this
unseen data, we can assess its generalizability and ability to perform well on new data. We
then compared the results obtained from our model on the test set with the performance
metrics obtained from other studies to understand how our approach fares relative to
existing methods. We also used the training and validation sets for model training and
hyperparameter tuning and reserved the test set for the final model evaluation. During
the testing phase, we used the trained model to predict the knee osteoarthritis status from
the X-ray images in the test set. During the training of the model, accuracy and loss can
fluctuate depending upon the cases. Generally, it is seen that if the number of epochs is
increased, the accuracy increases, and the loss decreases. However, in cases of validation
loss and validation accuracy, a few cases must be kept in mind. That is, if the validation loss
starts increasing and the validation accuracy starts decreasing, then this indicates that our
model is not learning. If the validation loss starts increasing, then validation accuracy also
increases. This can cause model overfitting. If the validation loss decreases, then validation
accuracy increases. In our model, we used the loss as binary cross-entropy. This shows that
the developed model is learning properly and is working accurately. The validation loss
and accuracy are summarized in Figures 4 and 5, respectively.

Table 2. Summary of data augmentation performed during model building.

Parameter Task Performed

Rotation_Range = 20 It rotates images by angles between 0 and 20 degrees.

Width_Shift_Range = 0.01 It shifts the image along the X-axis by the input value.

Height_Shift_Range = 0.01 It vertically shifts the image by the input value.

Horizontal_Flip = False It stops the horizontal flipping of rows and columns.

Vertical_Flip = False It stops the vertical flipping of rows and columns.
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From these plots, it is evident that they belong to the third case, which shows that our
model is learning effectively. Additionally, our validation process showed that our model’s
performance is not limited to the training and validation sets and can generalize well to new
and unseen data. To generate good predictive results, we need to refine the model. In this
process, we used the Adam optimizer. The Adam optimizer is an integration of the RMSP al-
gorithm and gradient descent with the momentum algorithm [39–41]. The Adam optimizer
requires less memory and is efficient in dealing with larger datasets. This optimizer helps
us in handling sparse gradients on a noisy dataset, which generates effective predictive
results. The operation of the Adam optimizer is defined by Algorithm 1 [39–41] as:

Algorithm 1: Adam Algorithm

1. Initialize, p0 = 0 and q1
2. for j = 1, . . . , J do

3. pj = λ(1,j)pj−1 +
(

1− λ(1,j)

)
zj

4. φj = βj

(
z1, z2, z3, . . . , zj

)
5. bj+1 = bj −

δj pj√
φj

6. end

In this algorithm, b is the optimization variable, zj is the stochastic gradient at step
j, λ(1,j) is the non-increasing sequence, and βj is an arbitrary function that generates an
output vector of the same dimension as that of b. During the training of our model, we
used a dropout of 0.5, which implies that randomly selected neurons are removed from the
training of our model to prevent it from overfitting. The process of the removal of neurons
is explained by [44]. Upon training the model, we achieved a training accuracy of 93.53%
and a testing accuracy of 90.95%.

In our study, we employed various evaluation metrics, such as precision, recall, F1
score, and specificity, to assess the performance of our transfer learning model in detecting
knee osteoarthritis from X-ray images. These metrics help us understand the model’s
capabilities in different aspects of classification tasks. Precision measures the proportion of
true positive predictions out of all positive predictions made by the model. A high precision
score indicates that the model makes fewer false positive predictions, which is crucial in
medical diagnosis to avoid unnecessary treatments. Precision can be calculated as:

Precision (P) =
Q

(Q + R)

where Q = true positive (TP) and R = false positive (FP).



