Association of Multiple Cardiovascular Risk Factors with Musculoskeletal Function in Acute Coronary Syndrome Ward Inpatients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Setting and Participants
2.3. Clinical Assessment
2.4. Assessment of Cardiovascular Disease Risk Factors
- Stress: ISSL score ≥ 7 for alertness, ≥4 for resistance, or ≥7 for exhaustion [25];
- Smoking: smoking load ≥ 10 pack-years as a cut-off point related to the impact of smoking on lung function [30];
- Alcohol drinking: AUDIT score ≥ 8 for men and ≥5 for women [31];
- Hypertension: systolic blood pressure ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg, or the use of antihypertensive drugs [28];
- Diabetes mellitus: fasting glycemia ≥ 126 mg/dl, or the use of hypoglycemic drugs [32];
- Obesity: BMI ≥ 30 kg/m2 [33].
2.5. Assessment of Musculoskeletal Function
2.6. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart disease and stroke statistics—2019 update: A report from the American heart association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Marinho, F.; Passos, V.M.D.A.; Malta, D.C.; França, E.B.; Abreu, D.M.X.; Araújo, V.E.M.; Bustamante-Teixeira, M.T.; Camargos, P.A.M.; da Cunha, C.C.; Duncan, B.B.; et al. Burden of disease in Brazil, 1990–2016: A systematic subnational analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 760–775. [Google Scholar] [CrossRef][Green Version]
- Lotufo, P.A. The pace of reduction of cardiovascular mortality in Brazil (1990 to 2017) is slowing down. Sao Paulo Med. J. 2019, 137, 3–5. [Google Scholar] [CrossRef]
- Belitardo, J.N.; Ayoub, A.C. Identification of Readmission Predictors in Elderly Patients with Acute Coronary Syndrome. Int. J. Cardiovasc. Sci. 2015, 28, 139–147. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Notara, V.; Georgousopoulou, E.N.; Pitsavos, C.; Antonoulas, A.; Kogias, Y.; Mantas, Y.; Stravopodis, P.; Zombolos, S.; Stefanadis, C. A comparative analysis of predictors for 1-year recurrent acute coronary syndromes events, by age group: The Greek observational study of ACS (GREECS). Maturitas 2015, 80, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Lynch, G.S.; Murphy, K.; Reid, M.B.; Zijdewind, I. Disease-Induced Skeletal Muscle Atrophy and Fatigue. Med. Sci. Sports Exerc. 2016, 48, 2307–2319. [Google Scholar] [CrossRef]
- Morsch, K.T.; Leguisamo, C.P.; Camargo, M.D.; Coronel, C.C.; Mattos, W.; Ortiz, L.D.; De Lima, G.G. Perfil ventilatório dos pacientes submetidos a cirurgia de revascularização do miocárdio. Rev. Bras. Cir. Cardiovasc. 2009, 24, 180–187. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bragança, R.D.; Ravetti, C.G.; Barreto, L.; Ataíde, T.B.L.S.; Carneiro, R.M.; Teixeira, A.L.; Nobre, V. Use of handgrip dynamometry for diagnosis and prognosis assessment of intensive care unit acquired weakness: A prospective study. Heart Lung 2019, 48, 532–537. [Google Scholar] [CrossRef]
- De Freitas, E.R.F.S.; Araujo, E.C.L.D.S.; Alves, K.D.S. Influência do tabagismo na força muscular respiratória em idosos. Fisioter. e Pesqui. 2012, 19, 326–331. [Google Scholar] [CrossRef]
