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Abstract: Graph machine-learning (ML) methods have recently attracted great attention and have
made significant progress in graph applications. To date, most graph ML approaches have been
evaluated on social networks, but they have not been comprehensively reviewed in the health
informatics domain. Herein, a review of graph ML methods and their applications in the disease
prediction domain based on electronic health data is presented in this study from two levels: node
classification and link prediction. Commonly used graph ML approaches for these two levels are
shallow embedding and graph neural networks (GNN). This study performs comprehensive research
to identify articles that applied or proposed graph ML models on disease prediction using electronic
health data. We considered journals and conferences from four digital library databases (i.e., PubMed,
Scopus, ACM digital library, and IEEEXplore). Based on the identified articles, we review the present
status of and trends in graph ML approaches for disease prediction using electronic health data.
Even though GNN-based models have achieved outstanding results compared with the traditional
ML methods in a wide range of disease prediction tasks, they still confront interpretability and
dynamic graph challenges. Though the disease prediction field using ML techniques is still emerging,
GNN-based models have the potential to be an excellent approach for disease prediction, which can
be used in medical diagnosis, treatment, and the prognosis of diseases.

Keywords: disease prediction; deep learning; electronic health data; graph machine learning;
machine learning

1. Introduction

Electronic health data are computerised medical records for patients that contain
information about healthcare entities. These data refer to a patient’s diseases or conditions
and are recorded in electronic systems, with the primary goal of delivering healthcare and
related services [1]. Administrative healthcare data, administrative claim data, comput-
erised claim data, digital health records, or electronic health records are all terms that are
used to describe electronic health data [2]. Electronic health data are rapidly being used
for modelling and decision making in the healthcare research sector. These types of data
are used for more than record-keeping in healthcare research, e.g., analysing healthcare
utilisation, monitoring hospital care network effectiveness, and developing predictive
models for disease prediction [2].

Machine-learning (ML) and deep-learning (DL) approaches have recently been in-
creasingly applied in data-driven healthcare research. In terms of disease risk predictive
models, many supervised ML algorithms have been used for risk assessments [3]. Likewise,
DL methods have resulted in significant advances in health informatics [4]. Such models
can effectively capture the intricate relationships between high-dimensional features via
hierarchical levels of manipulation when used to train a predictive model [5]. For instance,
the convolutional neural network (CNN) performs exceptionally well in visual medical
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image analyses [6]. Recurrent neural networks give exceptional accuracy in language
processing through recurrent neural network architecture [4].

Nevertheless, traditional ML and DL methods explain regular Euclidean spatial data,
such as medical images and medical records. The number of neighbour nodes of each
node is stable in these data, indicating high translation invariance. However, there are
many irregular data structures, such as patient networks [7], disease networks [8], biomed-
ical knowledge graphs [9], chemical molecular structures [10], and gene interaction net-
works [11]. Graphs have irregular sizes and shapes, and they lack translation invariance.
Therefore, traditional ML approaches based on normal grid-like structures cannot be used
on graphs. As a result of the increasing amount of non-Euclidean data represented by
graph structures, there has been an increase in interest in applying graph ML algorithms
to graph-structured data. Researchers are beginning to focus on graph-structured data
processing and analysis. Efforts to generalise machine-learning methods to non-Euclidean
structured data have been made throughout the literature. Many methods in different
graph-embedding levels have emerged, such as hand-crafted features, random walk-based
techniques, and Graph Neural Networks (GNN). Hand-crafted techniques are primarily
used to extract features from networks [12], which are later used to train ML classifiers for
disease prediction. Random walk-based techniques, which are graph-embedding methods
for mapping nodes into a low-dimensional space, are an effective solution for graph-related
downstream tasks [13]. Graph neural networks are a DL method that performs inference
on graph-based data [13].

1.1. Comparisons with the Existing Literature Reviews

Some studies have been conducted to compare supervised ML and deep-learning
methods for disease prediction. Ravì et al. [4] evaluated various DL approaches for health
informatics. Their research focused on critical DL applications in translational bioinformat-
ics and medical imaging using different artificial neural networks. Min et al. [14] reviewed
the performances of different state-of-the-art deep-learning methods in bioinformatics and
provided future research directions. Uddin et al. [3] reviewed traditional machine-learning
methods comprehensively and compared their performance in disease prediction. How-
ever, these reviews were focused on regular Euclidean spatial data. Few researchers have
recently carried out GNN-based review studies using graph-structured data in bioinfor-
matics [15,16] and medical diagnosis [17–19] that are based on graph-structured data. As
can be seen, research on machine-learning approaches is being conducted from Euclidean
spatial data to graph-structured data.

1.2. Motivations and Contributions

This study primarily focuses on those articles for review that used electronic health
data in the disease prediction domain. It does not emphasise studies [17–19] that used
graph-structured data from other medical sources, such as clinical data and longitudinal
patient survey data. Meanwhile, Waikhom and Patgiri [20] reviewed the literature on using
graph neural networks in various learning paradigms, including addressing the common
formatting of graphical information and general standards or schemas that exist for the
construction of graphical knowledge. However, no study in the present literature reviews
disease prediction using graph ML approaches based on electronic health data. Overall,
the following contributions are made by this study:

1. We review and classify different levels of graph machine-learning approaches.
2. The applications of disease prediction in different graph ML approaches are summarised.
3. We highlight the shortcomings in the present research, pointing to future research

directions and opportunities.