Healthcare 2023, 11, 1206 15 of 30

Recall, also known as sensitivity, evaluates the model’s ability to correctly identify
positive cases within the dataset. A high recall score demonstrates that the model can
accurately detect most positive samples. Recall can be calculated as:

Recall (R) =
P

(S + T)

where S = true positive (TP) and T = false negative (FN).
Specificity is an important metric that gauges the model’s capacity to correctly iden-

tify negative cases, or true negatives (TN). In the context of knee osteoarthritis detection,
high specificity ensures that the model can accurately identify images without signs of
osteoarthritis, which helps prevent unnecessary medical interventions or follow-up exami-
nations. Specificity can be calculated as:

Speci f icity =
TN

(TN + FP)

The F1 score, on the other hand, is the harmonic mean of precision and recall. It
provides a balanced measure that accounts for both precision and recall, offering a more
comprehensive evaluation of the model’s performance. A high F1 score suggests a good
balance between precision and recall and can be calculated as:

F− 1 Score =
(2 ∗ P ∗ R)
(P + R)

By utilizing these evaluation metrics, we gain a better understanding of our transfer
learning model’s performance in various aspects of detecting knee osteoarthritis from
X-ray images and can make more informed decisions about its effectiveness and areas for
improvement. The values obtained from these metrics are summarized in Table 3.

Table 3. Evaluation metrics for the base model.

Precision Recall F-1 Score Support

Normal (0) 0.94 0.78 0.85 210

Osteoarthritis (1) 0.90 0.97 0.94 431

Macro Average 0.92 0.88 0.89 641

Weighted Average 0.91 0.91 0.91 641

Specificity = 0.97

The macro average and weighted average are two methods used to calculate the
performance metrics of a classification model, such as precision, recall, and F1 score.
These methods are particularly relevant in multi-class classification problems or when the
class distribution is imbalanced. The macro average calculates the performance metric
independently for each class and then takes the average of those values. This method
treats all classes equally, regardless of their size or distribution in the dataset. The macro
average is particularly useful when we want to evaluate the performance of a model on
minority classes, as it gives equal weight to each class. To compute the macro average
for a specific metric (e.g., precision), we calculate the precision for each class individually
and then take the average of those values. On the other hand, the weighted average
calculates the performance metric for each class, but instead of taking a simple average,
it weighs the metric for each class by the number of samples in that class. This method
takes the class distribution into account, and the performance metrics for larger classes
will have a greater influence on the overall average. The weighted average is useful when
we want to evaluate the performance of a model while considering the class imbalance
in the dataset. To compute the weighted average for a specific metric (e.g., precision), we
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calculate the precision for each class individually, multiply each precision value by the
number of samples in that class, sum these weighted values, and then divide the sum by
the total number of samples.

In Table 3, for normal knee X-ray prediction, where osteoarthritis is absent, the model
has a precision of 0.94, which means that out of all the positive predictions made by the
model, 94% of them are actually true positives. The recall value of 0.78 means that the
model correctly identified 78% of all actual positive samples. The F1 score of 0.85 is the
weighted average of precision and recall and provides an overall measure of the model’s
performance. An F1 score closer to 1 indicates a better performance of the model. Based on
these results, the model has a high precision value, indicating that it has a low false-positive
rate. However, the recall value is lower than the precision value, indicating that the model
may have missed some positive samples. The F1 score of 0.85 indicates that the model’s
performance is reasonably good, but there is still some room for improvement. On the other
hand, in the presence of knee osteoarthritis in X-rays, a precision of 0.90, a recall of 0.97, and
an F1 score of 0.94 mean that the model performs very well in identifying arthritis cases
from knee X-ray images. A precision of 0.90 means that out of all the predicted arthritis
cases, 90% of them are true arthritis cases, and the remaining 10% are false positives. A
recall of 0.97 means that the model has correctly identified 97% of all arthritis cases present
in the dataset. Additionally, an F1 score of 0.94 means that the model performs very well in
both precision and recall. Therefore, based on these evaluation metrics, we can conclude
that the arthritis detection model has a high accuracy in identifying arthritis cases from
knee X-ray images. To further predict the quality of the model on the data, a normalized
confusion matrix was drawn, which is shown in Figure 6. All these metrics signify that this
model performs well in predicting osteoarthritis from knee X-ray images.
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Another model used for a better analysis of the results is VGG-16 [26]. This model
is pretrained on the ImageNet dataset with ImageNet weights [26]. This model takes the
augmented X-ray images as input, with the same Adam optimizer and other parameters as
explained for the base model. This model was also trained for 30 epochs with a batch size
of 32, where the learning rate of the Adam optimizer is 0.00001. The outcomes generated
from training the model are recorded in Table 4.
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Table 4. Training results obtained from VGG-16.

