
Citation: Ansari, R.M.; Harris, M.F.;

Hosseinzadeh, H.; Zwar, N.

Application of Artificial Intelligence

in Assessing the Self-Management

Practices of Patients with Type 2

Diabetes. Healthcare 2023, 11, 903.

https://doi.org/10.3390/

healthcare11060903

Academic Editor: Joaquim Carreras

Received: 26 February 2023

Revised: 16 March 2023

Accepted: 17 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

healthcare

Article

Application of Artificial Intelligence in Assessing the
Self-Management Practices of Patients with Type 2 Diabetes
Rashid M. Ansari 1,* , Mark F. Harris 2, Hassan Hosseinzadeh 3 and Nicholas Zwar 4

1 School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales,
Sydney, NSW 2052, Australia

2 Centre for Primary Health Care and Equity, University of New South Wales, Sydney, NSW 2052, Australia
3 School of Health and Society, Faculty of Science, Medicine and Health, University of Wollongong,

Sydney, NSW 2522, Australia
4 Faculty of Health Sciences and Medicine, Queensland University, Brisbane, QLD 4072, Australia
* Correspondence: rashid.ansari@uqconnect.edu.au

Abstract: The use of Artificial intelligence in healthcare has evolved substantially in recent years.
In medical diagnosis, Artificial intelligence algorithms are used to forecast or diagnose a variety of
life-threatening illnesses, including breast cancer, diabetes, heart disease, etc. The main objective of
this study is to assess self-management practices among patients with type 2 diabetes in rural areas
of Pakistan using Artificial intelligence and machine learning algorithms. Of particular note is the
assessment of the factors associated with poor self-management activities, such as non-adhering to
medications, poor eating habits, lack of physical activities, and poor glycemic control (HbA1c %).
The sample of 200 participants was purposefully recruited from the medical clinics in rural areas of
Pakistan. The artificial neural network algorithm and logistic regression classification algorithms
were used to assess diabetes self-management activities. The diabetes dataset was split 80:20 between
training and testing; 80% (160) instances were used for training purposes and 20% (40) instances were
used for testing purposes, while the algorithms’ overall performance was measured using a confusion
matrix. The current study found that self-management efforts and glycemic control were poor among
diabetes patients in rural areas of Pakistan. The logistic regression model performance was evaluated
based on the confusion matrix. The accuracy of the training set was 98%, while the test set’s accuracy
was 97.5%; each set had a recall rate of 79% and 75%, respectively. The output of the confusion
matrix showed that only 11 out of 200 patients were correctly assessed/classified as meeting diabetes
self-management targets based on the values of HbA1c < 7%. We added a wide range of neurons (32
to 128) in the hidden layers to train the artificial neural network models. The results showed that the
model with three hidden layers and Adam’s optimisation function achieved 98% accuracy on the
validation set. This study has assessed the factors associated with poor self-management activities
among patients with type 2 diabetes in rural areas of Pakistan. The use of a wide range of neurons
in the hidden layers to train the artificial neural network models improved outcomes, confirming
the model’s effectiveness and efficiency in assessing diabetes self-management activities from the
required data attributes.

Keywords: Type 2 diabetes; artificial intelligence; self-management; glycemic control HbA1c

1. Introduction

Diabetes mellitus is one of the leading causes of chronic health problems globally [1].
The International Diabetes Federation (IDF) estimated a worldwide population of 463 million
diabetics in 2019 [2], with type 2 diabetes being more prevalent in adults aged 40–59 [2,3].
With a diabetes incidence rate of 19.9% among people aged 20–79, Pakistan is among the
world’s top-10 countries for diabetes cases [2].

Type 2 diabetes is a significant public health issue in Pakistan, particularly among
the population aged 40–60. This demographic group is at high risk for type 2 diabetes
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because its members are more likely to be overweight or obese, physically inactive, and
have unhealthy eating habits [1,2]. In addition, the social and health disparities of the
region’s population [3–6] contribute to the high prevalence of diabetes and obesity.

The literature considers self-management to be the cornerstone of diabetes care [7].
Several studies [8–10] have highlighted the importance of diabetes self-management and its
association with improved diabetes knowledge, responsible behaviour of patients towards
their disease, and improved clinical outcomes.