- Junior, L.A.F.; Rubleski, A.; Douglas, G.; Tieppo, J.; Vercelino, R.; Bosco, A.D.; Monteiro, M.B.; Dias, A.S. Avaliação da força muscular respiratória e da função pulmonar em pacientes com insuficiência cardíaca. Arq. Bras. Cardiol. 2007, 89, 36–41. [Google Scholar] [CrossRef][Green Version]
- Fuso, L.; Pitocco, D.; Longobardi, A.; Zaccardi, F.; Contu, C.; Pozzuto, C.; Basso, S.; Varone, F.; Ghirlanda, G.; Incalzi, R.A. Reduced respiratory muscle strength and endurance in type 2 diabetes mellitus. Diabetes/Metabolism Res. Rev. 2012, 28, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Magnani, K.L.; Cataneo, A.J.M. Respiratory muscle strength in obese individuals and influence of upper-body fat distribution. Sao Paulo Med. J. 2007, 125, 215–219. [Google Scholar] [CrossRef][Green Version]
- Sgariboldi, D.; Pazzianotto-Forti, E.M. Predictive Equations for Maximum Respiratory Pressures of Women According to Body Mass. Respir. Care 2016, 61, 468–474. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pazzianotto-Forti, E.M.; Peixoto-Souza, F.S.; Piconi-Mendes, C.; Rasera-Junior, I.; Barbalho-Moulim, M. Comportamento da força muscular respiratória de obesas mórbidas por diferentes equações preditivas. Braz. J. Phys. Ther. 2012, 16, 479–486. [Google Scholar] [CrossRef][Green Version]
- Lawman, H.G.; Troiano, R.P.; Perna, F.M.; Wang, C.-Y.; Fryar, C.D.; Ogden, C.L. Associations of Relative Handgrip Strength and Cardiovascular Disease Biomarkers in U.S. Adults, 2011–2012. Am. J. Prev. Med. 2016, 50, 677–683. [Google Scholar] [CrossRef]
- Lee, W.-J.; Peng, L.-N.; Chiou, S.-T.; Chen, L.-K. Relative Handgrip Strength Is a Simple Indicator of Cardiometabolic Risk among Middle-Aged and Older People: A Nationwide Population-Based Study in Taiwan. PLoS ONE 2016, 11, e0160876. [Google Scholar] [CrossRef][Green Version]
- Kawamoto, R.; Ninomiya, D.; Kasai, Y.; Kusunoki, T.; Ohtsuka, N.; Kumagi, T.; Abe, M. Handgrip strength is associated with metabolic syndrome among middle-aged and elderly community-dwelling persons. Clin. Exp. Hypertens. 2016, 38, 245–251. [Google Scholar] [CrossRef]
- Yu, H.; Chen, X.; Dong, R.; Zhang, W.; Han, P.; Kang, L.; Ma, Y.; Jia, L.; Fu, L.; Hou, L.; et al. Clinical relevance of different handgrip strength indexes and cardiovascular disease risk factors: A cross-sectional study in suburb-dwelling elderly Chinese. J. Formos. Med. Assoc. 2019, 118, 1062–1072. [Google Scholar] [CrossRef]
- Lee, J.J.; Waak, K.; Grosse-Sundrup, M.; Xue, F.; Lee, J.; Chipman, D.; Ryan, C.; Bittner, E.A.; Schmidt, U.; Eikermann, M. Global Muscle Strength but Not Grip Strength Predicts Mortality and Length of Stay in a General Population in a Surgical Intensive Care Unit. Phys. Ther. 2012, 92, 1546–1555. [Google Scholar] [CrossRef]
- Larcher, B.; Zanolin-Purin, D.; Vonbank, A.; Heinzle, C.F.; Mader, A.; Sternbauer, S.; Drexel, H.; Saely, C.H. Usefulness of Handgrip Strength to Predict Mortality in Patients with Coronary Artery Disease. Am. J. Cardiol. 2020, 129, 5–9. [Google Scholar] [CrossRef]
- Xu, L.; Hao, Y.T. Effect of handgrip on coronary artery disease and myocardial infarction: A Mendelian randomization study. Sci. Rep. 2017, 7, 954. [Google Scholar] [CrossRef][Green Version]
