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Abstract: The digitalisation of geriatric care refers to the use of emerging technologies to manage
and provide person-centered care to the elderly by collecting patients’ data electronically and using
them to streamline the care process, which improves the overall quality, accuracy, and efficiency
of healthcare. In many countries, healthcare providers still rely on the manual measurement of
bioparameters, inconsistent monitoring, and paper-based care plans to manage and deliver care
to elderly patients. This can lead to a number of problems, including incomplete and inaccurate
record-keeping, errors, and delays in identifying and resolving health problems. The purpose of
this study is to develop a geriatric care management system that combines signals from various
wearable sensors, noncontact measurement devices, and image recognition techniques to monitor
and detect changes in the health status of a person. The system relies on deep learning algorithms
and the Internet of Things (IoT) to identify the patient and their six most pertinent poses. In addition,
the algorithm has been developed to monitor changes in the patient’s position over a longer period
of time, which could be important for detecting health problems in a timely manner and taking
appropriate measures. Finally, based on expert knowledge and a priori rules integrated in a decision
tree-based model, the automated final decision on the status of nursing care plan is generated to
support nursing staff.

Keywords: geriatric care; IoT; vital parameters; posture recognition; image recognition; deep learning;
non-contact monitoring

1. Introduction

Geriatric care is a field of healthcare that focuses on the physical, mental, and social
needs of older adults. As people age, they may experience physical, cognitive, and social
changes that require special care and support. Geriatric care is based on the specific needs of
older adults and aims to improve their health and well-being as well as manage age-related
diseases and conditions so that they can maintain their independence, quality of life, and
overall comfort. Such care often involves a multidisciplinary approach with care provided
by a team of health care professionals, including physicians, nurses, therapists, and social
workers, who are trained in gerontology and geriatrics [1,2]. The estimated number of
dependent people in need of some form of long-term care in Europe is 30.8 million, and
this is expected to increase to 38 million by 2050. Furthermore, the expected shortage of
nurses will reach 2.3 million in 2030. By 2080, the population aged over 80 years and older
in Europe will have multiplied by 2.5. It should be noted that the majority of dependent
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patients suffer from Alzheimer’s and chronic diseases, such as past myocardial infarction,
congestive heart failure, cardiac arrhythmia, renal failure, and chronic pulmonary disease,
have an increased risk of mortality in nursing homes [3].

Currently, the main problems are caused by the absence of tools to design automated
care plans. The problems identified are related to the lack of digital evidence-based pro-
tocols for different situations and the nonadherence to existing protocols by nursing staff.
Typically, an individualised nursing care plan is developed for the elderly patient upon
admission to meet their needs. This plan is developed based on a thorough assessment
of the person’s medical history and evidence-based care practices. As elderly individuals
reside in nursing homes, it is common for their health to decline, which makes it crucial
to monitor their health status while they are there. Thus, caregivers must regularly check
important biometric data, such as blood pressure, heart rate, body temperature, and respira-
tory rate. Collecting and documenting patient vital signs data manually is a relatively slow
and therefore inefficient process. Depending on the types of vital signs, it usually takes up
to five minutes to assess three to six vital signs [4]. Moreover, this information is usually
documented in paper form separately from the nursing care plans, and therefore, the whole
process takes up to 13 min per patient [5]. Furthermore, care plans have to be regularly
re-evaluated by comparing current and historical health records to look for abnormalities
and changes that could have clinical significance. However, biometric data are documented
separately from nursing care plans and records of doctors. With such fragmented data
sources, the process is human-dependent, highly inefficient, and cumbersome and can
take up to 37 min per patient [5,6]. Moreover, in the absence of a systematic approach in
geriatric care management, it becomes challenging to quickly capture monitoring data and
act on them. This can cause caregivers to miss any unusual changes in the biometric data,
leading to delays in administering treatment.

During the course of our research, several hospices from Latvia, Estonia, and Poland
(e.g., Orpea) were contacted, and it was concluded that geriatric care management systems
with a digital care plan and remote monitoring solutions are currently not available in these
markets. Facilities rely on outdated software that was developed for inpatient hospital ser-
vices without taking into account the nursing care plan. In particular, in Scandinavian and
UK markets (e.g., Appva), some tools have been developed that include a simple digitised
nursing care plan without remote monitoring or decision support capabilities; however,
none of these companies have shown an interest in providing the service in the Baltic States.
Therefore, in many countries, including the Baltic States, nurses use paper-based care plan
templates and manually prepare time-consuming documents. Consequently, data loss and
missing information in care plans are common problems. Based on the problems identified
during oral interviews and discussions with various stakeholders in Lithuania, the follow-
ing needs for long-term care at home and in specialised institutions have been narrowed
down as the most recurrent and yet relatively possible to complete with limited funding:
(1) easily create nursing care plans for new patients with action protocols for nursing staff;
(2) ensure adherence to and traceability of the execution of the protocols; (3) automate
patient monitoring; (4) reduce manual paper documentation; (5) easily adapt nursing care
plans according to changes in the health of the patient; and (6) enable a transition from
reactive care to proactive care.