Epochs Loss Accuracy Validation Loss Validation Accuracy

1/30 7.4912 0.7291 7.1074 0.4596

2/30 6.4551 0.8109 6.6875 0.4383

3/30 5.9190 0.8662 6.1840 0.6170

4/30 5.5223 0.8983 5.8450 0.6511

5/30 5.2077 0.9125 5.5006 0.7277

6/30 4.9329 0.9352 5.2639 0.7362

7/30 4.7257 0.9485 5.1072 0.7362

8/30 4.5274 0.9593 4.9531 0.7745

9/30 4.3915 0.9735 4.9955 0.7277

10/30 4.2561 0.9716 4.7379 0.7957

11/30 4.1487 0.9726 4.5431 0.8340

12/30 4.0387 0.9825 4.4185 0.8681

13/30 3.9491 0.9891 4.6264 0.7915

14/30 3.8583 0.9872 4.5093 0.7957

15/30 3.7755 0.9905 4.5681 0.7872

16/30 3.7012 0.9910 4.3396 0.8426

17/30 3.6342 0.9934 4.3579 0.8128

18/30 3.5685 0.9953 4.1970 0.8383

19/30 3.5088 0.9939 4.2251 0.8170

20/30 3.4371 0.9962 4.6567 0.7277

21/30 3.3787 0.9967 3.9780 0.8766

22/30 3.3227 0.9967 3.8515 0.8809

23/30 3.2670 0.9953 3.8776 0.8723

24/30 3.2060 0.9972 3.9987 0.8383

25/30 3.1530 0.9967 4.0305 0.8213

26/30 3.0979 0.9976 3.9723 0.8298

27/30 3.0439 0.9962 3.6168 0.8894

28/30 2.9908 0.9986 3.6642 0.8851

29/30 2.9383 0.9981 3.7275 0.8681

30/30 2.8906 1.0000 3.4289 0.9106

To gain a clear understanding of the performance of the model, plots of validation loss
and accuracy were obtained and are depicted in Figures 7 and 8, respectively.

Upon analysis, we found that this model outperformed the previous model and
achieved a training accuracy of 99.11% and a testing accuracy of 92.17%. For further
investigation of the results, several performance evaluation metrics, namely, F-1 score,
precision, recall, and specificity, were used. The values obtained for these metrics are
recorded in Table 5.
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Table 5. Evaluation metrics for the pretrained VGG-16 model.

Precision Recall F-1 Score Support

Normal (0) 0.99 0.77 0.87 220

Osteoarthritis (1) 0.90 1.00 0.94 431

Macro Average 0.94 0.89 0.91 651

Weighted Average 0.93 0.92 0.92 651

Specificity = 0.99

In Table 5, the precision of the model for normal X-rays is 0.99, which means that out
of all the images that the model classified as normal X-rays, 99% of them were actually
normal. This indicates that the model is very accurate in identifying normal X-rays and
has a low false-positive rate. The recall of the model for normal X-rays is 0.77, which
means that out of all the actually normal X-rays, the model correctly identified 77% of them.
This indicates that the model may have missed some normal X-rays and has a moderate
false-negative rate. The F1 score for normal X-rays is 0.87, which is the harmonic mean
of precision and recall. It combines both precision and recall into a single metric and
provides an overall measure of the model’s accuracy. A higher F1 score indicates the better
overall performance of the model. Overall, the model has a very high precision for normal
X-rays, indicating a low false-positive rate. However, the recall is moderate, indicating
that the model may have missed some normal X-rays. The F1 score is good, indicating an
overall good performance of the model for normal X-rays. For osteoarthritis detection, the
precision of 0.90 means that out of all the positive predictions made by the model, 90%
were actually true positives. In the context of detecting knee osteoarthritis, this means that
90% of the X-rays that were predicted as showing signs of osteoarthritis actually have the
disease. The recall of 1.00 means that out of all the actual positive cases of osteoarthritis,
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100% were correctly identified by the model. In other words, the model did not miss any
cases of osteoarthritis. The F1 score of 0.94 is the weighted average of precision and recall
and provides a measure of the model’s overall accuracy. This score indicates that the model
has a high level of accuracy in identifying cases of knee osteoarthritis from X-rays. Overall,
these evaluation metrics indicate that the model has a high level of precision and recall in
detecting knee osteoarthritis from X-rays, with a high overall accuracy as measured by the
F1 score. This suggests that the model can be useful in assisting medical professionals in
the diagnosis of knee osteoarthritis.