Diabetes self-management (DSM) plays an essential role in controlling and preventing
the disease’s complications. Nonetheless, patients often do not adhere to self-management
recommendations [1–3], which is extremely concerning. In the middle-aged population of
Pakistan, adherence to recommendations and barriers poses significant challenges [4–6]
due to unhealthy eating patterns and lack of physical activity [6].

In diabetes self-management, AI-based techniques are incorporated into patient self-
management tools, clinician tools, and healthcare systems. It has been demonstrated that
AI-powered solutions have a significant impact on patient comorbidities, lifestyle choices,
and healthcare center visits, both in terms of frequency and duration [11].

In the case of diabetes self-management, m-health devices already enabled patients to
track and collect information regarding their blood glucose, diet, and exercise. Machine
learning can now be applied to patient data to generate data-driven, patient-specific
interventions [12].

As a result, machine learning has the potential to empower patients by providing them
with otherwise-unavailable information, assisting them in making data-driven decisions
about their health, and nudging them towards adopting healthier lifestyle habits [13].

Data-driven AI applications, especially in healthcare, have revolutionised medical
research in several areas, such as disease diagnosis, image processing, and disease pre-
diction. Deep learning models, recurrent neural networks, and genetic algorithms play
an important role in Artificial Intelligence applications. AI is ideal for detecting, ana-
lyzing, and predicting heart disease [14], diabetes complications [15], breast cancer [16],
hepatitis B [17], and COVID-19 severity [18].

In this article, the prediction paradigm for successfully assessing diabetes self-management
is considered using a dataset of 200 middle-aged type 2 diabetes patients in rural Pak-
istan. Typical regression models may provide a solution but assume statistical indepen-
dence and interdependencies of input and output variables, homogeneity of continuation,
and external factors. However, intricate physiological traits usually offend or discredit
these assumptions.

Models are being designed to improve diabetes self-management. Various models
and programmes have been established to improve medical research, but their testing is
incomplete and inadequate, making them challenging to perform and manage. Since AI
has been used in medical research and analytical investigations, this research presents a
well-organised and developed artificial neural network model that assesses type 2 diabetes
self-management activities and behaviours.

This work applies AI models in the diagnostic strategy to measure diabetes self-
management behaviours by selecting criteria related to self-management. AI can create and
apply such models, which are more useful, efficient, and effective in numerous medical
disciplines, such as analysis, diagnosis, and prediction; this development could help
professionals and patients alike [19]. ANNs mathematically represent the human brain
system, showing the power of training and generalisation. Most ANN approaches use
nonlinear functions with complicated or unknown input feature links [19].

A neural network is composed of neuron layers. Each neuron in the ANN model is
directly linked to neurons in the other layers via weighted values [19,20]. The weighted
permutation of multiple input signals that may contain different computations influences
the input and output of each neuron. These neurons determine the threshold value by
applying the transfer function to inputs with weights. If the threshold is exceeded, the
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activation function transmits the signal to the following neuron. Important ANN functions
include prediction, perception classification, pattern recognition, and training [20].

However, ANN development for medical applications, such as classifications, cluster-
ing, data optimisation, and input-based prediction, is ongoing; therefore, it is important
to understand that, when they present predictions, perception classifications, and pattern
recognitions along with training [20,21], ANN models include input layers, hidden layers,
output layers, neurons, and their interactions. Few features hinder training, but several
reduce network processing power [21]. This article used ANN and machine learning algo-
rithms such as logistic regression to choose attributes, evaluate data, and assess diabetes
self-management activities.

2. Material and Method
2.1. Dataset Description

Al-Rehman Hospital’s primary healthcare and diabetes management clinic in Abbot-
tabad, Pakistan, recruited 200 patients with diabetes (250 patients were approached). This
group comprised poorly managed type 2 diabetes patients aged 40–60 years old (Table 1).
This study included patients with Hemoglobin (HbA1c) > 7% (Hemoglobin is a simple
blood test that measures average blood sugar levels over the past three months) and ex-
cluded those with liver, renal, or thyroid issues. All 200 patients gave informed consent
and completed a questionnaire thereafter.

Table 1. Patients’ characteristics and their association with glycemic control (n = 200).