Digitalised care systems could be a solution to meet the multidimensional need to
monitor whether elderly patients in geriatric care facilities are receiving optimal care, thus
monitoring patients more efficiently and providing personalised care. Digitalisation also
helps a relatively small number of healthcare workers to reduce the need for repetitive
manual work and use the collected data for proactive decision making. Furthermore, the
combination of Internet of Things (IoT) and artificial intelligence (AI) technologies can aid
in the analysis of data and ensure continuous monitoring of elderly patients to positively
impact their care and outcomes [7–10]. By collecting data on patient activity and health,
advanced AI algorithms can analyse patterns and detect deviations from normal behaviour,
allowing caregivers to respond in a timely manner.
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In this study, we propose an intelligent geriatric care management system based on AI
and IoT to track and detect changes in the health status of elderly patients, thus ensuring
efficient digitalisation of personalised care plans. The proposed solution can be used to
tackle two of the most urgent problems in the area: nursing staff shortages and the costly
and inefficient long-term care process. Although home care for dependent and elderly
people is becoming more and more popular, it is still not a viable option for everyone due
to the expensive infrastructure required and the difficulties in gaining access to their homes
in an emergency. Even if people choose to live in a nursing home, it is still difficult to
monitor, care, and treat elderly residents on a regular basis. With the growing demand for
healthcare nurses, fragmented remote health monitoring tools, and lack of existing solutions
for real-time modifications of nursing care plans, it is crucial to have a cost-effective and
semi-autonomous solution available in the market.

2. Related Works

In recent years, there has been a growing interest in the development of digital health
solutions to support older people and promote healthy ageing [11,12]. However, elderly
individuals are more likely to develop diseases such as dementia, diabetes, and cataracts,
suffer from physical and cognitive impairments, and have low levels of physical activity, all
of which lead to a continuous decline in their health. This makes it difficult for staff to keep
track of elderly people, to monitor changes in their health, to record and store all readings
systematically, and to always react quickly and appropriately to the changes and adjust
the care plan. Furthermore, as life expectancy continues to increase, the need for nurses
working in geriatrics is also increasing. As such, remote monitoring and wearable devices
can be used to measure vital signals, evaluate physical activity, and inform caregivers
or physicians about changes in their health, which aids in the early detection of health
risks [13,14].

2.1. The Use of Wearable Devices

Recently, wearable technology has benefited from technological progress, as the size of
devices has significantly reduced, while the efficiency of energy consumption has improved
simultaneously [15]. In particular, wearable technology can be used for a variety of pur-
poses, ranging from keeping track of physical activity to monitoring clinically important
health and safety data. Wearable devices provide real-time monitoring of the wearer’s
walking speed, respiratory rate, measuring sleep, energy expenditure, blood oxygen and
pressure, and other related parameters [16]. Such devices can also be useful tools for
people living with heart failure to facilitate exercise and recovery [17,18]. Comparatively,
a study demonstrated the strong potential for improvement in healthcare through the
use of wearable activity monitors in oncology trials [19]. The use of wearable technology
to identify gait characteristics is another intriguing example [20], where lower limb joint
angles and stride length were measured simultaneously with a prototype wearable sen-
sor system. The study [21] investigated how a wearable device could help physicians to
optimize antiepileptic treatment and prevent patients from sudden unexpected death due
to epilepsy. For particular groups of individuals that suffer from chronic disease such as
diabetes mellitus, cardiac disease, or chronic obstructive pulmonary disease, wearables
may be used to monitor changes in health symptoms during treatment and may contribute
to the personalisation of healthcare [22–24]. The use of wearables within a group of elderly
population brings additional challenges. For example, it is very important to detect falls,
which has already become a topic of particular importance in this field. For example, in [25],
a framework was proposed for edge computing to detect individual’s falls using real-time
monitoring by cost-effective wearable sensors. For this purpose, an IoT-based system that
makes the use of big data, cloud computing, wireless sensor networks, and smart devices
was developed and integrated with an LSTM model, showing very promising results for
the detection of falls by elderly people in indoor circumstances. The validity and reliability
of wearables have been addressed by many studies focusing on different classes of devices
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used to measure activity or biometric data [26–29]. Apparently, there is no consensus
among researchers, as findings depend on the manufacturer, device type, and the purpose
for which it was used. This is also true because devices are constantly being upgraded to
new models, which suggests that their validity and reliability will improve with time.

2.2. Contactless Measurement of Vital Signs

There are still some concerns regarding the reliability and accuracy of wearables to
detect physical activity and evaluate health-related outcomes within elderly individuals, as
they are generally designed primarily to collect biometric information during activities of
daily living in the general population [30–33]. First, the ability of older people to recognise
the need for wearables and properly use them poses new challenges. Second, the high
prevalence of different diseases in this population and the heterogeneity associated with
their lifestyle, needs, preferences, and health point to the need for wearable devices that
are valid and reliable and that can accurately measure and monitor important signals.
Additionally, taking into account the problems associated with time-inefficient work in care
homes, contactless monitoring of vital signs may be beneficial for healthcare [34–36]. In
particular, contactless measurement techniques can be applied to measure the respiratory
rate and monitor the heart rate variability, which is one of the fourth most important
vital parameters [37]. Monitoring the respiratory rate is useful for the recognition of
psychophysiological conditions, the treatment of chronic diseases of the respiratory system,
and the recognition of dangerous conditions [38,39]. Combining respiratory rate and heart
rate data provides even more useful information on the condition of the cardiovascular
system [40,41]. The most promising method of noncontact monitoring of the respiratory
process is through infrared and near-infrared cameras [42,43]. An infrared camera is a
device that can capture small temperature changes on the surface of an object and/or
in the environment. This device can record the temperature fluctuations of airflow from
the mouth or nose. Infrared cameras can successfully measure the respiration rate if
advanced computer vision algorithms that are insensitive to constantly varying lighting
and temperature conditions are applied.