2. Overview and Search Strategy

Figure 1 illustrates an overview of this study. According to this figure, a literature
search is conducted based on the studies that addressed the disease prediction problem
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using electronic health data. Further, in doing this search, this study excludes articles that
do not use any of the two graph ML algorithms (i.e., shallow embedding and graph neural
network-based methods) and are neither in the application areas of node classification
nor link prediction. Finally, we report the findings of this study based on the reviewed
literature and trend analysis. Each of these four framework sections is further detailed in
later sections of this article.
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Figure 1. Overview of the study.

We searched extensively to identify articles that used the graph machine-learning
method to predict diseases using electronic health data. High-quality and highly cited
journals and conference proceedings were sourced from PubMed, Scopus, ACM digital
library, and IEEEXplore. PubMed is a free publishing search engine that primarily includes
citation data for biomedical and life science literature. It contains more than 30 million
citations from MEDLINE, biomedical journals, and online books [21]. Scopus has the most
peer-reviewed literature, scientific journals, books, and conference proceedings [22]. The
ACM Digital Library is a searchable database of bibliographic data and full-text articles
from journals and conference proceedings [23]. The IEEE Xplore database has the highest
quality technical literature in engineering and technology [24]. This study’s search strategy
included five keywords. They are disease prediction, graph machine learning, graph neural
network, graph convolutional network, and electronic health data. We considered the full
article (i.e., title, abstract, and entire body of the article) for searching. Since keywords
appeared in various synonyms, quotation marks are not appended to this search query.
Thus, the search string used in this study was: (disease prediction AND electronic health
data) AND (graph machine learning OR graph neural network OR graph convolutional
network). We further considered abbreviations and commonly used synonyms for each
of these five keywords in our search using the logical OR function. For example, we
considered GNN and GNNs as synonyms for the graph neural network keyword. Figure 2
illustrates the entire search approach followed in this study, how we located 18 articles to
review, and the trend analysis.
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Figure 2. Article selection flowchart.

3. Graph Machine-Learning Approaches

Graph machine learning is based on learning effective feature representations of
nodes [25]. This section describes the most recent graph ML approaches, categorised into
two main classes: shallow embedding methods and graph neural network-based methods.
These two classes have sub-classes, as described in the following section.

3.1. Shallow Embedding

The semantics of domain data in a data type are captured by a shallow embedding,
which offers a defined interpretation. However, shallow embedding methods can only learn
and return the embedding values for their learned input data. For unseen data, obtaining
the embedding vector is impossible. We categorise the shallow embedding methods into
the hand-crafted feature and random walk-based methods. Figure 3 shows a high-level
illustration of shallow embedding methods.
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Figure 3. Shallow embedding methods. Graph-embedding methods extract low-dimensional node
representations from the network, which are then used as features to train specific classifiers for
node classification or link prediction. For (a) hand-crafted approaches, the features generated by the
network are used as input to train machine-learning models. For (b) random walk-based techniques,
random walks are utilised to generate node sequences. Afterwards, these sequences were fed into the
word2vec [26] to extract node representations.

3.1.1. Hand-Crafted Features

Heuristics and statistics have been developed to characterise graphs, nodes, and
edges [27]. For example, various centrality measurements capture different characteristics
of graphs’ connections. The betweenness centrality, for example, evaluates how many short-
est paths a particular node has between pairs of other nodes [28]. The closeness centrality
indicates how closely a node is linked to all other nodes [29]. Furthermore, the clustering
coefficient of a node reflects how tightly its neighbours are related to form a complete
graph at the node level [30]. These manually extracted graph features, commonly known
as hand-crafted features, can be used to generate node representations for downstream
prediction using machine-learning classifiers. There are various methods, such as kernel
based (i.e., support vector machine), regression based (i.e., logistic regression), and tree
based (i.e., decision tree), for such downstream predictions and classifications.

3.1.2. Random Walk-Based Methods

Random walks are used to capture structural relationships between nodes in graph
theory. The principle is that the distance between node representations in the embedding
space should correspond to a graph distance measurement, quantified here as the frequency
with which a particular node is visited in random walks originating from another node [25].
Particularly, given a graph and a beginning node, this technique randomly selects one of the
node’s neighbours and moves to that neighbour. This technique will continue until node
sequences are obtained. Afterwards, the word2vec, which is the method to generate word
vectors by distributed numerical representations of word features [26], is used to learn
embeddings from the node sequences that have been generated. This method preserves
structural and topological information as latent features.

The initial work in random walk on the graph is DeepWalk [25]. It employs a ran-
domised path-traversing method to reveal localised network topologies. It achieves this
by converting random pathways into sequences, which are then used to train an unsu-
pervised learning method for determining the most similar terms to a given word called
Skip-Gram [26]. The Skip-Gram model is used to predict the next word in the sentence by
maximising the co-occurrence probability of words that appear within a phrase’s frame. It
can predict the next word in the phrase. Then, node2vec is employed to resolve the bias of
uniformly random walks used in Deepwalk. Later, Grover and Leskovec [31] presented this
node2vec model to introduce another random walk technique that balances breadth-first
and depth-first searches. As a result, the sampled paths encode global and local proximities.
At the same time, the embeddings generated from random walk-based methods can also
be used as the input for downstream prediction.
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3.2. Graph Neural Network-Based Methods

Gori et al. [32] introduced the concept of Graph Neural Networks (GNNs). They
stated that information is naturally represented graphically. Therefore, a model can be
developed to process graph structure data directly. Later, Scarselli et al. [33] expanded
on this concept and demonstrated that GNNs produce considerably better outcomes than
previous ML and deep-learning approaches by iteratively exploiting graph topological
information. After this, there were many studies on the variants of GNN architectures,
such as Graph Convolutional Networks [34], GraphSAGE [35], and Graph Isomorphism
Networks [36]. GNN models have achieved excellent performance in various domains,
because they extract features based on the structure of the data and allow for automated
feature extraction from raw inputs rather than hand-crafted features [37]. Currently, the
research direction and application domains of GNNs have considerably increased due
to the growing interest in graph structure data mining in different research areas, such
as predicting the properties of chemical molecules [38], applications in natural language
processing [39], and predicting adverse drug reaction signals [40].