Parameters Male
(n)

Female
(n) Mean ± SD p-Value Total

Age (in years) 51 53 51.40 ± 6.42 0.25 52
<60 years 85 87 172
≥60 years 15 13 28

Diabetes Patients 100 100 0.20 200
Marital Status

Single 15 5 20
Married 75 85 160
Divorced 10 2 12
Widowed 0 8 8
Education
<grade 9 16 50 66

High School 65 40 105
College degree 10 7 17

Professional 9 3 0.70 12
Employment

Full/part time 75 65 0.05 140
Unemployed 10 35 45

Retired 15 0 15
Diabetes Duration

<8 years 36 42 7.72 ± 2.38 78
≥8 years 64 58 8.1 ± 2.30 0.048 122

HbA1c (%)
Uncontrolled (>7%) 91 91 9.03 ± 1.52 0.050 182
Controlled (≤7%) 9 9 18

Notes: n = number of patients; SD = standard deviation; p-values are two-tailed t-test values.

2.2. Data Visualization

Figure 1 shows distribution of the variable “Age_year”. The minimum value is
40 years and maximum is 65 years. The verticle line divides the surface area between
Q2 quartile (52 years) and Q3 quartile (56 years). Figure 2 provides dustribution of the
variable “Body mass index” with minimum value of 16.9 kg/m2 and maximum value of
56.5 kg/m2. Figure 3 shows dustribution of the variable “DiabetesTime” with minimum
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and maximum values bewteen 2 years to 13 years. Figure 4 shows the distribution of the
variable HbA1c (%) with minimum and maximum values between 6.8% to 13.2%. Figure 5
displays the distribution of the variable “Execise” with minimumand maximum values
between 3 to 5 dyas/week. Figure 6 shows the distribution of variable “income”.
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2.3. Aims and Objective

The main objective of this work was to prepare and carry out diabetes self-management
(DSM) assessments for patients with type 2 diabetes in rural areas of Pakistan. The simpli-
fied proposed modelling approach is shown in Figure 7.
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Figure 7. Proposed modelling approach—modified from the source: Contreras & Vehi [22].

The raw dataset includes the input variables used in the main algorithm, such as age
(years), BMI (kg/m2), exercise, diet, blood glucose testing, medication, formal education,
diabetes duration (time), and HbA1c levels (%). The outcome variable is diabetes self-
management (DSM). DSM is a function of HbA1c % in the analysis. The lower the levels of
HbA1c%, the better the DSM activities. We excluded HbA1c levels (%) as an input variable
in our analysis to avoid collinearity since DSM is a function of HbA1c.

2.4. Data Pre-Processing

Data pre-processing is an important part of the data analysis; before model evaluation,
many strategies could pre-process the dataset [23,24]. In this study, the preprocessed output
matched expectations, and pre-processing responses measured learning rate, momentum,
and time, fulfilling the acceptance requirement of the transformed data.

The dataset was imbalanced but had no missing values; therefore, we used SMOTE
(Synthetic Minority Oversampling Technique) to fix it [25]. In the proposed methodology or
modelling approach shown in Figure 7, we normalised the diabetes dataset, and used 80%
for validation and training and 20% for testing. Python programming was used to develop
the model. We have applied the selected ANN algorithms and optimisation techniques to
obtain the best prediction model to assess diabetes self-management activities.

3. Results
3.1. Algorithms Used for Classification

We used AI algorithms to classify the dataset. The logistic regression algorithm was
used as a baseline classification algorithm. Logistic regression is the most suitable method
for the analysis of binary classification tasks with the high diagnostic ability [14]; ANN
was used as the main algorithm and accommodated several features, such as age, exercise,
diet, blood glucose testing, formal education, diabetes duration, and HbA1c levels. Logistic
regression models have been employed to solve this type of problem and enhance patients’
diabetes self-management assessment [26]. These models’ basis usually includes inference
to statistical independence, the interdependencies of their input and output variables,
uniformity of continuity, and presence of external variables.