2.3. Benefits of Computer Vision Techniques

Image recognition is one of the main methods used to determine an individual’s
pose and activity. The use of pose estimation technology in geriatric care offers several
advantages, including the continuous monitoring of patients, early detection of potential
health problems, essential data on the patient’s movements, and, in particular, the detection
of extra situations (e.g., the person is lying on the ground and not moving) [44]. Pose
estimation algorithms vary in complexity and accuracy, ranging from simple rule-based
algorithms to more complex deep-learning-based algorithms. Simple algorithms may be
faster and easier to implement but typically they are not as accurate as more complex ones.
Deep-learning-based algorithms, on the other hand, may provide more accurate results
but may be more computationally intensive and require large amounts of training data.
Comparatively, deep-learning-based methods have shown great potential for improving
the accuracy of human posture recognition, for both single individuals [45,46] and multiple
individuals [47,48] in images or videos. In particular, methods such as the multisource deep
model [49], the position refinement model [50,51], and the stacked hourglass network [52]
have demonstrated the effectiveness of deep learning in human posture recognition. These
methods use convolutional neural networks to extract features from input images and
estimate the positions of human joints. However, the early detection of falls [53–55] is one
of the most important functions of the geriatric care system as it allows prompt medical
assistance to be provided and can prevent further injuries. Human fall detection systems
can help to identify when a fall has occurred and alert caregivers or emergency services
immediately. Therefore, various types of fall detection and prediction systems suggested
in the field not only rely on image recognition techniques [42,56,57] but also employ other
information sources, for example, biological factors or signals obtained by wearable devices
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that are more commonly used for fall risk assessments [58,59]. Although computer vision
techniques have been used widely and very successfully in medicine, the monitoring and
identification of patients in nursing homes should take into account the fact that image
capture devices cannot always be used to track patients (e.g., hygiene rooms) according to
privacy and ethical requirements [60,61]. In addition, capturing certain information with
cameras may not always be possible due to changes in the environment or, for instance,
in cases when the person reappears or is partially obscured by other objects, which poses
the additional challenge of re-identifying the same individual. Therefore, it is important to
determine which factors may be automatically recorded and tracked over time utilising
image processing technology. It is also crucial that the solution is quick. As such, it is
essential to carefully assess the trade-off between precision and speed in order to choose a
solution that meets the specific requirements of the application.

3. Materials and Methods

The proposed solution includes (1) an IoT module with integrated wearable and
contactless devices; (2) an AI module that utilises deep learning architectures for the image
recognition of patient posture and activity; and (3) a decision support module for generating
the patient-personalised nursing care plan.

An IoT module has been developed to monitor and transfer data in real time. It
consists of sensors connected to an Arduino microprocessor to monitor the patient’s vital
signs. This module integrates not only body-worn devices that are networked but also a
number of remote devices for monitoring health data. In general, such devices can collect
and transmit the collected data, such as heart rate, body temperature, and physical activity,
to a remote system or application, usually through wireless connectivity (e.g., Bluetooth,
Wi-Fi). Some wearable health devices also have built-in sensors and algorithms that can
perform basic health assessments, such as tracking sleep patterns, counting steps taken,
and estimating calorie expenditure.

In this study, four IoT devices, a Fitbit wristband, smart scale, smart blood pressure
device, and a camera, were used to monitor the health of elderly patients in a nursing home
(Table 1). Data collected from these devices were sent to the server and processed to obtain
the final decision (Figure 1).

Table 1. Types of IoT devices used in the research.

IoT Device Type Device Name

Camera EZVIZ CS-C3TN 1920 × 1080
Wrist band Fitbit Charge 5

Blood Pressure Withings BPM Connect
Scales Withings Body+

A patient room in a hospital for the elderly was equipped with cameras to continuously
monitor the status of the patients in real time. The video footage from these cameras
was sent directly to a server where it was stored, processed, and analysed using image
processing algorithms. This was necessary to monitor patients’ motor activity, changes, or
progress in movement and consequently make the necessary changes to the care plan or
react in emergency situations such as falls, pressure sores, etc. In parallel to the cameras, the
patients were also given Fitbit wristbands for the additional monitoring of physiological
parameters. These wristbands were equipped with sensors to monitor the patient’s vital
signs, such as heart rate and respiratory rate. The data from the Fitbit bracelets were sent to
Google Cloud and then to a server using APIs. The geriatric nurse also used specialised
equipment to monitor the patients’ weight and blood pressure. Withings body+ connected
scales make it easy to monitor weight, BMI, fat, water, and body mass, which is later
automatically synchronised with the smartphone via Wi-Fi or Bluetooth. In particular,
monitoring the following parameters is important for patients at risk of complications such
as high blood pressure, diabetes, etc.
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One of the main limitations is that off-the-shelf IoT devices do not offer the option of
sending data directly to a third-party server. As a result, all data must first pass through the
provider’s cloud services and use their API. This also leads to software limitations, such
as only allowing one IoT device of a certain type per account, making the data collection
pipeline more complex than is necessary.

Figure 1. Data collection pipeline of the GCM system.

Data captured by all smart devices not only digitalise the tracking of key physiological
parameters but also enable the investigation of dependencies between these indicators
and a patient’s health status or its change, but only when a statistically reliable sample
is collected. If computer-vision-based health monitoring is involved, real-time visual
information collection must include data storage and analysis [44,62,63]. For the experi-
ment, data collection started on 15 September 2022 and data were uploaded to the server
Dell PowerEdge R7525 (AMD EPYC 7452 32-Core Processor/2350 MHz; 512 GB RAM;
NVIDIA GA100 [A100 PCIe 40 GB], 2 × 450 GB SSD; 2 × 25 Gbps LAN MT27800 Family
[ConnectX-5] 2 × 100 GBps [ConnectX-6]). In total, 1.412 TB of data were accumulated
during the observation period between 15 September 2022 and 28 December 2022. In
addition to the data collected from the IoT devices, the system also allowed manual input
from healthcare personnel. This included additional parameters that were not captured by
the IoT devices, such as bedsores, changes in eating habits, changes in bowel movements,
etc. These data were entered into an Excel spreadsheet by healthcare professionals and
then automatically uploaded to the database.