- Park, S.; Lee, S.; Kim, Y.; Lee, Y.; Kang, M.W.; Kim, K.; Kim, Y.C.; Han, S.S.; Lee, H.; Lee, J.P.; et al. Relation of Poor Handgrip Strength or Slow Walking Pace to Risk of Myocardial Infarction and Fatality. Am. J. Cardiol. 2022, 162, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE). Epidemiology 2007, 18, 805–835. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lipp, M.E.N. Manual Do Inventário de Sintomas de Stress Para Adultos de Lipp (ISSL); Casa do Psicólogo: São Paulo, Brazil, 2000. [Google Scholar]
- Nance, R.; Delaney, J.; McEvoy, J.W.; Blaha, M.J.; Burke, G.L.; Navas-Acien, A.; Kaufman, J.D.; Oelsner, E.C.; McClelland, R.L. Smoking intensity (pack/day) is a better measure than pack-years or smoking status for modeling cardiovascular disease outcomes. J. Clin. Epidemiol. 2017, 81, 111–119. [Google Scholar] [CrossRef][Green Version]
- Schmidt, A.; Barry, K.L.; Fleming, M.F. Detection of problem drinkers: The Alcohol Use Disorders Identification Test (AUDIT). South. Med. J. 1995, 88, 52–59. [Google Scholar] [CrossRef]
- Muntner, P.; Shimbo, D.; Carey, R.M.; Charleston, J.B.; Gaillard, T.; Misra, S.; Myers, M.G.; Ogedegbe, G.; Schwartz, J.E.; Townsend, R.R.; et al. Measurement of Blood Pressure in Humans: A Scientific Statement from the American Heart Association. Hypertension 2019, 73, E35–E66. [Google Scholar] [CrossRef] [PubMed]
- Rezende, F.A.C.; Rosado, L.E.F.P.L.; Ribeiro, R.D.C.L.; Vidigal, F.D.C.; Vasques, A.C.J.; Bonard, I.S.; De Carvalho, C.R. Índice de massa corporal e circunferência abdominal: Associação com fatores de risco cardiovascular. Arq. Bras. Cardiol. 2006, 87, 728–734. [Google Scholar] [CrossRef][Green Version]
- Tommola, M.; Ilmarinen, P.; Tuomisto, L.E.; Haanpää, J.; Kankaanranta, T.; Niemelä, O.; Kankaanranta, H. The effect of smoking on lung function: A clinical study of adult-onset asthma. Eur. Respir. J. 2016, 48, 1298–1306. [Google Scholar] [CrossRef][Green Version]
- Moretti-Pires, R.O.; Corradi-Webster, C.M. Adaptação e validação do Alcohol Use Disorder Identification Test (AUDIT) para população ribeirinha do interior da Amazônia, Brasil. Cad. Saúde Pública 2011, 27, 497–509. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Standards of Medical Care in Diabetes—2019 Abridged for Primary Care Providers. Clin. Diabetes 2019, 37, 11–34. [Google Scholar] [CrossRef][Green Version]
- World Health Organization. Body Mass Index-BMI. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 10 December 2019).
- Fess, E.E. Grip Strength. In Clinical Assessment Recommendations; Casanova, J.S., Ed.; American Society of Hand Therapists: Chicago, IL, USA, 1992; pp. 41–45. [Google Scholar]
- Neves, R.S.; Lopes, A.J.; de Menezes, S.L.S.; de Lemos Lima, T.R.; de Sá Ferreira, A.; Guimarães, F.S. Hand grip strength in healthy young and older Brazilian adults: Development of a linear prediction model using simple anthropometric variables. Kinesiology 2017, 49, 208–216. [Google Scholar] [CrossRef][Green Version]
- Gibson, G.J.; Whitelaw, W.; Siafakas, N.; Supinski, G.S.; Fitting, J.W.; Bellemare, F.; Loring, S.H.; De Troyer, A.; Grassino, A.E.; American Thoracic Society/European Respiratory Society; et al. ATS/ERS Statement on Respiratory Muscle Testing. Am. J. Respir. Crit. Care Med. 2002, 166, 518–624. [Google Scholar] [CrossRef]