Logistic Regression Analysis

The logistic regression model used is represented as follows:

log(π/(1 − π)) = α + β1x1 + β2x2 . . . . . . . . . . + βkxk (1)

where

• π = Probability of response variable or dependent variable
• β1 = Log of without exposure variable
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• X = Independent variables (x1, . . . . . . .., xk, are different predictors)
• β2 = Change in each unit as an increase in the independent variable or exposure var
• α = the intercept alpha
• Log is a link function

Logistic regression analysis was carried out using Python Programming, splitting
the data into the training set (80%) and test set (20%). The logistic regression model’s
performance was evaluated based on the confusion matrix. The accuracy of the training
set was 98%, while the test set’s accuracy was 97.5%; each set had a recall rate of 79%
and 75%, respectively. The confusion matrices for the training and test sets are displayed
in Figures 8 and 9, respectively. Figure 10 shows the results of the Receiver Operating
Characteristics (ROC) curves for training and test data. The area under the curve (AUC) is
0.96 on training and test sets.
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For the training set, we correctly assessed/classified that the patients do not fol-
low DSM.

TP = True positive = 146—we correctly predicted/assessed/classified that these pa-
tients do not meet Diabetes Self-management (DSM) targets.

TN = True negative = 11—we correctly predicted/assessed/classified that these pa-
tients meet DSM targets based on the values of HbA1c < 7%.

FP = False positive = 03—we incorrectly predicted/assessed that these patients do not
meet DSM targets.

FN = False negative = 0—we incorrectly predicted/assessed that these patients meet
DSM targets.

The confusion matrix for the test set output can also be elaborated.

• Logistic Regression model gave a generalised performance on training and test set.
• ROC-AUC score of 0.96 on training and test set was promising.

3.2. Artificial Neural Network

Establishing a neural network model that accurately assesses patient self-management
activities was the main objective of this study. In this study, the network was trained using
ANN algorithms. We categorised the 200-patient dataset according to the requirements.
Training, validation, and test data that were needed for 200 diabetes patients were divided
into a ratio of 80:20 between training and testing; 80% (160) of cases were utilised for train-
ing, while 40 instances were selected for testing purposes. The performance of algorithms
was evaluated using the confusion matrix.

The other AI-based algorithms, such as support vector machine (SVM) and Naïve
Bayes, are the algorithms used most frequently in previous studies to predict and evaluate
diabetes management practices [25–27]. These algorithms find hidden data by balancing
processing time and accuracy [26,27].

In this study, the process of using ANN algorithms to forecast, validate, and test the
network to improve diabetes patients’ self-management is displayed in Figure 11. The
framework requires the network to collect 200 diabetes patients’ self-management data.
Due to noise or null data, various features (diet, exercise, glucose testing, age, formal
education, diabetes duration, HbA1c levels, etc.) in the dataset may confuse the results. To
minimise errors, we carefully selected these features using the data-pre-processing.
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ANN architecture varies between classifiers, exhibiting underlying algorithm pa-
rameters that are dependent on the classifier that is required to train the network. The
ANN structure contained an input layer and three hidden layers. Each hidden layer was
equipped with an activation function and neurons. Similarly, the second and third hidden
layers were applied with different neurons. Finally, we have the output layer, which had
only one neuron. Specific applications were also applied to incorporate the optimisation
techniques when developing the model within the framework of ANN.

3.3. Artificial Neural Network Models
3.3.1. ANN Model_1 with SGD Optimiser

ANN Model_1 was developed using the SGD (Stochastic Gradient Descent) optimiser
technique [29,30].

Gradient descent is a well-known optimisation strategy in the field of machine learn-
ing and deep learning; the ANN model_1 optimiser follows this data optimisation ap-
proach [29]. Instead of consuming the entire dataset in each iteration, the SGD optimiser
randomly selects a small subset of samples [30].

We employed the ReLU activation function and 128 neurons in the first hidden layer.
With the addition of non-linearity provided by a rectified linear unit (ReLU), we used a
deep learning model to avoid the problem of vanishing gradients, ensuring that the positive
half of the argument was properly interpreted.

In the second layer, we added 64 neurons with the ReLU activation function. The
output layer had one neuron as well as sigmoid as an activation function. Bu having the
activation function of a neuron as a sigmoid function, we ensured that the output of this
unit consistently falls within the range of 0 and 1, regardless of the state of the neuron. In
addition, because the sigmoid is a non-linear function, the output of this unit was be a
non-linear function of the weighted sum of the inputs. The accuracy was 90% on the model
evaluation of the test data.
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Though the model was overfitting, the training loss was smooth; overall, it decreased
in correlation with an increase in the epochs (Figure 12). The confusion matrix (Figure 13)
of the model shows that only 36 patients met the DSM targets.
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The confusion matrix in Figure 10 shows that 36 patients with type 2 diabetes were
correctly classified by the neural network classifier as following DSM targets. None of the
type 2 diabetes patients was misclassified by the neural network classifier.