By continuously monitoring a patient, wearable health devices can provide a more
comprehensive view of a patient’s health status. However, it is important to ensure that
the system is secure, respects the patient’s privacy, and complies with relevant regulations
and standards [64,65]. However, it has been observed that wearable gadgets are frequently
taken off and thrown away for either purposeful or unintentional reasons, so a balance
needs to be struck between functionality, dependability, and cost. This is a common issue
with wearable health monitoring devices, particularly among patients with dementia, who
may forget where they have placed their device or may not understand the importance of
wearing it consistently.

Non-contact monitoring of vital signs using cameras and image recognition techniques
is a promising area of development in healthcare technology and has the potential to
improve the accessibility, efficiency, and cost-effectiveness of vital sign monitoring. The
use of AI-based image recognition algorithms, mainly deep learning architectures, allows
images to be automatically analysed to assess vital signs.

YOLOv3 (You Only Look Once, Version 3) [66] is a real-time object detection algorithm
that allows specific objects to be identified in videos. YOLOv3 uses a variant of the
Darknet neural network architecture, specifically Darknet-53 as its backbone network. The
architecture consists of 53 convolutional layers, which was trained on the ImageNet dataset,
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which was designed for computer vision research [67]. YOLOv3 also contains several key
features that help to improve the detection accuracy and performance, including residual
skip connections, upsampling, and multiscale detection. The most important feature of
the algorithm is that it performs detection at three different scales by downsampling the
dimensions of the input image by factors of 32, 16, and 8, respectively (see Figure 2).

Figure 2. The architecture of YOLOv3 algorithm.

The AlphaPose algorithm allows us to detect keypoints in the bodies of several people
with high accuracy in real-time video or images. The 17 keypoints detected by AlphaPose
include the nose, eyes, ears, shoulders, elbows, wrists, hips, knees, and ankles (see Figure 3).
As the Figure 3 shows, the algorithm can successfully detect the following keypoints in
video footage of a patient in a movement position. All of these keypoints are used to
construct a human body skeleton representation, which can be used for various applications
such as activity estimation [68], process recognition [69], and human fall detection in
different environments [54,55,70,71].

Figure 3. AlphaPose algorithm illustration: keypoints on patients’ bodies in video footage.

In particular, a decision support system relies primarily on the expert knowledge of
geriatric staff nurses who are experienced in developing nursing plans for patients with
different health problems. Their expertise has been used to create the rules that guide the
decisions made by nursing professionals which, in this case, are mapped into the output
of how to proceed with the nursing plan. Individual experts suggest different decisions
based on critical factors in certain cases, so it would seem reasonable to use Fuzzy logic or
Neuro-fuzzy models, which are more similar to human thinking. However, given that most
of the input variables are of the verbal and integer type, the use of such models will not be
efficient. In addition, we do not have enough statistical data to create mappings between
numerical values and verbal estimates (e.g., Breathing: Increased→ X breaths per minute)
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and to create fuzzy sets based on this. Therefore, we decided to rely on the Decision Tree
supervised learning approach which can handle both numeric and non-numeric values, has
fast decision times, enables parameter optimisation, and has the possibility of refinement if
the accuracy of the result is not satisfactory (e.g., Random Forest). In the decision support
module, a Decision Tree with a Gini impurity value was used, and a prepruning process
was applied to prevent overfitting. The Gini impurity value is given by

Gini = 1−
c

∑
j=1

p2
j ,

where pj is a proportion of observations that belong to class c for a particular node.
The fine-tuning of Decision Tree hyperparameters involves a depth limited to a max-

imum of 3 and a minimum number of samples equal to 6 in a finite node. An average
classification error of 92% was achieved.

For patient reidentification, the study made use of the Bag of Visual Words (BOVW),
since it has been proven to be successful in a number of computer vision tasks, including
human reidentification and human action classification [72–74]. With the BOVW approach,
local features (such as SIFT descriptors) from images are first extracted and then grouped
into a visual vocabulary. Each image is then represented as a histogram of visual words,
which may be used for classification or retrieval tasks using machine learning algorithms.
More specifically, the K-means algorithm was trained using the final list of features that
were retrieved from patient images. As a result, the features were grouped into visual
words. Finally, a ML-based classifier was used to generate a categorisation of images based
on a newly created vocabulary.

Performance Metrics

The F1 score is a metric that is widely used to evaluate the performance of a classifica-
tion model. For a multiclass classification, the F1 score for each class is calculated using the
one-against-rest (OvR) method. In this approach, the metric for each class is determined
separately. However, rather than assigning multiple F1 scores to each class, it is more
common to take an average and obtain a single value to measure the overall performance.
Three types of averaging methods are commonly used to calculate F1 scores in a multiclass
classification, but only two of them are recommended for unbalanced data, as in our case.
More specifically, macroaveraging calculates the F1 score for each class separately and
derives an unweighted average of these scores. This means that each class is treated equally,
regardless of the number of samples it contains. The macroaveraging F1 score is given by

Macroavg F1 =
∑n

i=1 F1i

n
,

where n is the number of classes. In contrast, a weighted averaging calculates the F1 score
for each class separately and then takes the weighted average of these scores, where the
weight for each class is proportional to the number of samples in that class. In this case, the
F1 result is biased towards the larger classes, i.e.,

Weightedavg F1 =
∑n

i=1 wi × F1i

n
,

where wi =
ki
N is the weight of the class i, N is the total number of samples, and ki is the

number of samples in the class i.

