
Citation: Lin, M.-Y.; Chang, Y.-M.;

Li, C.-C.; Chao, W.-C. Explainable

Machine Learning to Predict

Successful Weaning of Mechanical

Ventilation in Critically Ill Patients

Requiring Hemodialysis. Healthcare

2023, 11, 910. https://doi.org/

10.3390/healthcare11060910

Academic Editor: Jia Wu

Received: 25 February 2023

Revised: 18 March 2023

Accepted: 19 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

healthcare

Article

Explainable Machine Learning to Predict Successful Weaning
of Mechanical Ventilation in Critically Ill Patients
Requiring Hemodialysis
Ming-Yen Lin 1 , Yuan-Ming Chang 1, Chi-Chun Li 1 and Wen-Cheng Chao 2,3,4,5,*

1 Department of Information Engineering and Computer Science, Feng Chia University,
Taichung 407102, Taiwan

2 Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
3 Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University,

Taichung 402202, Taiwan
4 Department of Automatic Control Engineering, Feng Chia University, Taichung 407102, Taiwan
5 Big Data Center, National Chung Hsing University, Taichung 402202, Taiwan
* Correspondence: cwc081@hotmail.com

Abstract: Lungs and kidneys are two vital and frequently injured organs among critically ill patients.
In this study, we attempt to develop a weaning prediction model for patients with both respiratory and
renal failure using an explainable machine learning (XML) approach. We used the eICU collaborative
research database, which contained data from 335 ICUs across the United States. Four ML models,
including XGBoost, GBM, AdaBoost, and RF, were used, with weaning prediction and feature
windows, both at 48 h. The model’s explanations were presented at the domain, feature, and
individual levels by leveraging various techniques, including cumulative feature importance, the
partial dependence plot (PDP), the Shapley additive explanations (SHAP) plot, and local explanation
with the local interpretable model-agnostic explanations (LIME). We enrolled 1789 critically ill
ventilated patients requiring hemodialysis, and 42.8% (765/1789) of them were weaned successfully
from mechanical ventilation. The accuracies in XGBoost and GBM were better than those in the
other models. The discriminative characteristics of six key features used to predict weaning were
demonstrated through the application of the SHAP and PDP plots. By utilizing LIME, we were able
to provide an explanation of the predicted probabilities and the associated reasoning for successful
weaning on an individual level. In conclusion, we used an XML approach to establish a weaning
prediction model in critically ill ventilated patients requiring hemodialysis.

Keywords: mechanical ventilation; hemodialysis; weaning; machine learning; explanation

1. Introduction

Lung and kidney are two vital and frequently injured organs in critically ill patients,
and the reciprocal impacts between respiratory failure and renal failure may lead to difficult
weaning among critically ill ventilated patients requiring hemodialysis [1,2]. An essential
concern in critical care is the process of weaning from mechanical ventilation. Recent
studies, including our own, have developed a weaning prediction model using the machine
learning (ML) approach [3–5]. A number of clinical studies have found that acute kidney
injury, particularly kidney injury that requires hemodialysis, is a substantial determinant
of difficulty weaning that leads to the prolonged use of mechanical ventilation [6–9]. The
difficulty in weaning among ventilated patients requiring hemodialysis may be attributed
to the hemodynamic instability resulting from complex kidney–lung interactions [10,11].

Currently, the comprehensive hemodynamic and ventilatory parameters can be recorded
by the modern information system in the intensive care unit (ICU) [12,13], but a weaning
prediction model using the aforementioned electronic medical record focused on ventilated
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patients requiring hemodialysis is still lacking. Notably, the interpretability of the ML model
has been recognized as a crucial component for the practical landing of ML models in the
medical field [14]. Our previous studies have demonstrated the use of visualized interpretation
to explore the model. The approach includes categorizing feature importance according to
the clinical domains in the critical care workflow, illustrating the direction and strength of
impacts on the target outcome among key features, and explaining the prediction at the
individual level [4,15,16]. The objective of this study is to develop an extubation prediction
model for critically ill ventilated patients requiring hemodialysis, utilizing an explainable
machine learning approach and a multicentral critical care database.