GNNs are a form of neural network that use a sequence of local message aggregation
and propagation phases for graph modelling. Figure 4 denotes a high-level illustration
of graph neural network methods. They can produce vector representations of graph
components that capture the graph network topology and node feature [41]. The concepts
of GNN are introduced as follows: Given a pair of node u and v in Graph G, the propagation
at layer l is:

h(l)u = UPD
(

AGG
(

MSG
(

h(l−1)
u , h(l−1)

v

)∣∣∣ v ∈ Nu

)
, h(l−1)

u

)
(1)

where UPD denotes a non-linear function to update node embeddings, AGG is neighbour-
hood aggregation, and MSG is message passing. h(l)u represents the state vector of node u
at l layer, and Nu is the immediate neighbourhood of node u.

Healthcare 2023, 11, x FOR PEER REVIEW 6 of 21 
 

 

predicting the properties of chemical molecules [38], applications in natural language pro-
cessing [39], and predicting adverse drug reaction signals [40]. 

GNNs are a form of neural network that use a sequence of local message aggregation 
and propagation phases for graph modelling. Figure 4 denotes a high-level illustration of 
graph neural network methods. They can produce vector representations of graph com-
ponents that capture the graph network topology and node feature [41]. The concepts of 
GNN are introduced as follows: Given a pair of node 𝑢 and 𝑣 in Graph 𝐺, the propaga-
tion at layer 𝑙 is: ℎ( ) = 𝑈𝑃𝐷 𝐴𝐺𝐺 𝑀𝑆𝐺 ℎ( ), ℎ( )  𝑣 ∈ 𝒩 , ℎ( )  (1)

where 𝑈𝑃𝐷 denotes a non-linear function to update node embeddings, 𝐴𝐺𝐺 is neigh-
bourhood aggregation, and 𝑀𝑆𝐺 is message passing. ℎ( ) represents the state vector of 
node 𝑢 at 𝑙 layer, and 𝒩  is the immediate neighbourhood of node 𝑢. 

 
Figure 4. High-level illustration of graph neural network methods. 

The GNN model is a high-performing architecture for graph-structured data [33]. 
However, this GNN model has several limitations [37]. This model employs the same pa-
rameters in each iteration as a hierarchical feature-extraction approach. This approach is 
computationally expensive, since it spreads information from neighbours via a neural net-
work until it achieves a stable fixed state to learn the node’s representation. Furthermore, 
several relevant features on the edges could not be successfully modelled in this approach. 
As a result, various variants of GNN have been developed to overcome the original GNN 
model shortcomings. 

3.2.1. Graph Convolutional Networks 
Graph Convolutional Networks (GCNs) extend convolution from the Euclidean do-

main to the graph domain [34]. The convolution operation of GCNs is converted from 
Euclidean to non-Euclidean space [42]. GCNs learn a mapping function by inspecting 
neighbouring nodes, which can generate a new node representation by combining the 
information from neighbouring nodes with its feature information [33]. There are two 
types of existing GCN models: spectral-based [34,43,44] and spatial-based GCNs [38,45]. 

Spectral-based GCNs exploit the normalised Laplacian matrix of the graph and graph 
Fourier transform to transfer a graph’s non-Euclidean structure to a Euclidean space for 
convolution operations. A fixed convolutional kernel cannot be implemented on a graph, 
since the number of neighbours of each node is not fixed. Still, the convolutional operation 
can be performed when the graph-structured data are converted to the frequency domain. 
Given the feature vector of all nodes 𝑥 ∈ ℝ  and a graph filter 𝑔 ∈ ℝ  × , the graph con-
volution between the two signals is: 𝑥 ∗ 𝑔 = 𝑈(𝑈 𝑥 ⊙ 𝑈 𝑔) (2)

where 𝑈 is the eigenvector matrix. ⊙ is the Hadamard product. 
If 𝑔 = 𝑑𝑖𝑎𝑔(𝜃), 

Figure 4. High-level illustration of graph neural network methods.

The GNN model is a high-performing architecture for graph-structured data [33].
However, this GNN model has several limitations [37]. This model employs the same
parameters in each iteration as a hierarchical feature-extraction approach. This approach
is computationally expensive, since it spreads information from neighbours via a neural
network until it achieves a stable fixed state to learn the node’s representation. Furthermore,
several relevant features on the edges could not be successfully modelled in this approach.
As a result, various variants of GNN have been developed to overcome the original GNN
model shortcomings.

3.2.1. Graph Convolutional Networks

Graph Convolutional Networks (GCNs) extend convolution from the Euclidean do-
main to the graph domain [34]. The convolution operation of GCNs is converted from
Euclidean to non-Euclidean space [42]. GCNs learn a mapping function by inspecting
neighbouring nodes, which can generate a new node representation by combining the
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information from neighbouring nodes with its feature information [33]. There are two types
of existing GCN models: spectral-based [34,43,44] and spatial-based GCNs [38,45].