4. Results
4.1. Implementation of the Geriatric Care System

The geriatric care plan system for end-users, i.e., nursing home staff, was created using
C# programming language and the ASP.NET Core 6.0 framework for the back-end. The
front-end was built using Node.js version 19 and the Angular framework, while testing
was carried out using Karma. PostgreSQL was used as an open-source relational database
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management system. The use of these technologies allowed developers to create a robust
and scalable system that was able to handle the large amounts of data generated by IoT
devices. In addition, Docker was used to containerise the software for deployment by
combining the system and all of its dependencies into a single container that could be
quickly deployed on any platform that is compatible with Docker. The architecture of the
system is demonstrated in Figure 4.

Figure 4. UML deployment diagram of the geriatric care system architecture.

Wearable gadgets synchronise the data with cloud servers, since the data they generate
needs to be processed and analysed. Once the data have been received by the cloud servers,
the company’s server pulls the data from the Google cloud servers using API and then
parses the files and saves information in the Postgre database. In contrast, the data captured
by the cameras are sent directly to the server. This dataset is then processed in the back-end
and analysed alongside the wearable data in order to provide a more comprehensive view
of a patient’s health status. The main purpose of .NET backend is to act as a bridge, passing
data between the Angular front-end and the Postgre database. The back-end is written
using REST API methodology to provide a standardised way for different applications or
devices to communicate.

4.2. AI-Based Data Analytics and Decision Making

To prepare a nursing care plan, a rich set of data is collected about the patient, as
summarised in Table 2. Then, the recommendations for the actions to be taken in a nursing
plan are generated from the geriatric care management system.

For demonstration purposes, the collected data were analysed to detect possible
dependencies. The radar graph below (see Figure 5) is a single patient’s chart of selected
vital signs over a 50-day observation period, displaying SBP (systolic blood pressure), DBP
(diastolic blood pressure), HR (heart rate), SPO2 (oxygen saturation), sleeping hours, and
weight measurements. The data analysis was carried out on three patients on the ward, but
no significant dependencies between variables were identified. It may be assumed that that
some trends could be determined if the data were gathered over a longer period of time
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and additional variables, such as pain level, temperature, and even verbal type indicators,
were included.

Table 2. Patient information.

No Variable Definition Instances of Possible Values/Range

1 FN First name -
2 LN Last name -
3 BD Birth date yyyy/mm/dd
4 HE Height 1.20 m–2.20 m

Input data

1 MoveC Movement capabilities Lying; sitting in a wheelchair; with as-
sistive devices; etc.

2 RiskC Risk of collapse None; low; medium; high
3 Bedsores Bedsores Yes; no

4 Diseases All patient’s diseases Heart failure; Alzheimer; dementia;
Cancer; etc.

5 Med Taken medications Antibiotics; antihypertensives; antide-
pressants; etc.

6 BMI BMI unit change per week <0.5 plus; <0.5 minus; 0.5–1 plus; etc.

7 MoveH Movement habits Unchanged; slowed down; increased;
falling on the ground

8 EatH Eating habits Parenteral nutrition; fed by another per-
son; independent eating; etc.

9 EatC Eating capabilities
Swallows solid food; swallows only
mashed food; swallows only liquids;
etc.

10 Bowel Bowel habits Regular bowel movements; diarrhoea;
constipation; faecal incontinence

11 Sleep Sleeping <4 h; 4–6 h; 6–8 h; >8 h; apnoea
12 Breath Breathing Increased; slowing down; with apnoeas
13 PL Pulse Normal; bradycardia; tachycardia

14 BP Blood Pressure
Normotension; hypotension; hyperten-
sion mild; hypertension moderate; hy-
pertension severe; etc.

15 Temp Temperature <36.0 °C; 36.0–37.4 °C; etc.
16 Sat Saturation ≥94%; <94%
17 Urine Daily urine output Concentrated urine; very frequent; etc.
18 Fluid Fluid tracking <500 mL; ≥500 mL
19 Gly Glycaemia <2.5 mmol/l; ≥2.5 mmol/l
20 Con Consciousness Unchanged; changed; unconscious

21 Pain Perceived level of pain None; mild; moderate; severe; unbear-
able

Output data

1 Plan Nursing plan Continue current plan; monitor; adjust;
extra situation

The geriatric care personnel was responsible for writing the rules for the care plans.
These rules were based on best practise and experience in the field and were designed to
ensure that patients receive the most appropriate and effective care. More specifically, care
plans were tailored to the specific needs of current and future patients, taking into account
their medical history, current condition, and other relevant factors. The variables listed
in Table 2 were included in the care plan, as they indicate the patient’s medical history,
current health status, and other relevant factors that can influence treatment. On the basis
of this information, the initial set of rules covered a wide range of scenarios and options,
but after optimisation, the patient care plan eventually consisted of 61 rules with the four
possible outputs of the care plan: “Continue current treatment”, “Monitor”, “Adjust”, or
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“Extra situation” (see Figure 6). All remaining cases that were not included in the rules
were assigned to the care plan “Continue current treatment” by default.

Figure 5. Six different health parameters collected for a single patient.

Figure 6. Examples of different care plan with IF-THEN rules defined by the staff.

In particular, the nursing care plan was designed to be flexible and adaptable to allow
healthcare professionals to adjust the patient’s geriatric care according to his or her health
status and changing needs. Those rules and the output generated by the geriatric care
management system help healthcare personnel to respond more quickly to changes in a
patient’s health, shape the patient-personalised geriatric care, reduce the risk of human
error, and make better use of staff time by concentrating more on essential social support.