From Figures 7 and 8, it is evident that when the validation loss decreases, the vali-
dation accuracy increases. This indicates that our model is learning correctly. To further
predict the quality of the model on the data, a normalized confusion matrix was drawn,
which is shown in Figure 9. All these metrics signify that this model performs well in
predicting osteoarthritis from knee X-ray images.
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The final pretrained model used is ResNeT-50. The network architecture is very large
due to an increasing number of layers. To avoid resource crashing, the ResNeT architecture
is defined by the third layer in Figure 3. A typical ResNeT architecture is 50 layers deep.
For more understanding of the ResNeT architecture, refer to the study in [27].

This model was also trained for 30 epochs by keeping the optimizer and all other
parameters the same. The outcomes generated by the model are recorded in Table 6.

The overall training accuracy achieved for the ResNeT-50 model is 98.47%, and the
overall testing accuracy achieved is 90.63%. For a clear understanding of the performance
of the model, plots of validation loss and accuracy were obtained and are depicted in
Figures 10 and 11, respectively.

For further investigation of the results, several performance evaluation metrics, that is,
F-1 score, precision, recall, and specificity, were used. The values obtained for these metrics
are recorded in Table 7.

In Table 7, for normal X-rays, the precision of 0.98 indicates that out of all the predicted
normal X-rays, 98% were actually normal. The recall value of 0.74 means that out of all the
actually normal X-rays, only 74% were correctly identified as normal by the model. The F-1
score of 0.84 is the harmonic mean of precision and recall and gives an overall measure of
the model’s performance in identifying normal X-rays. A precision score of 0.98 is relatively
high, indicating that the model is good at predicting normal X-rays. However, a recall
score of 0.74 indicates that the model is missing a significant number of normal X-rays,
which could lead to false positives for arthritis detection. The F1 score of 0.84 indicates
that the overall performance of the model is good, but there is still room for improvement,
particularly in increasing the recall value. The given precision value of 0.88 for arthritis
detection from X-rays suggests that out of all the predicted cases of knee osteoarthritis, 88%
are actually true positive cases of knee arthritis. The recall value of 0.99 indicates that out of
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all the actually positive cases of knee arthritis, 99% of them were correctly identified by the
model. The F-1 score of 0.93 indicates a good balance between precision and recall. Overall,
these evaluation metrics suggest that the model performs well in detecting knee arthritis
from X-rays with high accuracy and high recall.

Table 6. Outcomes generated from training of ResNeT-50 model.