2. Materials and Methods
2.1. Source of Data

The present study was conducted using the eICU collaborative research database
(eICU-CRD), which consisted of the de-identified health data of approximately 200,000
admissions to 335 ICUs, including medical, surgical, and mixed ICU, at 208 hospitals
across the United States between 2014 and 2015. All tables in the aforementioned database
were de-identified and meet the requirements of the Health Insurance Portability and
Accountability Act (HIPAA) in the United States. Data consisted of static information
(i.e., demographics, severity scores, and comorbidities), daily obtained information
(i.e., laboratory and ventilatory parameters), and data obtained with a high sampling
rate (i.e., hemodynamic parameters). All data were extracted by the Structured Query
Language with PostgreSQL (version 13.3).

2.2. Machine Learning Models

In this study, we utilized four machine learning (ML) models, consisting of extreme
gradient boosting (XGBoost), gradient boosting machine (GBM), adaptive boosting (ada-
boost), and random forest (RF). In general, the four models were often used in classification
and prediction tasks because they have been found to be highly effective and accurate
in many real-world applications. Moreover, these models were tree-based ML models,
which were more likely to be explained and deployed in the information system at the
hospital. The training-to-testing data proportion was set at 80/20 (Supplemental Table S1.
provides details of the parameters in the aforementioned ML models). Our aim was to
predict weaning two days prior to extubation using data from three and four days prior
to extubation. Therefore, both the feature window and prediction window were set at
48 h (Supplemental Figure S1 provides details of the study’s data time frame). To address
concerns about the black box issue in ML models, we used several visualization tools to
explain the ML models at the domain, feature, and individual levels. We computed the
feature importance scores and illustrated the cumulative feature importance in accordance
with the main clinical domains, including the ventilatory parameter, laboratory data, and
hemodynamic data domains. These domains are fundamental in considering weaning in
critical care.

We chose XGBoost in the following experiments due to its high flexibility of XGBoost.
To disentangle the black box issue at the feature level, we utilized PDP and SHAP plots.
These plots demonstrate the strength and direction of impacts on the weaning outcome at
the feature level [17]. The SHAP summary plot provided a comprehensive representation
of the direction and magnitude of correlations between features and weaning outcomes,
while the partial dependence plot (PDP) further illustrated the marginal effect of the feature
on the weaning outcome. To provide an intuitive explanation at the individual level, we
not only listed the weaning probability among individuals, but also used LIME plots to
show the impact of key features on the weaning outcome [18]. In brief, LIME provides a
model-agnostic explanation of the classification model by applying a locally linear model.
The LIME plot illustrates the contribution of key features to the prediction of the weaning
outcome for a selected individual.
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2.3. Statistical Analysis

Here, the continuous data are presented as means ± standard deviations, while
categorical data are shown as frequencies (percentages). To evaluate the difference between
the two groups, two statistical techniques were employed, specifically Fisher’s exact test
and Student’s t-test. The evaluation of the models’ discrimination and accuracy in the
testing sets was conducted using receiver operating characteristic (ROC) curve analysis
and calibration curve, respectively. The Delong test was further employed to evaluate the
performance differences among distinct machine learning models. We also calculated the
accuracy, recall, F1 score, positive predictive value, and negative predictive value in distinct
models. In addition to the ROC curve, we also plotted the calibration curve, which was a
reliability diagram to demonstrate the relative frequency of observed versus the predicted
probability. The Python version used in the study was 3.7.4.

3. Results
3.1. Demographics and Basic Characteristics

A total of 1789 critically ill patients requiring both hemodialysis and mechanical ventila-
tion during ICU admission in the 335 ICUs across the United States were eligible for analyses
(Figure 1). The enrolled subjects had a mean age of 62.1 ± 14.2 years, with 56.9% being male.
Given that we excluded those requiring mechanical ventilation-alone or hemodialysis-alone,
the enrolled subjects showed a high degree of disease severity, as evidenced by their acute
physiology and chronic health evaluation (APACHE) IV score of 83.8 ± 37.2.