Figure 7 shows a schema for an AI-based decision support system. Four of the
21 variables (see Table 2) are automatically registered; that is, three of them were retrieved
from IoT devices and one (change in movement) was obtained from the camera. The value
of the latter variable was generated from the AI-based image recognition module. The
remaining variables were taken from the MS Excel spreadsheet file, where all data were
entered manually.
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Figure 7. Schematic diagram of proposed geriatric care management systems

Image Recognition Solution

An AI-based image recognition module is a block consisting of several sequential
algorithms that detects changes in the movement of a patient. In this project, we used the
camera to film nursing home patients, that is, one room with three patients. The video
was recorded at 1920 × 1080 pixel resolution with a frequency of 10 FPS, therefore storing
10 unique images per second to obtain 10FPS × 60 = 600 images per minute. An image was
analysed every five seconds with the assumption that no significant changes in motion
would be detected in that time period.

The image processing included

• Brightening: to increase the overall luminosity of the image, improve visibility, and
increase the clarity of the image during low light conditions;

• Cropping: to keep only regions of interest in the image;
• Denoising: to remove noise from the image, typically by applying a low-pass filter. It

also improved the quality and clarity of the image by removing noise, which could
be especially useful if the image was taken under poor conditions or with a low-
quality camera.

• Edge detection: to identify edges in the image by finding points of a rapid intensity
change. It can also be used to identify and extract features or objects in the image,
such as lines, shapes, or boundaries.

After image processing, the algorithm integrating YOLOv3 and AlphaPose [75] was
used to detect human poses. The algorithm includes the three main components [76].
First, the Symmetric Spatial Transformer Network (SSTN) takes the detected bounding
boxes to generate pose proposals. The SSTN allows the spatial context and correlations
between the keypoints to be captured, leading to more accurate pose estimates. Second, the
Parametric Pose Non-Maximum-Suppression (NMS) is a component that is used to remove
redundant pose detections and improve the overall accuracy of the pose estimation. Finally,
the Pose-guided Proposals Generator is used to create a large sample of training proposals
with the same distribution as the output of the human detector.

The next step is the problem of identifying and classifying patient postures, which in
this case, included the following six postures: “walking”, “standing”, “sitting”, “fallen on
the ground”, “lying in bed”, and “sleeping”. For the verification of all poses, a sequence
of three images was taken for a period of 15 s, except for the last two poses. The poses of
“sleeping“ and “laying in bed“ correlate with the parameters of the smart bracelet (sleep
time and heart rate), so these parameters were also assessed. If the patient was found to be
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lying in bed, the assessment time was extended by up to one minute to identify whether
the patient was “lying in bed” or “sleeping”. In particular, the pose was assessed every
minute until a new pose was captured.

A pose change algorithm was developed to detect differences between adjacent images,
that is, to identify that a person was walking rather than standing or that a person was just
lying on a bed rather than sleeping. Figure 8 illustrates the example of three iterations of
assessment frames of the “walking” pose taken every five seconds. Comparing the images
taken every five seconds, we can see that the pose remained the same, although the frames
were not identical and the patient’s coordinates varied.

Figure 8. Three iterations of the assessment frames of the patient in the “walking” pose taken every
five seconds.

In order to define changes in movement habits, an additional algorithm (see Algorithm 1)
was created to evaluate movement changes over a longer period of time tm−n, where m is a
current time moment, n is a number of days before tm, 1 ≤ n ≤ 3. This algorithm calculates
the duration (hours) in each pose per day. The percentage change is then evaluated,
compared with threshold value kth and a response is generated that includes three possible
values: “Unchanged”, “Slowed down”, or “Increased”. The pseudocode of the algorithm is
provided below.

Algorithm 1 Evaluation of changes in movement habits

ActH = Walking(hrs) + Sitting(hrs) + Standing(hrs)
kth = 12.5%
Di f f (a, b) = ((a− b)/b) ∗ 100
if Di f f (ActH(tm−1), ActH(tm−2) ≤ −kth ∧ Di f f (ActH(tm−2), ActH(tm−3) ≤ −kth then

MoveH is slowed down
else if Di f f (ActH(tm−1), ActH(tm−2) ≥ kth ∧Di f f (ActH(tm−2), ActH(tm−3) ≥ kth then

MoveH is increased
else MoveH is unchanged
end if

For demonstration purposes, the identification of tough poses observed in the real-
world environment is shown below. For instance, Figure 9 shows a skeleton-based posture
recognition in various lighting environments. In well-illuminated areas, patients can be
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detected by identifying all skeleton keypoints (Figure 9c). It has been observed that at
night or at twilight/night, walking patients can be identified quite accurately with all
keypoints (Figure 9a,b), but when patients are sleeping with their blankets, few keypoints
were successfully detected (Figure 9d) or keypoints were not detected at all (Figure 9a).

Figure 9. Examples of skeleton-based posture recognition in various ambient light conditions:
(a) patient walks in a semi-lit environment; (b) patient walks during the night; (c) two patients sit in a
fully-lit environment; (d) patient is lying down at night.

Another example demonstrates a skeleton-based posture recognition for two different
scenarios. In Figure 10a, the keypoints in the patient’s body were detected when the
patient was lying on the ground, which refers to the status “falling on the ground”. To
correctly recognise this pose, a training dataset with artificially simulated falling poses was
created. Comparatively, Figure 10b shows that the keypoints in the body were identified
for all persons located in the ward, but the nursing personnel needed to be the exception.
Therefore, additional data were collected to train a deep learning algorithm to distinguish
staff from patients. Consequently, the nursing personnel was identified by their clothes,
more specifically, white trousers and a blue top, which they had to always wear.