Epochs Loss Accuracy Validation Loss Validation Accuracy

1/30 7.0904 0.7773 7.1538 0.4426

2/30 6.2619 0.8790 6.2547 0.8000

3/30 5.7947 0.8988 5.8836 0.7915

4/30 5.4136 0.9229 5.4863 0.8596

5/30 5.1099 0.9409 5.4320 0.7702

6/30 4.8678 0.9499 5.2968 0.7532

7/30 4.6622 0.9470 5.0469 0.7830

8/30 4.4578 0.9603 4.7299 0.8426

9/30 4.2779 0.9678 4.7181 0.7915

10/30 4.0964 0.9830 4.6857 0.7787

11/30 3.9562 0.9792 4.4714 0.7915

12/30 3.8029 0.9835 4.3791 0.7872

13/30 3.6892 0.9835 4.1811 0.8043

14/30 3.5528 0.9863 4.1319 0.7915

15/30 3.4316 0.9896 4.0257 0.8043

16/30 3.3145 0.9915 3.8679 0.8255

17/30 3.2210 0.9901 3.9060 0.7830

18/30 3.1180 0.9901 3.9950 0.7362

19/30 3.0159 0.9939 3.7447 0.7787

20/30 2.9354 0.9934 3.4696 0.8511

21/30 2.8475 0.9934 3.5507 0.8043

22/30 2.7621 0.9934 3.5520 0.7702

23/30 2.6778 0.9976 3.7049 0.7319

24/30 2.6019 0.9972 3.3205 0.8043

25/30 2.5302 0.9957 3.3010 0.8000

26/30 2.4616 0.9962 3.2117 0.8213

27/30 2.3962 0.9957 3.0944 0.8255

28/30 2.3287 0.9991 3.1601 0.8043

29/30 2.2744 0.9939 2.9850 0.8213

30/30 2.2146 0.9967 2.8387 0.8468
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Table 7. Evaluation metrics for the pretrained ResNeT-50 model.

Precision Recall F-1 Score Support

Normal (0) 0.98 0.74 0.84 220

Osteoarthritis (1) 0.88 0.99 0.93 431

Macro Average 0.93 0.86 0.89 651

Weighted Average 0.91 0.91 0.90 651

Specificity = 0.99

From Figures 10 and 11, it is evident that when the validation loss decreases, the
then validation accuracy increases. This indicates that our model is learning correctly. To
further predict the quality of the model on the data, a normalized confusion matrix was
drawn, which is shown in Figure 12. Furthermore, the overall computational time for
3836 X-ray images with the pretrained sequential CNN model is approximately 30 min; for
the pretrained VGG-16 model, the overall computational time is approximately 12.8 min;
and for the ResNeT-50 model, the computational time is approximately 11.51 min. In the
case of knee osteoarthritis detection using X-ray images, the computational time for the
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three pretrained models (pretrained sequential CNN, VGG-16, and ResNet-50) provides
valuable information about the feasibility and practicality of using these models in real-
world settings. The pretrained ResNet-50 model has the shortest computational time among
the three models evaluated, which makes it a suitable option for scenarios in which quick
results are required. However, this model may not be the best option if accuracy is the most
critical factor since it has the lowest reported accuracy among the three models. On the
other hand, the pretrained VGG-16 model has an intermediate computational time, which
makes it a suitable option for scenarios in which both accuracy and computational time are
important factors to consider. Lastly, the pretrained sequential CNN model has the longest
computational time among the three models. However, this model has the highest reported
accuracy, which makes it the most suitable option if accuracy is the most critical factor and
if the longer computational time can be accommodated.

Healthcare 2023, 11, x  22 of 30 
 

 

 
Figure 12. Normalized confusion matrix for ResNeT-50 model. 

A comparative analysis of the accuracy percentages between various models is pre-
sented in Table 8. 

Table 8. Comparative analysis of models with their accuracy. 

Model Training Accuracy (%) Testing Accuracy (%) 
Sequential CNN 93.53 90.95 

Pretrained VGG-16 99.11 92.17 
Pretrained ResNeT-50 98.47 90.63 

From Table 8, it is evident that the pretrained VGG-16 model achieved a higher train-
ing accuracy and testing accuracy and outperformed the other two models. Thus, VGG-
16 is a more suitable model for the early prediction of knee osteoarthritis from X-ray im-
ages. To visualize the predictions, we generated visualizations of the predictions for some 
random images from the dataset to show the effectiveness of the most accurate model. 
The accuracy is further confirmed through Grad-CAM visualization. These are shown in 
Figures 13 and 14, respectively. 

Figure 12. Normalized confusion matrix for ResNeT-50 model.

A comparative analysis of the accuracy percentages between various models is pre-
sented in Table 8.

Table 8. Comparative analysis of models with their accuracy.

Model Training Accuracy (%) Testing Accuracy (%)

Sequential CNN 93.53 90.95

Pretrained VGG-16 99.11 92.17

Pretrained ResNeT-50 98.47 90.63

From Table 8, it is evident that the pretrained VGG-16 model achieved a higher
training accuracy and testing accuracy and outperformed the other two models. Thus,
VGG-16 is a more suitable model for the early prediction of knee osteoarthritis from X-ray
images. To visualize the predictions, we generated visualizations of the predictions for
some random images from the dataset to show the effectiveness of the most accurate model.
The accuracy is further confirmed through Grad-CAM visualization. These are shown in
Figures 13 and 14, respectively.
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The suggested methodology in this paper presents several advantages over other
methods, including improved detection performance, reduced model training time, the
efficient use of data, and the high transferability of knowledge. However, it has some
disadvantages, such as model overfitting and the limited adaptability of data, which can
affect the system’s performance. A comparative analysis between different advantages and
disadvantages of the methodology suggested in this paper with other closely related studies
is summarized in Table 9. Furthermore, a comparison of the methodology suggested in this
paper was also made based on the accuracy percentage with other closely related studies
and is summarized in Table 10.