Spectral-based GCNs exploit the normalised Laplacian matrix of the graph and graph
Fourier transform to transfer a graph’s non-Euclidean structure to a Euclidean space for
convolution operations. A fixed convolutional kernel cannot be implemented on a graph,
since the number of neighbours of each node is not fixed. Still, the convolutional operation
can be performed when the graph-structured data are converted to the frequency domain.
Given the feature vector of all nodes x ∈ Rn and a graph filter g ∈ Rn×d, the graph
convolution between the two signals is:

x ∗ g = U
(

UTx�UT g
)

(2)

where U is the eigenvector matrix. � is the Hadamard product.
If gθ = diag(θ),

x ∗ gθ = Ugθ(Λ)UTx (3)

where Λ is a diagonal matrix of its eigenvalues, and θ is the parameter to be learned.
The above is the first generation of a GCN model based on spectral data proposed by

Bruna et al. [46]. However, the computational cost is significantly high due to matrix-vector
multiplication. Defferrard et al. [43] presented a model called Chebnet to overcome this
limitation. Their model redefined the graph filter with Chebyshev polynomials Tk(x) [47].
The operation is defined as:

x ∗ gθ ≈ U(
k−1

∑
k=0

θk Tk(L̃))x (4)

where L̃ is a diagonal matrix of scaled eigenvalues, and the Chebyshev polynomial is
Tk(x) = 2Tk−1(x)− Tk−2(x) with T0(x) = 1 and T1(x) = x.

ChebNet is not required to calculate the Laplacian matrix’s eigenvectors, which re-
duces the computational cost. Further, Kipf and Welling [34] truncated the Chebyshev
polynomial to one time and proposed a model called GCN. This model might be useful in
resolving overfitting by reducing the number of operations at each layer. The operation is
as follows:

x ∗ gθ = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
(5)

where Ã is the adjacency matrix A for added self-connections I. D̃ is the diagonal node
degree matrix of Ã. H(l) is the feature representations. W(l) is a learnable weight matrix,
and σ(·) is an activation function.

The spatial-based GCN approach begins with the node domain and aggregates each
core node and its neighbouring nodes along the edge. This operation is comparable to a
CNN. These convolution methods extract the node or pixel’s neighbour information to
produce the feature representation of a node in a network or a pixel in an image. However,
the nodes in a graph are unordered. Gilmer et al. [48] proposed a unified framework of
spatial-based GCNs, named the Message Passing Neural Network (MPNN). The MPNN is
based on message aggregation between nodes and information combination. The formula
is as follows:

Aggregation : mk
u = ∑

u∈N (u)
Mk(hk−1

u , hk−1
v , euv) (6)

Combination : hk
u = Uk

(
hk−1

u , mk
u

)
(7)

where euv is the feature representation of the edge between node u and v, Mk(·) is the
aggregation function, and Uk(·) is the combination function.

However, the MPNN is computationally expensive when the number of neighbours of
a node is large. Hamilton et al. [35] proposed a model called GraphSAGE. To adapt to the
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application on large-scale networks, it randomly samples the neighbouring nodes so that
each node’s neighbouring nodes are fewer than the set number of samples. The following
is the graph convolution operation:

hk
u = σ

(
Wkgk

(
hk−1

u , hk−1
v , ∀v ∈ SN (u)

))
(8)

where gk is the aggregation function, which can be mean, long short-term memory (LSTM),
or pooling. SN (u) is a random sampling result of the node u′s neighbours.

3.2.2. Graph Attention Networks

Many sequence-based activities make extensive use of the attention mechanism. At-
tention is a component of network design responsible for controlling and quantifying
dependency. Veličković et al. [49] proposed the Graph Attention Network (GAT), a GNN
variant that adds the attention mechanism into the propagation phases. The attention
coefficient of edges u and v is represented by αu,v, and the equation is as follows:

αu,v =
exp
(

LeakyReLU
(
aT [Whu ‖Whv]

))
∑k∈Nu exp(LeakyReLU(aT [Whu ‖Whv]))

(9)

where Nu is the neighbourhoods of node u in the graph, the input node features are denoted
as h = {h1, h2, . . . , hN}, a is a trainable weight vector, aT is the transposition of the weight
vector, W is the shared linear transformation weight matrix, and ‖ is the concatenation
operation. The output features of each node are:

h′i =‖K
k=1 σ

(
∑

v∈Ni

αk
uvWkhv

)
(10)

Alternatively, a multi-head attention mechanism, consisting of K separate attention
mechanisms, can be employed to enhance the expressive ability of the attention layer. The
final expression is delivered as shown below:

h′i = σ

(
1
K ∑

K=1
∑

v∈Ni

αk
uvWkhv

)
(11)

where αk
uv is the kth attention mechanism.

3.2.3. Graph Auto-Encoders

The wide use of auto-encoders and their variants in unsupervised learning has resulted
in a rise in the number of graph generation models. Graph auto-encoders (GAEs) learn
low-dimensional latent representations of nodes in the graph domain by using GNNs as
encoders. Encoders in GAEs are responsible for encoding the structural information of
nodes. Decoders in GAEs aim to decode the graph’s structural information from learned
latent representations [50]. Kipf and Welling [51] developed a variation graph auto-encoder
(VGAE) that extended the variational auto-encoder [52] into the graph domain. As with
other auto-encoders, the VGAE has two components: an encoder and a decoder. The
encoder employs a GCN to map each node to a low-dimensional latent representation.
Afterwards, network embedding is obtained. The decoder utilises a non-linear activation
to compute the pairwise distance given the network embedding. The decoder then outputs
the rebuilt adjacency matrix.