Figure 10. Examples of skeleton-based posture recognition in different scenarios: (a) the patient is
lying on the ground; (b) patients are visited by nursing staff.
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4.3. Experimental Results

A posture detection algorithm of captured video material was tested to identify
six different poses. The results are summarised in a confusion matrix to evaluate the
performance of the algorithm. More specifically, the confusion matrix provides a visual
representation of the number of correct and incorrect predictions made by the classifier:
the rows represent the actual class labels, while the columns represent the predicted class
labels. The diagonal elements show the number of correct predictions (see Figure 11).

Figure 11. Testing results: confusion matrix of posture classification.

The posture recognition algorithm was trained using 9300 labelled images and tested
using 3792 images. An average posture recognition accuracy of 91.63% was achieved for
the testing data set (Figure 11). Posture labelling was performed manually on the images
obtained from the video stream for training and testing purposes. The Receiver Operating
Characteristic (ROC) curve of the stratified testing dataset is provided in Figure 12.

Figure 12. Testing results: ROC curve of the posture recognition algorithm.

The AUC values for each posture class ranged from 0.8790 to 0.9427, with the highest
value obtained for the sitting posture class. The sleeping and lying in bed posture classes
resulted in the lowest AUC values, with values of 0.9047 and 0.8790, respectively. These
lower values suggest that it might be more difficult for the classifier to distinguish between
these postures and others. Comparatively, the AUC value for the fallen on the ground
posture class was 0.9177, which is slightly lower than those of the other more successfully
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recognised posture classes. This could be due to the lack of training data for this posture,
which might have led to lower accuracy. Next, Table 3 summarises the estimated values of
precision, recall, and F1 score for each class of interest, together with macro and weighted
F1 scores for the evaluation of the overall performance of the posture recognition algorithm.

Table 3. Testing results: performance metrics of the posture recognition algorithm.

Class Precision Recall F1 Score

Walking (WAL) 0.9554 0.9374 0.9463
Standing (STA) 0.8722 0.9163 0.8937
Sitting (SIT) 0.9406 0.9427 0.9416
Fallen on the ground (FOG) 0.9354 0.8333 0.8814
Lying in bed (LIB) 0.8951 0.8878 0.8914
Sleeping (SLE) 0.8844 0.9047 0.8944

Macro F1 score 0.9082
Weighted F1 score 0.9125

The patient re-identification testing results are summarised in Figure 13. The support
vector machine (SVM) method was used to generate categories of images, providing labels
for the patient classes. In our case, the maximum number of classes was set to four: three
classes represented the maximum number of patients the ward can accommodate, while
the separate class “None” referred to unauthorised individuals such as nursing staff, family
members, doctors, or others. The class names for patients were labelled “First”, “Second”,
and “Third” (see Figure 13).

Figure 13. Confusion matrix showing the re-identification of three patients (referred to by the class
labels “First", “Second", and “Third".)

The confusion matrix in Figure 13 summarises how successfully the algorithm identi-
fies three ward patients in common areas. One can observe that an accuracy level of 90%
was obtained for the “First” class, a value of 88% was obtained for the “Second” class, and
a value of 91% was obtained for the “Third” class. Although the lowest accuracy level of
87% was achieved in the "None” class, considering that there can be around 6–13 people in
a single tray, this is a pretty good accuracy level. It was observed that female patients and
nursing home staff were more easily recognised, but other patients, nonmedical nursing
home staff, and visiting relatives were the most confused with these patients.

Finally, to conduct a real-time experiment, patient positioning verification was carried
out. This included 16 scenarios with diverse positions. The results are summarised in
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Table 4. Two prediction errors were determined. More specifically, the patient was “lying
in the bed”, but he was detected as “sleeping”, as he was covered up, his heart rate was
reduced, he did not move for more than one minute, and it was night time. Another
prediction error also related to the sleeping pose. The patient was lying in the bed without
covering up; however, it was determined that he was not sleeping based on readings
from the smart wristband. It should be noted that the prediction may also be impacted by
ambient light conditions. From a technical perspective, the proposed system performed
pose estimation with an average output time of 182 ms, including the algorithm used to
predict the pose from the possible outcomes.

Table 4. Real-time scenario testing results of posture recognition.

No. Actual Pose Predicted Pose Ambient Lighting Confidence

1 Walking Walking Day time (well-lit) 98.0%
2 Sitting Sitting Day time (well-lit) 97.5%
3 Sitting Sitting Day time (well-lit) 98.2%
4 Lying in bed Sleeping Night time (poorly lit) 89.3%
5 Standing Standing Day time (perfect) 99.7%
6 Lying in bed Lying in bed Evening time (semi-lit) 87.9%
7 Sleeping Lying in bed Evening time (semi-lit) 88.6%
8 Standing Standing Day time (perfect) 99.1%
9 Sleeping Sleeping Night time (poorly lit) 85.4%
10 Walking Walking Day time (perfect) 93.6%
11 Lying in bed Lying in bed Day time (perfect) 94.2%
12 Standing Standing Day time (perfect) 99.3%
13 Walking Walking Night time (poorly lit) 96.0%
14 Sitting Sitting Day time (perfect) 98.5%
15 Sleeping Sleeping Day time (perfect) 91.0%
16 Fallen on the ground Fallen on the ground Day time (perfect) 99.8%

To test the correctness of the output of the geriatric care management system, different
scenarios involving nursing home staff were developed. The results revealed that the
system provided the correct output in all cases. The system was designed to generate
changes to the treatment plan immediately after any changes are made. When a healthcare
professional makes a change to the care plan, the system analyses the data from the
patient’s IoT devices and determines the appropriate course of action. The system then
automatically updates the results of the action to be taken for the individual patient and
alerts the healthcare professional. This allows healthcare professionals to stay up-to-date
with the patient’s condition and make any necessary adjustments to their treatment in a
timely manner.