In Tables 9 and 10, the presented comparative analysis shows the performance of
different models on the task of detecting knee osteoarthritis from X-rays. The accuracy
percentage metric is used to compare the performance of the models. Accuracy is a measure
of how well the model predicts the correct class for all the samples in the dataset. Based
on the comparison, the model developed in this study achieved the highest accuracy of
92.17% compared to the other studies. The accuracies of the other studies range from 61%
to 97.7%, with an average of 86.88%. This comparative analysis suggests that the model
developed in this study performs better than most of the other models developed for the
same task. It also suggests that detecting knee osteoarthritis from X-rays is a challenging
task, as the accuracies of the other studies vary widely. The differences in accuracy could be
due to various factors, such as the size and quality of the dataset used, the choice of model
architecture, hyperparameters, the optimization algorithm used, and the preprocessing
techniques applied to the data. The accuracy of other studies ranged from 61% to 97.7%.
The studies that achieved an accuracy below 80% can be considered poor or inadequate.
The studies that achieved an accuracy between 80% and 90% can be considered fair or
average, while the studies that achieved an accuracy above 90% can be considered excellent.
Therefore, the results of this comparative analysis suggest that the model developed in
this study could be a valuable tool for detecting knee osteoarthritis from X-rays, and it
outperforms most of the other models developed for the same task.

Our transfer learning approach has shown promise in detecting knee osteoarthritis
from X-ray images when comparing our model’s accuracy with other studies. Nonetheless,
there are certain limitations and potential issues that warrant further discussion and
specificity. First, when comparing our results with other studies, it is important to consider
not only the differences in datasets and preprocessing techniques but also the specific
methodologies employed by each study. For instance, other studies may have used different
evaluation metrics, model architectures, or training strategies, which could impact the
model’s performance. Providing a more detailed comparison between our approach and the
methods used in other studies would offer a better understanding of the relative strengths
and weaknesses of each approach. Second, regarding the quality and size of the dataset used
for training and testing, a more in-depth analysis of the dataset’s composition could reveal
potential biases or the underrepresentation of certain patient subgroups. By examining the
distribution of factors such as age, gender, and disease severity within the dataset, we could
gain insights into how well our model generalizes to the broader population. This would
also inform potential strategies for improving the model’s performance by addressing any
identified shortcomings in the dataset. Third, when discussing the choice of pretrained
models for transfer learning, we could delve deeper into the specific characteristics of
VGG16 and ResNet50 that make them suitable or unsuitable for the task of detecting knee
osteoarthritis from X-ray images. By comparing these models with other potential options,
we could identify areas where alternative pretrained models might outperform VGG16
and ResNet50. This would not only provide a clearer rationale for our choice of pretrained
models but also suggest avenues for future research to explore other model architectures
that could potentially yield better results. By addressing these concerns and providing a
more detailed examination of the limitations and potential issues, we can better understand
the true capabilities of our transfer learning approach in detecting knee osteoarthritis from
X-ray images and identify areas for further improvement.
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Table 9. Comparative analysis with advantages and disadvantages of various studies.

Authors Work Performed Disadvantages Advantages

[45]

Two different models, machine
learning and transfer learning, were

used to detect knee osteoarthritis
and classify them into subtypes

based on severity grading.

Not very high detection and
classification accuracy. It did not

perform well in multi-class
labeled samples.

Achieved an accuracy of 90.8% and
performed well in binary-class

label classification.

[46]

A bi-directional LSTM model was
used on data collected from 17

patients affected by knee
osteoarthritis to estimate the flexion

kinematics of joints.