Figure 1. Flowchart showing the selection of critically ill ventilated patients receiving hemodialysis from
the eICU Collaborative Research Database. Patients were excluded if they had multiple hospitalizations
or if the current ICU stay was not their first. The number of patients who were successfully weaned from
mechanical ventilation is shown. Abbreviations: eICU-CRD, eICU Collaborative Research Database;
ICU, intensive care unit; (+), successful weaning from mechanical ventilation.
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We found that 42.8% (765/1789) were successfully weaned from mechanical ventila-
tion during ICU admission. There were no significant differences in age and sex distribu-
tions between patients who were successfully weaned and those who were not. However,
those who cannot be weaned from mechanical ventilation had a higher APACHE IV score
(89.9 ± 39.3 vs. 75.6 ± 32.4, p < 0.001) and were less likely to have end-stage renal disease
(22.4% vs. 39.3%, p < 0.001), compared to those with successful weaning (Table 1). With regard
to ventilator parameters, patients without successful weaning received a higher fraction of
inspired oxygen (FiO2) (52.0 ± 20.6 vs. 43.6 ± 16.0%, p < 0.001), positive end-expiratory
pressure (PEEP) (6.5 ± 2.9 vs. 5.5 ± 1.6 cmH2O, p < 0.001), tidal volume VT (489.5 ± 124.5 vs.
472.1 ± 146.7 mL, p < 0.001), peak airway pressure (Ppeak) (21.2 ± 5.3 vs. 19.3 ± 4.8 cmH2O,
p < 0.001), and mean airway pressure (Pmean) (11.1 ± 3.5 vs. 9.7 ± 2.4 cmH2O, p < 0.001) than
those weaned from mechanical ventilation successfully. Furthermore, patients who cannot
be weaned from mechanical ventilation were more likely to have abnormal laboratory data,
lower blood pressure, and a higher heart rate than those with successful weaning.

Table 1. Characteristics of the 1789 critically ill ventilated patients receiving hemodialysis, categorized
by weaning outcome.

All Successful Weaning (−) Successful Weaning (+) p-Value
N = 1789 N = 1024 N = 765