3.3.2. ANN Model_2 with Adam Optimiser

The Adam optimiser technique was used to create and use ANN model_2 (Adaptive
Moment Estimation). This is an efficient method for stochastic optimisation that only needs
first-order gradients and does not need much memory. Estimates of the first and second
moments of the gradients are used to calculate the individual adaptive learning rates for
each parameter [31].

We added 128 neurons in the first hidden layer and used the ReLU activation function.
In the second layer, we added 64 neurons with the ReLU activation function; in the third
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hidden layer, we added 32 neurons. The output layer contained only one neuron and used
sigmoid as an activation function. The accuracy was 100% on the model evaluation of the
training and test data. The model was overfitting (as may be observed from Figure 14), but
the model accuracy was promising (as shown in Figure 15).
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Table 2 provides a performance comparison for different classification techniques.

Table 2. Performance of different classification techniques.

Classification Accuracy Precision Recall F1 Score

Logistic regression 98% 97.3% 79% 88%
Artificial neural

network
SGD optimizer 90% 74% 74% 74%

Adam optimiser 100% 100% 100% 100%
RMSprop 84% 82% 81% 82%
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The ANN model using Adams’ optimiser outperformed all other classification and
optimisation techniques. The main reason for this outcome is that, similar to the RMSpropr
optimiser, the Adam optimiser uses squared gradients to scale the learning rate; it also takes
advantage of momentum by moving the average of the gradient in the same way as the
SGD optimiser [32]. The criteria of comparison were set to obtain the high score of Recall
of the model. The higher the score of Recall, the lower the probability of false negatives.
Other scores, such as accuracy and F1, were also considered for comparison purposes.

4. Discussions

We used the SGD optimiser technique in this study, which has proved itself as an effi-
cient and effective optimisation method central to many machine learning solutions, such
as recent advances in deep learning [33,34]. The accuracy of the ANN model using SGD op-
timiser was 90% on the model evaluation of the test data. The model predicted/assessed by
the use of a confusion matrix that only 36 patients met the diabetes self-management targets.

In this study, we also employed the Adam optimiser, a method for efficient stochastic
optimisation that requires first-order gradients and minimal memory. Using estimations for
the first and second moments of the gradients, the approach computes individual adaptive
learning rates for various parameters. Our method combined the benefits of two prominent
methods within Adam optimisation in online and non-stationary environments [35,36].,
The ANN model utilizing the Adam optimiser to examine training and test data with
100% accuracy.

In this study, AI evaluated type 2 diabetes patients against a four-part diabetes self-
management criteria: the practice of diet control, regular physical activity, medication
adherence, and glucose monitoring (keeping HbA1c < 7%) [10]. DSM is key to ensuring
effective control of serum glucose, which reduces the development of diabetes-related
comorbidities [37].

AI analyses revealed the majority of the study’s participants complied with taking
medication prescribed by their physician. This high rate of medication adherence was also
observed in other studies carried out in Pakistan by Khattab et al. [37] and Ahmad et al. [38].
The study conducted on the US population revealed that just 64% of patients complied
with medication adherence [39]. While medication adherence is associated with effective
diabetes self-management [40], this study’s high medication compliance rate relative to
other DSM behaviours suggested that the majority of patients with type 2 diabetes chose to
take medicines rather than adjust their behaviour. This behaviour is a major obstacle to
satisfying the diabetes self-management requirements and maintaining a healthy lifestyle.

The application of AI revealed that diet control was another important feature. This
assessment was in agreement with a qualitative study carried out by Ansari et al. [41],
which showed that a very low percentage of participants practiced diet control [42]. Other
previous research [43,44] identified lack of motivation, the frequency of social meetings,
and the time and energy required for meal preparation as factors that impeded diet control.
A previous study also demonstrated that counselling on diet control would improve
respondents’ comprehension of its significance, resulting in a significant decrease in total
HbA1c levels and BMI [29].