4. Applications in Disease Prediction

The following sections focus on the tasks of graph machine learning in the disease
prediction domain. There are two levels of graph analysis tasks using electronic health
data: node classification and link prediction, as illustrated in Figure 5.
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4.1. Node Classification

Graph machine-learning methods can be used to predict an unlabelled node’s label or
to classify nodes. This commonly occurs in a supervised learning environment for shallow
embedding and a semi-supervised learning environment for GNN-based models. For
supervised learning, shallow embedding methods are popular techniques in the disease
prediction domain. These methods can learn and only return the embedding values for the
learned input data. The embedding values can be used for downstream disease prediction.
For example, Liu et al. [53] developed a temporal graph for patient event sequences from
electronic health records. They used a network-based approach to predict the probability
of heart failure onset and the risk of heart failure-related hospitalisation in individuals
with chronic obstructive pulmonary disease pre-conditioning. Later, from administrative
claim data, Khan et al. [8] used comorbid conditions to create a disease network for type
2 diabetic patients. They also used networks to generate features (i.e., graph node match,
graph pattern match, and cluster match). Afterwards, they used these features to predict
the risk of type 2 diabetes using ML classifiers. Further, Hossain et al. [54] proposed a
comorbidity network to predict the risk of cardiovascular disease in type 2 diabetes patients
using features generated from underlying networks. Apart from the disease network,
Lu et al. [12] developed a patient network that illustrated the underlying links between
health conditions for a set of patients diagnosed with the same disease. They applied ML
classifiers using the network features to predict the risk of type 2 diabetes.

There are other related studies in learning graph representations in the disease predic-
tion domain. Choi et al. [55] introduced a graph-based model that supplements electronic
medical records with hierarchical information extracted from medical ontologies. More-
over, Zhang et al. [56] have introduced a Heterogeneous Convolution Neural Network
(HCNN), a novel predictive learning model that depicts electronic health records as graphs
with heterogeneous properties such as diagnosis, procedures, and medications. Recently,
Xu et al. [57] incorporated comorbidity network embedding using a random walk-based
technique on a graph that improves the performance in predicting the risk of self-harm.
However, these shallow embedding methods have been widely used in predicting diseases.
They can, in fact, only return a vectorial representation of the data learned during the
training phase. The embedding vector for unobserved data cannot be obtained.

On the other hand, GNN-based semi-supervised learning combines the benefits of
both supervised and unsupervised learning. This graph-learning approach extracts high-
level node representations through information distribution, eliminating the need to label
all nodes and making excellent use of certain related known information. For example,
Sun et al. [58] constructed a patient record graph using medical knowledge base and
electronic medical records. Then, they proposed a neural graph encoder to generate node
embeddings for those graphs and predict diseases, including rare diseases for new patients.
The experimental results demonstrated the state-of-the-art performance of this model in the
node classification task. The node classification task using the GNN model is also popular
in cancer prediction. Wang et al. [59] generated two graphs from genomic and clinical
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data and proposed a clinical data model based on a GCN to predict cancer survival. The
GCN on the cancer sample and the sample feature matrix generation enable representation
learning for all nodes in semi-supervised learning. Their work enhanced the quality of
prediction when compared to previous works. Further, Gao et al. [60] presented a GNN-
based framework for cancer survival prediction for the node classification task. They
computed a GNN to obtain the embedding of the patient from bipartite graphs between
patients and multimodal data. The output of the model is the classification of cancer
patients. Another novel framework was developed by Lu and Uddin [7]. They applied the
bipartite graph projection technique to generate a patient network with a weight containing
latent patient relationships. Afterwards, GNN-based models are applied to predict the risk
of chronic diseases. This framework can effectively learn the patterns from the network,
and the performance of the GNN-based model is outstanding. Many approaches have
lately used underlying spatial or temporal relationships in electronic health records to
accomplish time-dependent disease prediction tasks. For example, Li et al. [61] used a
GNN-based model to predict patient diagnoses by taking advantage of electronic health
record data’s underlying spatial and temporal dependencies. Lastly, Zhu and Razavian [62]
applied graph auto-encoders to predict Alzheimer’s disease and for other predictive tasks
based on electronic health records.

4.2. Link Prediction

Link prediction aims to predict whether two nodes in a graph are likely to have an
edge [63], which is another critical application in a graph. Predicting disease interactions
from complex networks is a significant aspect of research that is becoming increasingly
essential and challenging. Similarity-based methods were used to predict the risk of chronic
diseases and their comorbidity. Davis et al. [64] presented the collaborative Assessment
and Recommendation Engine, which is regarded as the first study to use collaborative
filtering to predict disease risks. Further, Folino and Pizzuti [65] created a comorbidity
network and used link prediction algorithms to infer disease connections. However, these
studies focus on the similarities between diseases. Predicting comorbidity is challenging,
since a multitude of circumstances can cause it. Graph ML methods have recently been
applied to link prediction in disease networks. Wang et al. [66] presented a framework
to predict disease risks with directed disease networks and disease risk scores. del Valle
et al. [67] built a heterogeneous disease–symptom network. Afterwards, they proposed a
comorbidity prediction method using Metapath2vec [68] to learn the graph embeddings.
Nevertheless, these shallow embedding methods cannot generate embedding vectors for
unseen data.

Recently, researchers applied GNN-based models in link prediction tasks. Wang
et al. [69] used GCN on a patient–disease bipartite graph to predict the link between patients
and diseases. GCN learned the target node’s representation by spreading information from
neighbour nodes. The result demonstrated the proposed method had superior accuracy
compared to association rules and collective matrix factorisation. Moreover, a framework
combining shallow embedding and GNN-based models was proposed to predict chronic
diseases and their comorbidity. The results on the administrative claim dataset reveal
that it outperforms the baseline techniques, and the framework’s generalisability and
performance metrics have significantly improved.

5. Findings

Table 1 summarises the application of different graph ML approaches on electronic
health data for node classification and link prediction tasks. Applying ML approaches
to electronic health data for disease risk prediction is a relatively new research direction.
The first article on this subject was published in 2015. The highest number of articles
(i.e., eight) was published in 2020. Researchers have adopted GNN-based methods mostly
recently—all reviewed articles using GNN-based methods were published in 2020 and
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onwards. They reveal superior predictive performance compared with the shallow embed-
ding approaches.