- Neder, J.; Andreoni, S.; Lerario, M.; Nery, L. Reference values for lung function tests: II. Maximal respiratory pressures and voluntary ventilation. Braz. J. Med. Biol. Res. 1999, 32, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Brunori, E.H.F.R.; Lopes, C.T.; Cavalcante, A.M.R.Z.; Santos, V.B.; Lopes, J.D.L.; de Barros, A.L.B.L. Association of cardiovascular risk factors with the different presentations of acute coronary syndrome. Rev. Lat. Am. Enferm. 2014, 22, 538–546. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Čeponienė, I.; Žaliaduonytė-Pekšienė, D.; Gustienė, O.; Tamošiūnas, A.; Žaliūnas, R. Association of major cardiovascular risk factors with the development of acute coronary syndrome in Lithuania. Eur. Heart J. Suppl. 2014, 16, A80–A83. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schwartz, B.G.; French, W.J.; Mayeda, G.S.; Burstein, S.; Economides, C.; Bhandari, A.K.; Cannom, D.S.; Kloner, R.A. Emotional stressors trigger cardiovascular events. Int. J. Clin. Pract. 2012, 66, 631–639. [Google Scholar] [CrossRef]
- Klatsky, A.L.; Udaltsova, N. Alcohol Drinking and Total Mortality Risk. Ann. Epidemiology 2007, 17, S63–S67. [Google Scholar] [CrossRef]
- Roohafza, H.; Talaei, M.; Sadeghi, M.; Mackie, M.; Sarafzadegan, N. Association Between Acute and Chronic Life Events on Acute Coronary Syndrome. J. Cardiovasc. Nurs. 2010, 25, E1–E7. [Google Scholar] [CrossRef][Green Version]
- Orth-Gomér, K.; Ahlbom, A. Impact of Psychological Stress on Ischemic Heart Disease when Controlling for Conventional Risk Indicators. J. Hum. Stress 1980, 6, 7–15. [Google Scholar] [CrossRef]
Variable | Description | Values |
---|---|---|
Sample size, n (%) | 69 | |
Female | 23 (33%) | |
Male | 46 (67%) | |
Age, years | 55 ± 6 | |
GRACE risk score, n (%) | 107 ± 23 | |
Low risk | 32 (46%) | |
Intermediate risk | 24 (35%) | |
High risk | 13 (19%) | |
Clinical/laboratory exams | ||
Heart rate, b/min | 74 ± 12 | |
Systolic blood pressure, mmHg | 122 ± 16 | |
Diastolic blood pressure, mmHg | 76 ± 10 | |
Pulse pressure, mmHg | 46 ± 15 | |
Mean pressure, mmHg | 92 ± 10 | |
Blood saturation, % | 97 ± 1 | |
Glycemia, mg/dL | 135 ± 54 | |
Anthropometry | ||
Body height, m | 1.62 ± 0.09 | |
Body mass, kg | 72.0 ± 12.8 | |
Body mass index, kg/m2 | 27.4 ± 3.9 | |
Abdominal circumference, cm | 97.0 ± 12.2 | |
Nutritional status, n (%) | ||
Thin | 1 (1%) | |
Eutrophic | 20 (29%) | |
Overweight | 33 (48%) | |
Obese I | 13 (19%) | |
Obese II | 2 (3%) | |
Body composition | ||
Body fat, % | 21 ± 7 | |
Fat mass, kg | 24 ± 9 | |
Thin mass, kg | 48 ± 10 | |
Health behaviors | ||
Smoking load, pack-years | 16.1 ± 21.0 | |
AUDIT score, n (%) | ||
Probable dependency | 3 (4%) | |
High risk | 4 (6%) | |
Medium risk | 13 (19%) | |
Low risk | 49 (71%) | |
ISSL, Phase I, n (%) | ||
Alert | 13 (19%) | |
No alert | 56 (81%) | |
ISSL, Phase II, n (%) | ||
Resistant | 42 (61%) | |
No resistant | 27 (39%) | |
ISSL, Phase III, n (%) | ||
Exhaustion | 13 (19%) | |
No exhaustion | 56 (81%) | |
Risk factors for cardiovascular disease, n (%) | ||
1 | 11 (16%) | |
2 | 16 (23%) | |
3 | 17 (25%) | |
4 | 19 (28%) | |
5 | 6 (9%) | |
Risk factors, n (%) | ||
Hypertension | 60 (87%) | |
Stress | 43 (62%) | |
Obesity | 31 (45%) | |
Smoking | 30 (43%) | |