5. Discussion

There are a few areas for improvement, as the proposed geriatric management care
system is still in its initial stage of functioning. Personality identification, which relates
to the continuous contactless assessment of the patient, is the most challenging concern.
Comparatively, wearable devices do not raise any questions at the moment; their purpose
is clear, but elderly people have a problem with wearing them because they find them
annoying. The creation of the nursing care plan itself could be fully automated later on,
with a follow-up on what action should be taken when the situation changes. However,
to fully automate it, a lot of statistical data are needed, including actions taken by nurses,
from which the system could be learnt, that is, from the actions taken by the care worker on
each individual situation. Taking into account the current data (Table 2), there are at least
20,155,392,000 possible combinations of parameters that define the health condition, which
are likely to increase in the future due to the inclusion of additional parameters. For this
purpose, a list of actions is provided in the geriatric care management system, from which
the care worker must indicate (select from the list) what they intend to do. In this way, a
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dataset of situations and decisions with all the actions taken accordingly is continuously
accumulated. Once a representative sample of data has been accumulated (say after at least
one year), the correctness of the automated action is improved.

The challenge with consistent and accurate patient identification makes it reasonable
to consider other methods of individual identification than BOVW. As patients usually stay
in their own wards, the accuracy of identification is high when the patients are present and
nursing staff visit them a certain number of times per day. However, the accuracy drops in
common areas (e.g., resting, eating) because there are more patients and personnel present.
Mainly because of their distinguishing clothes, nursing workers are simpler to identify (see
column “None” in Figure 14). However, the elderly patients themselves are more likely to
be confused with each other in common areas, with a best individual identification result
of 0.914 achieved (see Figure 14).

Figure 14. Confusion matrix of the re-identification of three patients (referred to class labels “First”,
“Second”, and “Third”) in the two common areas of nursing homes.

As an alternative method, gait recognition (GR) technology can be used for patient
identification. This method examines the uniqueness of an individual’s walking or running
pattern using machine learning (ML) techniques [77]. More specifically, ML algorithms are
trained to recognize subtle differences in a person’s gait and thus can use this information to
identify individuals even if their face is obscured in the image [78,79]. An additional benefit
of GR technology is that gait information can be used not only for personal identification,
but also for medical purposes, such as monitoring and for the diagnosis and treatment of
various movement disorders [80,81]. For example, gait recognition technology can be used
to identify and diagnose various types of neurodegenerative diseases (such as Parkinson’s
and Alzheimer’s disease) or assess the course of disease [82–85]. This can help doctors and
healthcare professionals to develop more effective nursing care plans and interventions as
well as monitor the progression of these conditions over time. However, GR technology
usually requires a variety of sources or capture devices to gather data about an individual’s
gait, including multiple video cameras, motion sensors, radars, and other specialized
equipment [79,86]. In addition, the accuracy of gait recognition technology can be affected
by a range of factors, including the angle at which the gait is captured.

Finally, it should be noted that elderly people are choosing to live independently at
home for as long as possible. In such cases, intelligent geriatric care management system
monitoring adapted to the individual home and operating remotely can be very helpful
for ensuring that the elderly person is safe and providing faster reactions to emergencies
(i.e., fall detection) and appropriate care. In the near future, we plan to develop the
necessary software and hardware package (e.g., for the proper functioning of the system
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such as a stable internet connection) for the home care services and to test it in real-world
environment with the possibility of transmitting the data to the responsible physician
for monitoring.

6. Conclusions

In this study, a geriatric care management system based on IoT and AI algorithms was
proposed to monitor some of the most important vital signs in a noncontact manner and
to facilitate the adjustment of the care plan. The system provides an intelligent assistance
function, which suggests how to proceed with the patient’s care plan based on the available
data and the decision support module.

A built-in posture recognition algorithm allows staff to react quickly to extreme
situations, which are highly expected at night or during peak working hours. Another
algorithm was developed to monitor changes in a patient’s movement habits over a longer
period of time, which can be important for detecting health problems more quickly and
taking appropriate action. This is a value-added functionality of the system, as it is very
difficult for nursing staff to do this in a natural way, as it is not possible to monitor every
patient 24 h a day without smart technology. During this study, it was observed that
the most confusing poses are “lying in bed” and “sleeping”. Detecting the individual or
pose when the patient is fully or partially occluded is also quite challenging. However,
capturing the pulse and sleep mode and combining these indicators with the outputs of the
image recognition algorithms resulted in better detection of the “sleeping” and “lying in
bed” poses, i.e., the accuracy was improved by around 15.48% and 22.06%, respectively.
Additionally, the system is resistant to data deficiencies; if certain data are not received
at the current time, the value is taken from the last time of recording. In any case, the
final decision is made by the human, and in case of error or incorrect output, one has the
opportunity to correct it.

Other concerns are ensuring that smart health monitoring devices are worn and
maintained at all times, as patients often want to remove devices (particularly patients
with a dementia), and nursing staff do not always notice quickly when the devices need
to be loaded. Therefore, the involvement of care specialists is crucial to ensure the system
operates effectively and efficiently. In addition, it is equally important to make sure that
patients feel comfortable and moreover that their privacy and trust in smart technologies
are maintained at the appropriate level. By involving nursing staff in the implementation
process, they can provide valuable feedback, suggestions, and ideas, leading to a better
overall outcome.
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