Using the Table 1 data, Figure 6 presents insightful trends in applying graph machine
learning for disease prediction. Researchers used graph ML approaches primarily for
the node classification task (14 out of 18), as depicted in Figure 6. They tend to consider
multiple diseases for risk prediction analysis (Figure 6b). Heart disease and cardiovascular
disease are the two single diseases that were studied the most (three times) using graph ML
algorithms and methods. Hand-crafted methods are the most used graph ML approaches
(nine times) for disease prediction using electronic health data, followed by the graph
convolution network (five times), as illustrated in Figure 6c. Overall, shallow embedding
and GNN-based methods were used 13 and ten times, respectively. One of the reviewed
articles applied both shallow embedding approaches (i.e., hand-crafted and random walk)
and the GNN-based approach of GCN [7]. Few other studies used more than one shallow
embedding approach and GNN-based approach [7,55,58].
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Based on the graph machine-learning methods cited in Table 1, examples of tasks in
different levels are shown in Figure 7. Figure 7a shows an example of a node classification
task, with the input being administrative data provided by an Australian private health
fund. Following the filtering and sampling methods, two study cohorts (Type 2 diabetes
(T2D) and non-T2D) were formed. Following that, a Patient Network is established. The
network information and patient features are then utilised to train and test the graph
machine-learning models for chronic disease prediction [12]. On the other hand, Figure 7b
shows an example of link prediction. For instance, a disease network in a meta-path-based
network analysis can be used to predict the probability of two diseases co-occurring [67].
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Figure 7. Examples of graph machine-learning tasks in two levels. (a) Node classification: the
prediction of Type 2 diabetes (T2D) in the Patient Network. (b) Link Prediction: predicting the
unknown link between diseases and their comorbidities through the Disease Network.
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Table 1. Summary of the reviewed articles that used graph machine learning for disease prediction using electronic health data.

Reference Disease Predicted Type of Data Data Size Task Methods Prediction Performance Source Code

Liu et al. (2015) [53]

One-year
hospitalisation
prediction and

congestive heart
failure (CHF)

Real-world electronic
health records over four

years
319,650 Node

classification
Shallow embedding

(hand-crafted)
Accuracy: 76% (CHF),
65% (hospitalisation) -

Khan et al.
(2019) [8] Type 2 diabetes

Administrative claim
data from an Australian

insurance company
2300 Node

classification
Shallow embedding

(hand-crafted)

Accuracy: 82–87% (for
different

machine-learning
methods)

-

Hossain et al.
(2020) [54]

Cardiovascular disease
in patients with type

2 diabetes

Administrative claim
data from an Australian

insurance company
172 Node

classification
Shallow embedding

(hand-crafted)

Accuracy: 79–88% (for
different machine-
learning methods)

-

Lu et al. (2021) [12] Type 2 diabetes
Administrative claim

data from an Australian
insurance company

2056 Node
classification

Shallow embedding
(hand-crafted)

Area under curve (AUC):
0.79–0.91 (for different

machine-learning
methods)

-

Choi et al.
(2017) [55] Heart failure

Three different datasets
(Sutter PAMF, Medical
Information Mart for

Intensive Care
(MIMIC)-III, and Sutter

Heart failure cohort)

258,555, 7499, and
30,737,

respectively

Node
classification

Shallow embedding
(hand-crafted and

random walk)

AUC: 0.7970–0.8448
(using different
training ratios)

https:
//github.com/
mp2893/gram
(accessed on 3
March 2023)

Zhang et al.
(2017) [56]

Chronic disease
comorbidity in patients

Anonymised electronic
healthcare records data

from a major
medical centre

381,169 Node
classification

Shallow embedding
(hand-crafted)

F1 score: 0.26–0.48 (for
different comorbidities) -

Xu et al. (2020) [57] Post-discharge
self-harm incidents

Electronic healthcare
records collected from
Hong Kong residents

2323 self-harm
samples and

46,460
counterparts

Node
classification

Shallow embedding
(tandom walk) C-statistic: 0.89 -

https://github.com/mp2893/gram
https://github.com/mp2893/gram
https://github.com/mp2893/gram
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Table 1. Cont.

Reference Disease Predicted Type of Data Data Size Task Methods Prediction Performance Source Code

Yang et al.
(2022) [70] Ischemic heart disease Hospital discharge

records from China 72,668 Node
classification

Shallow embedding
(hand-crafted) AUC: 0.864–0.900

Sun et al.
(2020) [58] Multiple diseases

Real-world electronic
healthcare records:

private patient clinical
record dataset collected

from local hospitals

806 Node
classification

GNN based (GAT
and graph

auto-encoder)

F1-score: 0.457 (all
diseases), 0.442
(rare diseases)

https://github.
com/zhchs/

Disease-Prediction-
via-GCN

(accessed on 3
March 2023)

Wang et al. (2020)
[59] Cancer

Electronic healthcare
records collected from

the US

159 for breast
cancer and 160

for the lung
squamous
cell cancer

Node
classification GNN based (GCN)

Accuracy: 92.80% (for
invasive breast

carcinoma), 80.50% (lung
squamous

cell carcinoma)

-

Gao et al.
(2020) [60] Breast cancer

Electronic health records
from Memorial Sloan

Kettering Cancer Center
1903 Node

classification
GNN based (graph

auto-encoder) Accuracy: 94% -

Lu and Uddin
(2021) [7]