Demographic data
Age (years) 62.1 ± 14.2 62.3 ± 14.1 61.8 ± 14.3 0.393
Sex (male) 1018 (56.9%) 568 (55.5%) 450 (58.8%) 0.156
Body weight (kg) 88.2 ± 27.7 90.4 ± 29.8 85.4 ± 24.3 <0.001
Height (cm) 169.6 ± 11.3 169.8 ± 11.8 169.4 ± 10.6 0.453
End-stage renal disease 530 (29.6%) 229 (22.4%) 301 (39.3%) <0.001
APACHE IV 83.8 ± 37.2 89.9 ± 39.3 75.6 ± 32.4 <0.001
Ethnicity 0.520
African American 254 (14.2%) 144 (14.1%) 110 (14.4)
Asian 17 (1.0%) 8 (0.8%) 9 (1.2%)
Caucasian 1094 (61.2%) 644 (62.8%) 450 (58.8%)
Hispanic 79 (4.4%) 39 (3.8%) 40 (5.2%)
Native American 28 (1.6%) 22 (2.1%) 6 (0.8%)
Other 317 (17.8%) 167 (16.3%) 150 (19.6%)
Ventilatory parameters
FiO2 (%) 48.4 ± 19.2 52.0 ± 20.6 43.6 ± 16.0 <0.001
PEEP (cmH2O) 6.1 ± 2.5 6.5 ± 2.9 5.5 ± 1.6 <0.001
VT (mL) 482.1 ± 134.7 489.5 ± 124.5 472.1 ± 146.7 0.007
Ppeak, (cmH2O) 20.4 ± 5.2 21.2 ± 5.3 19.3 ± 4.8 <0.001
Pmean, (cmH2O) 10.5 ± 3.2 11.1 ± 3.5 9.7 ± 2.4 <0.001
Laboratory data
White blood cell count (count/µL) 15.9 ± 10.2 17.3 ± 11.2 14.0 ± 8.3 <0.001
Hemoglobin (g/dL) 9.9 ± 2.0 10.0 ± 2.0 9.9 ± 1.9 0.587
Platelet (103/µL) 181.8 ± 111.8 172.6 ± 111.2 194.1 ± 111.5 <0.001
Total bilirubin (mg/dL) 2.3 ± 4.5 2.9 ± 5.2 1.6 ± 3.4 <0.001
Lactate (mmol/L) 4.4 ± 4.1 5.1 ± 4.8 3.4 ± 2.7 <0.001
HCO3 (mmol/L) 23.7 ± 4.7 23.1 ± 5.0 24.3 ± 4.2 <0.001
PaCO2 (cmH2O) 44.7 ± 13.5 45.1 ± 14.3 44.2 ± 12.4 0.188
Vital signs and fluid balance
Systolic blood pressure (mmHg) 118.5 ± 28.1 112.8 ± 26.3 126.1 ± 28.6 <0.001
Diastolic blood pressure (mmHg) 61.9 ± 18.3 59.4 ± 16.7 65.3 ± 19.7 <0.001
Mean blood pressure (mmHg) 78.1 ± 22.1 74.1 ± 19.4 83.5 ± 24.2 <0.001
Heart rate (per minute) 90.8 ± 20.8 93.6 ± 21.2 87.1 ± 19.6 <0.001
Respiratory rate (per minute) 17.8 ± 6.3 17.8 ± 6.5 17.9 ± 5.9 0.826
Oxygen saturation (%) 96.6 ± 6.1 96.1 ± 6.5 97.3 ± 5.6 <0.001
Daily input, mL 1938.6 ± 1729.4 2112.7 ± 1832.7 1705.4 ± 1550.2 <0.001
Daily output, mL 1096.6 ± 1677.2 1147.1 ± 1806.6 1029.0 ± 1484.0 0.141
Ultrafiltration, mL −2090.6 ± 1025.4 −2058.4 ± 975.8 −2133.8 ± 1086.8 0.51
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Table 1. Cont.

All Successful Weaning (−) Successful Weaning (+) p-Value
N = 1789 N = 1024 N = 765

Outcome
ICU length of stay (day) 7.8 ± 7.9 9.5 ± 8.6 5.6 ± 6.2 0.118
Ventilator day (day) 6.0 ± 6.2 7.9 ± 7.3 3.4 ± 2.8 0.004
Hospital stay (day) 17.3 ± 16.7 17.8 ± 17.1 16.5 ± 16.1 0.747

Data were presented as mean ± standard deviation and number (percentage). Abbreviations: APACHE IV, acute
physiology, and chronic health evaluation IV; FiO2, the fraction of inspired oxygen; PEEP: positive end-expiratory
pressure; VT: tidal volume; Ppeak: peak airway pressure; Pmean, mean airway pressure; HCO3; Bicarbonate;
PaCO2, partial pressure of carbon dioxide; ICU, intensive care unit.

3.2. Performance of the Four Machine Learning Models

We conducted a comparative analysis of the performance of the four machine learning
(ML) models to forecast successful extubation. Notably, the AdaBoost/random forest mod-
els demonstrated low accuracy, while the XGBoost and GBM models displayed relatively
similar high accuracy, with AUC of 0.83 and 0.81, respectively (as illustrated in Figure 2A).
Comprehensive performance metrics are detailed in the Supplementary Table S2, while
the outcome of the Delong test is presented in Supplementary Table S3. Furthermore, the
calibration curve demonstrated a satisfactory agreement between the predicted values and
observed values in both XGBoost and GBM (as indicated in Figure 2B).