Few participants engaged in 30 min of physical activities for at least five days per
week, as indicated by Jafar et al. [5] and Ansari et al. [6]. However, research conducted in
the United States recorded a somewhat greater prevalence of physical activity [45]. The
obstacles preventing patients with type 2 diabetes from engaging in physical exercise may
include inclement weather, such as hot or rainy days, and staying at home due to a lack of
available walking space.

As nearly half of the respondents were over the 60 years old, many type 2 diabetes
patients may not be able to conduct the suggested regular exercise due to poor health; age
may also contribute to this low performance.

The ANN model used a confusion matrix to predict/assess that only 36 patients met
the DSM targets. This shows that blood glucose monitoring was not practiced regularly
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by the participants. The patients with uncontrolled glucose levels (HbA1c > 7%) were less
likely to undertake appropriate diabetes care activities than those with controlled glucose
levels (p = 0.050). The main reason may be the high cost of glucose testing strips, which is
beyond the reach of participants with low incomes.

Longer duration of diabetes was associated with poor glycemic control, though this
result was not statistically significant (p = 0.422). This result is in agreement with other stud-
ies that reported a similar association between long-duration diabetes and poor glycemic
control [46]. This relationship may stem from the progressive impairment of insulin secre-
tion with time due to β-cell failure, which does not respond to diet or other oral agents [46].
The other independent variables related to patients’ characteristics, such as age, formal
education, and body mass index, had little impact on their diabetes self-management
activities (p > 0.05). However, the lack of a correlation between glycemic control and age
is not consistent with the findings in other studies, which reported that younger age was
associated with poor glycemic control [45,46].

4.1. Clinical Perspectives

• Data-driven precision care by AI will usher in a new era in the treatment of diabetes.
• The study has altered diabetes prognosis and self-management, which may contribute

to reducing the worldwide prevalence of type 2 diabetes.
• Predictive risk stratification of populations, improved decision-making, and self-

management are all made possible by artificial neural networks and machine learning.
• This research study will provide benefits to healthcare professionals in decision-

making and remote monitoring of diabetes self-management activities. The precise AI
application will contribute to reducing the prevalence of complications from type 2
diabetes. The AI applications will be deployed in other rural areas of Pakistan and
may be extended to other countries in the sub-continent.

4.2. Strengths and Limitations

• The strength of this study is that by assessing diabetes self-management activities, AI
will guide patients to improve their diabetes self-care and help health professionals in
decision making and remotely monitoring patients’ activities.

• The limitation of this study is that AI poses a risk of de-skilling general practitioners
due to their dependency on it. This may result in a vicious circle of inaccuracy because
AI requires periodic refining by specialists [47].

• The ongoing cost, availability, and implementation of AI are obstacles to the use of
AI in rural areas of Pakistan. Interoperability has been cited as a typical barrier to
adopting devices and apps in diabetes self-management [47].

• The other limitation is the relatively small sample size of just 200 patients with type
2 diabetes. In diabetes self-management, a recurring difficulty is the dearth of data
needed to develop rational and precise algorithms. The results of this study may not
be generalised to other regions. The longer the length of future studies’ training sets,
the more accurate and applicable to other regions their results will be. For digital
applications to design meaningful solutions, datasets will need to be increasingly
developed and organised. Concerns over security, data privacy, and regulatory issues
hinder the implementation of technology in diabetes self-management.

• Using retrospective data, current AI models and applications in diabetes treatment
have been validated. The prospective confirmation of these technological break-
throughs has the potential to automate diabetes care [48]. To include digital biomark-
ers and data from applications, monitors, and activity trackers, endpoints in clinical
research will need to be reformulated.
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5. Conclusions

This study assessed the factors associated with poor diabetes self-management activ-
ities among type 2 diabetes patients in rural areas of Pakistan. The use of a wide range
of neurons in the hidden layers to train the artificial neural network models improved
outcomes, confirming the model’s effectiveness and efficiency in assessing diabetes self-
management activities. The optimization techniques used in ANN models identified
four important features related to patients’ self-management activities. AI application
revealed that the majority of diabetes patients heavily relied on medication adherence to
manage their disease, rather than adjusting their self-management behaviour. Resultantly,
it will remain challenging for healthcare professionals to encourage rural patients to adopt
healthy lifestyles.

In future studies, AI may be extended to develop specific web-based applications to fa-
cilitate patients’ self-management activities; these applications’ features map include advice
on diet control, planning physical activity routines, and glucose monitoring and control.
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