Cardiovascular and
chronic pulmonary

Administrative claim
data from an Australian

insurance company

2610 for the
cardiovascular

and 1056 for the
chronic

pulmonary

Node
classification

GNN based (GCN
and GAT)

Accuracy: 93.49%
(cardiovascular disease),

89.15% (chronic
pulmonary disease)

-

Li et al. (2020) [61] Multiple diseases
A real-world

longitudinal electronic
health records database

7499 Node
classification GNN based (GCN) Accuracy: 81.76% -

Zhu and Razavian
(2021) [62]

Alzheimer’s disease
and multiple

predictive tasks

Electronic health records,
MIMIC-III, and eICU

6028, 6778, and
3250, respectively

Node
classification

GNN based (graph
auto-encoder)

The area under the
precision-recall curve

(AUPRC): 0.4580
(AD-HER), 0.7102

(MIMIC-II), and 0.3986
(eICU readmission)

https:
//github.com/
NYUMedML/

GNN_for_EHR
(accessed on 3
March 2023)

https://github.com/zhchs/Disease-Prediction-via-GCN
https://github.com/zhchs/Disease-Prediction-via-GCN
https://github.com/zhchs/Disease-Prediction-via-GCN
https://github.com/zhchs/Disease-Prediction-via-GCN
https://github.com/NYUMedML/GNN_for_EHR
https://github.com/NYUMedML/GNN_for_EHR
https://github.com/NYUMedML/GNN_for_EHR
https://github.com/NYUMedML/GNN_for_EHR
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Table 1. Cont.

Reference Disease Predicted Type of Data Data Size Task Methods Prediction Performance Source Code

Wang et al.
(2020) [66] Multiple diseases

General hospital data
from two hospitals in

Beijing and
Shenzhen, China

7989 and 4131,
respectively Link prediction Shallow embedding

(hand-crafted)

Mean accuracy:
85.75–89.87 (for the
different schemes

and datasets)

-

del Valle et al.
(2021) [67] Multiple diseases Electronic health records:

DISNET 5147 Link prediction Shallow embedding
(tandom walk) AUC: 0.74 -

Wang et al.,
(2020) [69] Multiple diseases

Electronic health records
from New York
State Medicaid

596,574 Link prediction GNN based (GCN) RMSE: 0.8622 -

Lu and Uddin
(2022) [71] Multiple diseases

Administrative claim
data from an Australian

insurance company
19,828 Link prediction

Shallow embedding
(hand-crafted and
random walk) and
GNN based (GCN)

AUC: 0.7964 to 0.8969. -
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6. Discussions and Future Directions

Disease risk predictive models assist clinicians and other stakeholders in identifying
high-risk patients with few clinical resources, resulting in better individual health outcomes
and lower health expenditures. The dataset, graph design, and feature selections are the
most challenging aspects of establishing prediction models. Compared to electronic health
data, questionnaire-based data may be less robust.

Our research dataset contained studies from 2015 to 2022, which implemented graph
ML models for disease prediction using electronic health data. There has been a steady
increase in the number of studies published on disease prediction using GNN-based models.
The potential for using GNNs in disease prediction has been proven. GNN-based models
may effectively predict outcomes when applied to unstructured grid data. GNN-based
models outperform other models based on the experimental outcomes of these studies, as
outlined in Table 1.

The novelty of this study can be realised from its scope, research design, and reported
results. By reviewing the current literature, we first define the scope of this study. There
is an absence of a comprehensive review of graph machine-learning methods for disease
prediction using electronic health records. This study will fill this gap. There are review
studies for disease prediction based on different machine-learning algorithms (e.g., su-
pervised machine learning [3] and k-nearest neighbour [72]). However, there is no such
study based on graph machine learning in the current literature. Second, focusing on the
perspective of node classification and link prediction tasks would provide a quick update
about the recent advancement in applications of these two tasks for disease risk analysis.
Last but not least, the study summarises the methods used and research trends, which
might be very useful to future researchers in their study design and methodology selection.

6.1. Benefits and Drawbacks

Table 2 outlines the strength and weaknesses of each of the graph ML approaches.
Machine learning, particularly deep learning, succeeds in large-scale health informatics
problems involving data in the Euclidean domain. However, extensive relationship infor-
mation is retained in non-Euclidean graphs, making traditional ML approaches unsuitable
for learning. Graph ML aims to embed graphs in low-dimensional spaces while retaining
graph topology and node attributes. It connects graphs with contemporary ML methods
and has lately attracted the interest of both the machine-learning and health informatics
communities. High-quality benchmark datasets, such as ImageNet [73], are critical in
machine-learning research. However, commonly used benchmarks are difficult to achieve
in disease prediction using the graph machine-learning domain. For example, as indicated
in Table 1, the majority of the research employed real-world electronic records. There are
existing benchmark datasets (for example, MIMIC-III [74]) for disease prediction. However,
they are rarely employed in the field of graph machine learning. On the other hand, most
studies’ models and data are not open source. There are only three papers that provided
the source code and data on GitHub, which makes reproduction difficult. Data privacy is
one of the utmost concerning issues for research studies using healthcare [75]. Due to the
availability of standard de-identification algorithms, health research based on electronic
records is much less prone to privacy fraud.
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Table 2. The advantage and limitations of different types of graph machine-learning models.

Graph Machine-Learning Model Advantage Disadvantage

Shallow embedding
(hand-crafted features)

– The most basic approach, which is
simple to use [13].
– Through feature engineering, this
approach often allows for selecting a set
of good descriptive graph properties [13].

– Computationally expensive [13].
– Not suitable for inductive applications,
since shallow embedding methods are
inherently transductive [50]. They cannot
generate embeddings for unseen data.