This technique was not tested on a
large dataset and is not very reliable

for use in the real world.

This technique effectively predicts the
kinematics for knee joint flexion
during phases of walking in a

small dataset.

[47]

A computer-assisted detection and
classification technique based on

multivariate information and deep
learning for knee osteoarthritis

is suggested.

The accuracy decreased
significantly from 93.6% to 84.2%,

and the reliability of this technique
in the real world is questionable.

This technique not only detects knee
osteoarthritis but also grades the

severity of knee arthritis in
various classes.

[48]
This study evaluated various deep

learning techniques in detecting
knee osteoarthritis.

The evaluation of the techniques is
not stable, and the accuracy ranges

from 54% to 93%.

Tested the efficacy of various deep
learning techniques on a dataset of

2000 + knee X-ray images.

[49]
A novel technique based on

Yolo-V3 to detect and classify knee
osteoarthritis from X-ray images.

The technique achieved a low
detection and classification
accuracy of 85% and 86.7%,

respectively, when evaluated on
different parameters.

The suggested technique achieved
satisfactory performance in detecting

early stages of knee osteoarthritis.

[50]
The use of the phono-arthrography
technique is suggested for detecting

osteoarthritis.

The suggested technique is still
under development, but initial

results have shown great promise
for the future diagnosis

of osteoarthritis.

Initial results achieved better
accuracy in the detection and

classification of arthritis.

[51]

The suggested technique evaluated
the various risk factors associated
with knee osteoarthritis in young

adults using machine learning.

The suggested technique achieved
low accuracy of 78%, 56%, and 71%

respectively with different input
features and 67.6%, 62.3%, and 71%,

respectively, with the same input
features when evaluating the

risk factors.

This technique not only detected knee
osteoarthritis but also evaluated the

risk factors associated with it.

[52] The use of CNN was suggested for
detecting knee osteoarthritis.

The suggested technique achieved
an average multi-class accuracy of
61%, which is lower than that of

other state-of-art techniques.

The suggested technique also
performs classification of knee

osteoarthritis in classes such as KL0,
KL1, KL2, KL3, and KL4.

[53]

The Kellgren–Lawrence technique,
along with deep learning

techniques, is used to detect and
classify knee osteoarthritis.

The suggested technique achieved a
higher accuracy but was tested only
on a dataset of 697 patients, which

is a small sample.

The model achieved an overall high
accuracy of 97.7% in detecting and

classifying knee osteoarthritis.

This work

Transfer learning technique based
on VGG-16, ResNeT-50, and CNN

is suggested for detecting knee
osteoarthritis from knee X-ray

images.

The suggested technique was tested
on a larger dataset and achieved an

accuracy of 92.17%.

Although the suggested technique
achieved high accuracy, it still has

disadvantages such as model
interpretability, bias correction,

and regularization.
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Table 10. Comparative analysis of various studies based on accuracy percentage.

References Accuracy %

[49] 85.7% and 86% on the dataset available at [54] using the Yolo V3 model

[52] 61% on the same dataset as [54] using a CNN

[55] 86.79% and 83.57%, respectively, on a dataset curated by the authors consisting
of samples from knee osteoarthritis and hip osteoarthritis patients

[56] 85.50% on the osteoarthritis severity grading dataset and osteoarthritis initiative
dataset by using a deep CNN model

[57] 91.51% on the dataset available at [54] using a transfer learning CNN model.

[58] 90.06% using Yolo V2 and the CNN technique; the dataset was collected by the
authors on their own, and no specifications regarding the dataset were given.

[59] 89.29% using the same dataset available at [54] and using CNN

[60] 72% using the same dataset available at [54] and using CNN

[61] 71.33% by using an automated CNN technique on the dataset curated by the
authors on their own.