Figure 2. (A). The receiver operating characteristic curve was used to illustrate the performance
of classifiers at various threshold settings, and AUC represents the degree of performance (B). The
calibration curve was a reliability diagram to show the relative frequency of observed versus the
predicted probability. Abbreviations: XGBoost, eXtreme Gradient Boosting; GBM, Gradient Boosting
Machine; AdaBoost, Adaptive Boosting; RF, Random Forest.
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3.3. Global Explanation of the ML Model at the Clinical Domain and Feature Level

The ML model was then examined at various levels, including the clinical domain
level, feature level, and individual level. The top 20 features were categorized by main
domains, based on the clinical workflow for weaning in critically ill ventilated patients.
We found that the proportion of cumulative feature importance of the ventilation domain,
laboratory domain, and vital signs domain were 36.8%, 33.7%, and 10.7%, respectively
(Figure 3). We utilized the SHAP summary plot to demonstrate the impact of the key
features on the probability of weaning (Figure 4). The SHAP plot not only displayed the
direction, but also the strength of each feature’s influence on the weaning outcome. For
example, a lower FiO2, Pmean, level of total bilirubin, and ventilator day were associated
with a higher probability of successful weaning. We further used PDP plots of the six high-
ranking features to provide a more detailed understanding of how each feature impacts the
probability of successful extubation (Figure 5).

Figure 3. Cumulative relative feature importance of top 20 features categorized by main clinical
domains in predicting successful weaning. Feature importance of each feature indicated how much
each feature contributed to the model prediction.
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Figure 4. SHAP to illustrate the one–year mortality prediction model at the feature level. Each point
on the plot represented a Shapley value for one feature and subject. Abbreviation: SHapley Additive
exPlanation (SHAP).

Figure 5. Partial dependence plots of key features (A). FiO2, (B). Pmean, (C). Total bilirubin,
(D). Ventilator day, (E). WBC count. (F). APACHE IV score. The partial dependence plot showed the
marginal effect of each feature on the weaning outcome. Abbreviation: FiO2, the fraction of inspired
oxygen; Pmean, mean airway pressure; WBC, white blood cell; APACHE IV, acute physiology, and
chronic health evaluation IV.
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For example, the patients with FiO2 lower than approximately 40–50% or Pmean lower
than 10–15 cmH2O tended to be successfully weaned from mechanical ventilation. Taken
together, the aforementioned visualized explanations of the clinical workflow for weaning
in critical care at both the domain and feature levels should provide clinicians with an
intuitive interpretation of the ML model.

3.4. Local Explanation of the ML Model for Successful Extubation Prediction
of the Individual Patient

To demonstrate the overall influence of key features on the weaning prediction model,
we utilized LIME plots for two representative patients. The overall predicted probability of
extubation, as well as the incremental effects (green) on successful weaning of variables
and decremental effects (red) on extubation of variables for the two patients, were shown
in Figure 6. For example, in patient-187, the predicted probability for extubation was
relatively low (0.27), due to several unfavourable conditions, involving a high APACHE
IV score (113), long ventilator day (8 days), and receiving sedation, although a relatively
low Pmean (8 cmH2O) and PEEP (5 cmH2O) (Figure 6A). In contrast, the probability of
successful weaning in patient-230 was relatively high (0.73), due to a number of favourable
conditions, including low PEEP (5 cmH2O), low APACHE IV score (43), low white blood
cell count (6900 per mL), and low heart rate (71 per minute), despite the need for sedation
(Figure 6B). The collective explanations offered at the individual level are consistent with
both the feature-level explanations and the clinical workflow in critical care. As such, these
insights can help to significantly mitigate the black box issue associated with this model.

Figure 6. Local interpretable model–agnostic explanations (LIME) of two representative individuals
(A) patient 187; (B) patient 230. LIME was used to visualize the individual predictions among the
top 5 features. The overall predicted probability of extubation was listed on the top, followed by the
variables with incremental effects (green) or decrement effect (red) on successful weaning.

4. Discussion

To predict successful weaning is an essential issue in critically ventilated patients re-
quiring hemodialysis. We established an explainable ML-based weaning prediction model
with a 48-h prediction window using the database of 335 ICUs across the United States. To
increase the transparency of the model and facilitate the practical landing in the near future,
we illustrated the importance of feature importance based on clinical working domains in
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critical care and employed SHAP, as well as PDP, plots for the visualized interpretability of key
features and used LIME for the explanation in individual subjects. This evidence provides the
application of explainable ML for weaning prediction in critically ventilated patients requiring
hemodialysis, and the interpretability along with clinical workflow in critical care should
mitigate the black box issue in the practical landing of medical AI.

