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Abstract: Similar to short-term memory, working memory cannot hold information for a long period
of time. Studies have shown that binaural beats (BB) can stimulate the brain through sound, affecting
working memory function. Although the literature is not conclusive regarding the effects of BB
stimulation (stim) on memory, some studies have shown that gamma-BB stim (40 Hz) can increase
attentional focusing and improve visual working memory. To better understand the relationship
between BB stim and memory, we collected electroencephalographic data (EEG) from 30 subjects
in 3 phases—a baseline, with gamma-BB stim, and control stim—in a rest state, with eyes closed,
and while performing memory tasks. Both EEG data and memory task performance were analyzed.
The results showed no significant changes in the memory task performance or the EEG data when
comparing experimental and control conditions. We concluded that brain entrainment was not
achieved with our parameters of gamma-BB stimulation when analyzing EEG power spectral density
(PSD) and memory task performance. Hence, we suggest that other aspects of EEG data, such as
connectivity and correlations with task performance, should also be analyzed for future studies.

Keywords: binaural beats; power spectral density; working memory

1. Introduction

Memory functions are associated with oscillations of electrical activity in the brain
and can be classified into long and short-term. Working memory (WM) is not completely
distinct from short-term memory and refers to the temporary storage and manipulation of
small amounts of information over brief periods of time [1]. Literature suggests that cortical
theta, alpha, and gamma bands play a mechanistic role in multiple aspects of memory.
This role includes the representation and offline maintenance of events and sequences of
events, the assessment of novelty, the induction of plasticity during encoding, and the
consolidation and retrieval of stored memories [2].

Neural synchronization in the gamma frequency is often linked to short-range com-
munication within brain areas, while long-range communication relates to neuronal phase
locking in slower frequency bands [3,4]. In line with this characteristic, increased gamma-
band power improved the top-down control of feature bindings [5].

As a noninvasive brain stimulation method, binaural beats (BB) are characterized as a
slight difference of frequencies played simultaneously to the ears, stimulating a brain wave
in a frequency proportional to the difference of frequency. For example, if 400 Hz plays in
the right ear and 440 Hz on the left, the brain will be entrained in 40 Hz. Oster [6] applied
this concept to medical conditions in 1973.

BBs are referred to as central beats because the interaction of the auditory stimuli
most likely occurs in the superior olivary nuclei in the brainstem [7]. Neurons in the
brainstem are sensitive to phase shifts between both ears. When these phase shifts occur,
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the brainstem neurons fire action potentials that correspond in rate to the phase difference
between both ears [8].

Wang et al. [9] showed that listening to 15 Hz binaural beats is a proven intervention
for mental fatigue that can contribute to maintaining working memory function. Moreover,
participants who underwent a 12-min BB stimulation of 9.55 Hz significantly increased their
working memory capacity [10]. Another controlled study showed that listening to 15 Hz,
BB increased response accuracy on a visual-spatial working memory task [11]. However, in
one study, healthy participants listened to a 7 Hz (theta) BB for 30 min, and the immediate
recall memory was significantly decreased in the experimental condition compared to the
control condition [12].

A variety of cognitive functions, among them memory, involve gamma-band activity.
Moreover, gamma frequency is related to the binding process within sensory processing,
attentional enhancement of sensory input, and both working and long-term memory [13].
The frequency of gamma in synaptic transmission is related to inhibitory (GABAergic) and
excitatory (glutamatergic) activity [14]. The mechanism for the selective transmission of
sensory information across different brain areas seems to be based on gamma frequency [15].
Gamma also works as a neuroprotective, influences nonneuronal cell types, and affects
synaptic plasticity, learning, and memory [16]. In patients with Alzheimer’s disease (AD),
interareal gamma coherence and gamma power are involved [17]. The same occurred with
mice models of AD, which presented reduced abnormal gamma activity [18].

Regarding Mujib et al. [19], Jirakittayakorn & Wongsawat [20], Wahbeh et al. [12],
Gao et al. [21], and Corona-Gonzalez [22], the current literature presents contradictory
findings. While some report that BB has shown to be successful in practice [19,20], other
BB studies have achieved no electroencephalographic (EEG) modulation (brainwave en-
trainment) [12,21,22]. Table 1 summarizes the methodology approach of some studies that
analyze BB and memory found in the literature.

Although specific studies support BB as a promising method for cognitive enhance-
ment, major issues, such as incompatible methodological approaches, remain to be ad-
dressed. The protocol of the stimuli application has not been well established in the
literature. The effect of brief BB stimulation on scalp EEG has not been conclusively
demonstrated, especially in gamma frequency. Given the technique’s growing popularity
among neuroscientists, the current study adds further substance to the growing literature
approaching memory modulation with BB.

Table 1. Characteristics and intervention protocols of some studies that approached BB and memory
found in the literature.