Shallow embedding (deep walk based)

– When the data volume is sparse, it
performs well [13].
– It can implement parallel operations
and has high scalability [13].

– Unsuitable to dynamic networks [13]
and inductive applications [50].
– Computationally expensive and
inefficient for large graphs [13].
– Lack of shared parameters [20].
– Cannot use any node features for
modelling [20].

GCNs

– Extend convolutions into
graph-structured data. Unstructured grid
data can be processed using GCNs [34].
– Allows for parameter sharing.
– Applicable both in transductive [34]
and inductive [50] settings.

– A black box technique, which is hard to
interpret [76].
– Suffer from their shallow structure; for
example, only two layers in Kipf and
Welling’s model [34]. However, adding
more graph convolution layers may hurt
the performance [13].

GATs

– Can deal with input of varying sizes
and can direct the model’s attention to
the element most relevant to the task [13].
– More appropriate for inductive
problems [49].

– Computationally expensive and more
difficult to optimise [13].

Graph auto-encoder

– It can develop interpretable latent
representations for undirected
graphs [51].
– Learning numerous layers using a
graph auto-encoder is more efficient than
learning one transformation with
principal component analysis [77].

– The idea of an auto-encoder cannot be
straightforwardly applied, because
graph-structured data are irregular [13].
– Instead of learning as much relevant
information as possible, a graph
auto-encoder learns to capture as much
information as possible. Therefore, some
useful information may be lost [78].

The general disadvantage of neural networks is the black box problem. The internal
operations of sophisticated algorithms are difficult to trace from the outside. It is difficult
to understand how a GNN-based model reaches its conclusion. Another issue is the
computational expense. Even though we are using graphs as the data structure, the
computational cost will rise with each iteration and weight update during the training
process. Each iteration will add more node information from the neighbourhood, increasing
the number of relations and weights to calculate for each node.

6.2. Data Processing

The advancement of high-throughput technologies facilitates the collection of elec-
tronic health data. However, many electronic health data collections exhibit sample category
imbalances. Further, the data source is electronic health data, which are sensitive to data
errors in which data cleaning or imputation is also involved. Currently, the electronic health
records available for research are sparse, and the format is non-standardised. Professional
researchers are needed to gather more accurate data to improve the quality of electronic
health data. Another limitation is the coding accuracy of electronic health data. One of
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the causes of variations in coding practice is the different coding policies and approaches
across different legislative settings worldwide. Understandably, the corresponding health
community has seriously considered this coding diversity problem over time. They are
now closer to a standard coding policy than ever before.

Overall, this research provides comprehensive literature reviews of different graph
ML models and their applications in the predictive disease domain using electronic health
records. Because of the nature of the electronic health record, comparing the accuracy
of different graph ML algorithms was only conceivable when a standard dataset was
available. As a result, we concentrated solely on the literature that employed graph ML
algorithms in disease prediction. According to the findings of this study, GNN-based
models outperformed state-of-the-art ML algorithms. Given the GNN-based models’
exceptional ability to cope with unordered and irregular data and their simplicity and
scalability, graph-based DL will play a more significant role and supplement traditional
ML methods in the coming future [79].

6.3. Challenges and Trends

Based on current promising trends in disease prediction using graph ML approaches,
we expect growth to continue, particularly for GNN-based techniques. We summarise
several ongoing or prospective research directions based on the recent review results. To
begin with, the majority of disease prediction methods used similarity-based approaches.
The homogeneous or heterogeneous network information mostly constitutes the disease
similarity, and multiple association data are extracted using graph ML models. How-
ever, no general standards or schemas exist for the creation of graphical knowledge. The
development of multiple similarity networks from the data, on the other hand, would
have increased the complexity of the graph ML models and led to the black box problem.
Therefore, the methodologies necessary to generate an effective graph are a future research
direction. More emphasis should be placed on incorporating node and edge features into
the modelling processes. Further, GNN-based models can offer better interpretable analysis
and visualisation, because the entities and relationships in these models frequently correlate
to many types of items that exist in the real world [16]. Continued research on interpretabil-
ity in graph machine models remains an important area of future research. Moreover,
in addition to the diseases mentioned above, other diseases such as COVID-19 [80] and
thyroid diseases [81] are currently of concern. It is also worth investigating how to use
graph machine-learning techniques to predict these diseases. Lastly, as the volume of data
grows, networks are not always static. Existing graph ML models were primarily concerned
with static networks, whereas network evolution conditions were mostly ignored. Existing
approaches must be trained again for each timestamp to learn embeddings for a dynamic
network, which is computationally expensive and may not capture the temporal features.
In order to cope with dynamic networks in the field of disease prediction, new graph ML
approaches need to be devised.

7. Conclusions

An overview of various graph ML techniques in disease prediction models based
on electronic health data is presented in this study. We compare different graph ML
models for disease prediction at two different levels: node classification and link prediction.
Specifically, we used the search strategy described in the methods section to extract the
articles included. It is observed that GNN-based models have superior performance in
disease prediction problems compared to traditional ML techniques. As we have shown
in this study, the research in disease prediction using GNNs is growing to suggest we are
on the cusp of a paradigm shift. In addition, due to their ability to cope with unordered
and irregular graph data in the healthcare domain and their simplicity and scalability,
GNN-based models will increasingly play a more significant role in this domain.

On the other hand, although GNN-based models have achieved outstanding per-
formances in many disease prediction tasks, they face black box problems and dynamic
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graph challenges. We believe there is enormous potential to apply GNN-based models in
medical diagnosis, treatment, and disease prediction. Healthcare policymakers might use
the findings of this study to establish future research initiatives, and prospective future
researchers might use this research to obtain an overview of the present research on disease
prediction using graph ML models.
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