The lung and kidney are two frequently injured vital organs in critical illness, and
the concomitant dysfunction of these two organs is associated with significant morbid-
ity and mortality in critically ill patients [2,19]. A number of evidence have shown that
patients with respiratory failure have an approximately threefold increase in the odds of
developing acute kidney injury (OR 3.16, 95% CI 2.32–4.28), and a number of pathophys-
iological mechanisms, including haemodynamic, pulmonary edematous, inflammatory,
immunological, and neurohormonal effects, have been implicated with the kidney–lung
interaction [1,20]. Accumulating studies have identified the deleterious impact of hemodial-
ysis on the weaning outcome in critically ill ventilated patients, including our previous
study focusing on patients requiring prolonged mechanical ventilation (PMV); therefore,
there is a research niche to establish a weaning outcome prediction model focusing on
critically ill ventilated patients requiring hemodialysis [4,6,8]. Given that patients with
renal failure and respiratory failure may be distinct from those with respiratory failure
alone, the weaning model should be established specifically in critically ventilated patients
requiring hemodialysis. For example, hemodialysis is generally applied approximately
every two days; therefore, we used 48-h as the feature window prediction window in
establishing the weaning outcome prediction model in critically ill ventilated patients
requiring hemodialysis.

Intriguingly, we found that low variability, instead of the average level, of oxygen
saturation and systolic blood pressure are crucial predictors for successful weaning from
mechanical ventilation in critically ill ventilated patients. This finding is in line with previ-
ous studies, including our study, showing that glycemic variability was associated with a
poor outcome in critically ill patients with sepsis and coronavirus disease (COVID) [21,22].
Similarly, Park S. et al. recently reported that heart rate variability was associated with
incident intradialytic hypotension among 71 patients with renal failure [23]. Indeed, the in-
tensivist often attempts to keep the vital signs, including oxygen saturation, blood pressure,
and heart rate, within normal range by distinct medications and management. There-
fore, the average level of vital parameters tended to be within the normal range, and the
variability may be more likely to reflect the underlying critical illness.

The finding mentioned above in the present study highlights the practical application
of stream data. The high-frequency stream data, with respect to hemodynamic parameters
in the e-ICU database, enable us to include dynamic parameters in the weaning prediction
model [24]. Notably, modern ICUs have stream data, with regards to hemodynamic
parameters; however, the majority of studies applying AI models in critical care mainly
used static, instead of dynamic, data to establish the prediction model, given that stream
data might potentially lead to difficulty in data processing [24]. In line with the 90-day
mortality prediction model proposed by Thorsen-Meyer et al. [24], we demonstrated the
feasibility of using a surrogate dynamic parameter, such as the variability of oxygen and
blood pressure, of stream data within a certain time period to establish the model, and this
approach should mitigate the concern of real-world application of stream data. Indeed, a
similar approach has been employed in critical care. For example, the variation of pulse
pressure (PPV) and variation of stroke volume (SVV) have been widely applicated as
dynamic parameters for fluid resuscitation in patients with sepsis [25–27].

To mitigate the black box issue and to facilitate human–artificial intelligence (AI) team-
work, the interpretation of the ML model is currently an essential issue in the application of
ML in the medical field [14,28]. In the present study, we presented the feature importance
of clinical domains, including ventilation parameters, laboratory data, and vital signs, and
these domains are exactly in accordance with the clinical workflow of decision-making,
with regard to weaning by the intensivist (Figure 3). In addition to the interpretation at the
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domain level, we further specified the PDP that allows the physician to realize the cut-point
of the six top-ranking features (Figure 4). For example, we found that total bilirubin higher
than 2 mg/dL, which is exactly the criteria to define gastrointestinal dysfunction in SOFA
score, was associated with a decrease of weaning probability (Figure 5C) [29]. Similarly,
the count of white blood cells higher than 15,000 may indicate the underlying infectious
or inflammatory conditions and is associated with a reduced probability of weaning from
mechanical ventilation (Figure 5E). Collectively, we think the visualized interpretation
at the feature level by PDP should further mitigate the black box issue and facilitate the
feasibility of human–AI teamwork.