This Work 92.17%

Furthermore, when comparing our results with other studies, it is important to con-
sider not only the differences in datasets and preprocessing techniques but also the specific
methodologies employed by each study. For instance, other studies may have used dif-
ferent evaluation metrics, model architectures, or training strategies, which could impact
the model’s performance. Providing a more detailed comparison between our approach
and the methods used in other studies would offer a better understanding of the relative
strengths and weaknesses of each approach. Second, regarding the quality and size of the
dataset used for training and testing, a more in-depth analysis of the dataset’s composition
could reveal potential biases or the underrepresentation of certain patient subgroups. By
examining the distribution of factors such as age, gender, and disease severity within the
dataset, we could gain insights into how well our model generalizes to the broader popula-
tion. This would also inform potential strategies for improving the model’s performance by
addressing any identified shortcomings in the dataset. Third, when discussing the choice of
pretrained models for transfer learning, we could delve deeper into the specific characteris-
tics of VGG16 and ResNet50 that make them suitable or unsuitable for the task of detecting
knee osteoarthritis from X-ray images. By comparing these models with other potential
options, such as Xception V3 or EfficientNeT, we could identify areas where alternative
pretrained models might outperform VGG16 and ResNet50. This would not only provide a
clearer rationale for our choice of pretrained models but also suggest avenues for future
research to explore other model architectures that could potentially yield better results.

Moreover, based on the results, we found that the pretrained VGG-16 model achieved
the best performance among all other models. This is because of several reasons. One
reason is the architecture of the VGG16 model [26]. VGG16 has a very deep architecture,
which allows it to learn complex patterns and features from images. It has 13 convolutional
layers, 5 max-pooling layers, and 3 fully connected layers [26]. The use of so many layers
allows VGG16 to capture both low-level and high-level features of the images. Another
reason is the way in which the VGG16 model was pretrained. The VGG16 model was
pretrained on a very large dataset (ImageNet) with more than one million images, which
may have helped the model learn general features that are useful for various computer
vision tasks [26]. The pretraining process may have helped the model avoid overfitting and
generalize well to new data.
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5. Conclusions

Knee osteoarthritis (OA) is a major cause of disability in adults. The progression of OA
is generally unstoppable, and there is currently no cure for it. At present, the diagnosis of
OA relies on X-ray images. However, this is a manual process that may produce inaccurate
results if not implemented properly. To solve this challenge, an automated approach for the
prediction of OA from X-ray images is suggested in this paper. Three models, sequential
CNN, VGG-16, and ResNeT-50, are suggested for predicting OA from X-ray images. All
three models achieved good accuracy, greater than 90%, but the most accurate model for
the prediction of OA was VGG-16, which achieved a testing accuracy of 92.17%. From
our analysis, we found that under expert supervision and a large amount of high-quality
data, this automated system can perform better and generate predictions while taking the
least possible time. The methodology suggested in this paper is easy to operate and is
cost-effective to implement in real-world scenarios. Furthermore, the findings of our study
have implications beyond the scope of knee osteoarthritis detection, as they demonstrate
the potential of transfer learning models to effectively handle various medical imaging
tasks. The success of our approach in detecting knee osteoarthritis from X-ray images
highlights the versatility of transfer learning, which could be applied to other medical
imaging modalities, such as MRI or CT scans, to detect and diagnose a wide range of
diseases and conditions. In clinical practice, the proposed model could serve as an essential
tool for assisting healthcare professionals in making more accurate and timely diagnoses.
This can, in turn, lead to improved patient care and management, as early detection
and intervention are often crucial in minimizing the impact of many medical conditions.
Additionally, the use of such models can help reduce the workload of radiologists and
clinicians, enabling them to focus on more complex cases or spend more time with patients.
By exploring the potential of transfer learning models in various medical imaging tasks,
researchers and healthcare professionals can pave the way for more advanced and reliable
diagnostic tools that can revolutionize the field of medical imaging and ultimately improve
patient outcomes.

Despite the advantages offered by the technique suggested in this paper, it has some
challenges that may restrict its potential in the detection of knee osteoarthritis. For example,
transfer learning can result in complex models that are difficult to interpret and understand,
which can reduce the ability to validate and explain the results of the automated system.
Pretrained models may not be fully adaptable to the specific requirements of the target
task and may require fine-tuning or additional modifications to improve their performance.
Furthermore, pretrained models may contain biases and inaccuracies introduced during
the training process, which can impact the performance of the automated system. Our
future work will attempt to resolve these challenges and use advanced techniques such as
ensemble learning and reinforcement learning.
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