Drinking | 21 (30%) | |
Diabetes mellitus | 15 (22%) | |
Length of stay, days | 40 ± 26 | |
Musculoskeletal function | ||
Handgrip strength | ||
Dominant hand, kg | 29 ± 10 | |
Dominant hand, predict % | 74 ± 21 | |
Respiratory muscle strength | ||
Maximal inspiratory pressure, cmH2O | −67 ± 31 | |
Maximal expiratory pressure, cmH2O | 61 ± 28 | |
Maximal inspiratory pressure, predict % | 65 ± 27 | |
Maximal expiratory pressure, predict % | 57 ± 22 |
Variables | ß (Raw) | ß (Stand.) | [95%CI] | p Value |
---|---|---|---|---|
AUDIT score | 0.554 | 0.110 | [0.060; 0.162] | <0.001 * |
Smoking load | 0.478 | 0.028 | [0.007; 0.049] | 0.009 * |
ISSL sumscore | 0.118 | 0.021 | [0.006; 0.037] | 0.008 * |
Body mass index | 0.050 | 0.016 | [0.008; 0.023] | <0.001 * |
Glycemia | 0.078 | 0.002 | [0.000; 0.004] | 0.047 * |
Mean blood pressure | 0.000 | 0.000 | [−0.003; 0.003] | 0.994 |
AUDIT score | 0.554 | 0.110 | [0.060; 0.162] | <0.001 * |
Smoking load | 0.478 | 0.028 | [0.007; 0.049] | 0.009 * |
Variables | ß (Raw) | ß (Stand.) | [95%CI] | p Value |
---|---|---|---|---|
Handgrip strength, % | R2 = 0.132 | |||
ISSL sumscore | −0.003 | −0.003 | [−0.013; 0.008] | 0.570 |
Smoking load | 0.000 | 0.000 | [−0.001; 0.001] | 0.987 |
AUDIT score | 0.000 | 0.000 | [−0.006; 0.006] | 0.981 |
Mean blood pressure | 0.007 | 0.019 | [0.001; 0.037] | 0.048 * |
Glycemia | 0.000 | 0.000 | [0.000; 0.000] | 0.574 |
Body mass index | 0.006 | 0.002 | [−0.004; 0.008] | 0.508 |
Maximal inspiratory pressure, % | R2 = 0.272 | |||
ISSL sumscore | −0.002 | −0.001 | [−0.012; 0.010] | 0.822 |
Smoking load | 0.003 | 0.001 | [0.000; 0.002] | 0.145 |
AUDIT score | 0.013 | 0.005 | [−0.001; 0.011] | 0.125 |
Mean blood pressure | 0.013 | 0.025 | [0.006; 0.043] | 0.013 * |
Glycemia | 0.000 | 0.000 | [0.000; 0.000] | 0.799 |
Body mass index | 0.024 | 0.006 | [0.000; 0.012] | 0.054 |
Maximal expiratory pressure, % | R2 = 0.194 | |||
ISSL sumscore | 0.002 | 0.002 | [−0.010; 0.015] | 0.743 |
Smoking load | 0.003 | 0.001 | [0.000; 0.002] | 0.198 |
AUDIT score | 0.020 | 0.009 | [0.002; 0.016] | 0.013 * |
Mean blood pressure | 0.002 | 0.005 | [−0.016; 0.028] | 0.629 |
Glycemia | −0.001 | 0.000 | [0.000; 0.000] | 0.458 |
Body mass index | 0.025 | 0.008 | [0.000; 0.015] | 0.035 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisotto, G.; Reis, L.F.F.; Junior, M.S.; Papathanasiou, J.; Lopes, A.J.; Ferreira, A.S. Association of Multiple Cardiovascular Risk Factors with Musculoskeletal Function in Acute Coronary Syndrome Ward Inpatients. Healthcare 2023, 11, 954. https://doi.org/10.3390/healthcare11070954
Parisotto G, Reis LFF, Junior MS, Papathanasiou J, Lopes AJ, Ferreira AS. Association of Multiple Cardiovascular Risk Factors with Musculoskeletal Function in Acute Coronary Syndrome Ward Inpatients. Healthcare. 2023; 11(7):954. https://doi.org/10.3390/healthcare11070954
Chicago/Turabian StyleParisotto, Gabriel, Luis Felipe Fonseca Reis, Mauricio Sant’Anna Junior, Jannis Papathanasiou, Agnaldo José Lopes, and Arthur Sá Ferreira. 2023. "Association of Multiple Cardiovascular Risk Factors with Musculoskeletal Function in Acute Coronary Syndrome Ward Inpatients" Healthcare 11, no. 7: 954. https://doi.org/10.3390/healthcare11070954