The black box issue impedes practical implementation in healthcare applications;
therefore, the human-understandable explanation is currently a growing research area
to provide an explainable, trustable, and traceable intelligent model in medical fields,
including the prediction of coronavirus disease (COVID) infection [30,31]. We used the
real-world dataset in this study to establish an explainable ML-based weaning prediction
model in critically ill ventilated patients requiring hemodialysis. Similarly, Rotami M.
et al. recently used real-world blood test data and an explainable ML-based approach
to predict patients with a COVID diagnosis [30]. In detail, they exploited graph analysis
for feature visualization and employed an explainable decision forest classifier to predict
patients with COVID [30]. As shown in the aforementioned study and the present study,
the human-understandable explanation consists of not only global explanations aiming
to explain the whole model, but also local explanations focusing on a small area of the
individual sample. We think the global explanation may enhance the trust in the ML model,
and the local explanation may incorporate the ML model into the workflow of healthcare.

The goal of an AI-based decision support system is to provide individualized sugges-
tions for patients with complex critical illnesses, such as critically ill ventilated patients
requiring hemodialysis in the present study [31]. Nevertheless, the design of the deci-
sion support system should be in line with the workflow in critical care settings for the
practical application of the mode. For example, the prediction window is two days in the
present study, and we think the adequate prediction window enables the physician to start
the spontaneous breathing trial, as well as to make the final decision regarding weaning
(Supplemental Figure S1) [32]. Therefore, the proposed ML-based prediction should facili-
tate the weaning from the mechanical ventilator in critically ill ventilated patients requiring
hemodialysis. Additionally, the established model used the real-world data collected dur-
ing the daily practice at the 335 ICUs, and the interoperability for implementation should
be less likely to be a concern. Another issue for the practical application, also called landing,
is the user interface in real-world conditions [31]. Given that the focus of this study is
the interpretability of the ML-based model, both the global and local explanations can be
illustrated. We think the understandable model, through enhancing model explainability,
should have a high possibility of landing in the future.

There are limitations that merit discussion. First, the number of enrolled subjects
was relatively small. Due to merely 5–10% of critically ill ventilated patients requiring
hemodialysis, the number of participants in studies focusing on patients with concomitant
dysfunction of these two organs tends to be small. Given that the proportion of patients
requiring mechanical ventilation and hemodialysis in critically ill patients in this study was
similar to the data in previous studies, we think the concern of generalization of the findings
in the present study should be at least partly mitigated. Second, the retrospective nature of
this study and further prospective studies are warranted to validate our findings. Third,
some hemodialysis-relevant data, such as intradialytic hypotension, were not included in
the dataset. Fourth, the technology readiness level (TRL) of the weaning prediction ML
model among critically ill ventilated patients requiring hemodialysis should be TRL-4 with
model development [33], and more efforts, including external validation and establishment
of an interface for real-time model testing, are warranted. However, we think the feasibility
of the practical application of our findings might be high, due to the fact that the variables
used for model development in this study were retrieved from the structured and real-world
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electronic medical records in the ICUs across the United States. Fifth, the proposed model
could be further clarified by the employment of the ablation experiment [34]. However,
the ablation approach might be at least partly unintuitive for the intensivist, given that
critical care relevant variables are deemed critical parameters; hence, we chose to provide
the cumulative feature importance of main clinical domains in critical care in the present
study (Figure 3).

5. Conclusions

In conclusion, we used a multi-center dataset and explainable ML approach to establish
a weaning prediction model in critically ill ventilated patients requiring hemodialysis. We
found that XGBoost outperformed the other ML models for predicting successful weaning.
By visualizing the features that contributed to individual-specific predictions, in accordance
with the clinical workflow of critical care, we believe our explainable approach can help
mitigate the black box issue and promote the adoption of our proposed model in the near
future. Future prospective research is warranted to translate the explainable ML models
into a practical decision support system in critical care.
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