Study BB Stim (Hz) Sessions
(Exposure Time)

BB before or
during Task

Carrier Tone
(Hz) Masking Control

Condition
Assessment

Tools/Methods

Mujib et al.,
2021 [19] 10, 14, 30

1 session (15 min
divided into

3 sub-sessions
with 5 min)

before
400 and 410, 400

and 414,
400 and 430

N.R. none digit span
task, EEG

Khattak, 2021
[23] 40 (N.R.) 1 session (5 min) before and

during 450 and 410 N.R. white noise word free recall test

Sharpe et al.,
2020 [24] 25, 40, 100 8 sessions

(5 min) before N.R. N.R. none
mathematical

problems,
recall tasks

Engelbregt &
Deijen, 2019

[25]
40 1 session (N.R.) during 440 and 480, white noise white noise flanker task;

Klingberg test

Shekar, et al.,
2018 [26] 10 and 40 1 session for each

condition (N.R.) N.R. N.R. N.R. constant tone
(340 Hz)

auditory reaction
time, visual

reaction time,
short-term

memory test
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Table 1. Cont.

Study BB Stim (Hz) Sessions
(Exposure Time)

BB before or
during Task

Carrier Tone
(Hz) Masking Control

Condition
Assessment

Tools/Methods

Lim et al., 2018
[27] 10 and 7–4 (N.R.)

1 session
(20 min) for each
condition with a
1-week interval

Before N.R. piano music and
natural sounds

mechanical
massage and

relax (without
acoustic stimuli)

d2-test, digit span
test, Corsi

block-tapping test,
picture recognition

test, EEG

Kraus &
Michaela, 2015

[10]
9.55 1 session

(12 min) before 230 and 220.45 Music with BB music without
BB

Automated
Operation Span

Task

Wahbeh, et al.,
2007 [12] 7 (133 and 140) 1 session

(30 min) before 133 and 140
Pink noise

resembled the
sound of rain

rain sounds

Rey Auditory
Verbal List

(RAVLT), Profile of
Mood States

(POMS), State-Trait
Anxiety Inventory
(STAI), Controlled

Oral Word
Association Test
(COWAT), blood
pressure, spectral

and coherence
analysis on EEG

N.R. = not reported.

We hypothesize that the noninvasive stimulation with BB in gamma frequency masked
with classical music can change brain activity and improve working memory performance.
The novelty aspect of our study is the analysis of working memory performance and the
EEG signal with new approaches for signal processing under gamma-BB frequency stimu-
lation. Providing detailed documentation about the method, we aim to obtain significant
results that can serve as parameters for other studies, as well as the development of new
rehabilitation techniques.

2. Materials and Methods
2.1. Experimental Design

We recruited 30 healthy adults (18 to 33 years old, 9 males) for a placebo-controlled,
cross-over, double-blind trial. All volunteers were assessed using the Montreal Cognitive
Assessment test (MOCA) as inclusion criteria (M = 25, SD = 2). The volunteers had no
neurological or psychiatric history, such as epilepsy, seizures, attention deficit hyperactivity
disorder, or hearing or vision deficiency. They were not taking any medication at the time
of the experiment. They also abstained from alcohol and caffeinated beverages 12 h before
the testing sessions.

The audio files were created using the software Audacity (version 1.2.3). For the
experimental stim condition, two sine tones of 400 and 440 Hz were played separately
and simultaneously in the right and left ear, respectively, to produce 40 Hz BB. The BBs
were masked with the classical music track La Stravaganza by Antonio Vivaldi. The
control stim condition consisted of the same classical music without the BB. The audio
files were saved in uncompressed .wav format to avoid frequency distortion during the
encoding process. An uninvolved person named the recordings to support a double-blind
experiment. The auditory stimuli were played through a stereo headset (Sony EH-1000XM3)
with noise canceling.

The volunteers sat facing a computer while we collected their EEG signals throughout
the experiment. The experiment was divided into three phases: without stim, with the
experimental stim, and with the control stim. In each phase, we collected EEG data both in
a rest state, with eyes closed, and while performing memory tasks. The experiment took
approximately 2 h, including the setup process.

The first phase, without any auditory stim, began with the EEG baseline collection
in a resting state, with eyes closed, for 2 min. Subsequently, the participants performed
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two memory assessment tasks in alternated sequences to avoid any order effect. The two
tasks were

• Digit span task: A commonly used measure of short-term memory [1]. First, a random
sequence of numbers appears on the screen. Second, users press the numbers on the
keyboard in the same order the numbers were presented. The first tentative starts
with one digit (0–9), incrementing by one digit after a correct answer in each trial. The
performance is indicated by the highest number of digits correctly remembered. The
test ends after two consecutive errors.

• N-back task: Continuous recognition measures present visual stimuli in sequence. The
volunteer judges whether the current target matches the one that appeared N item
back for each item. This protocol has 3 phases: 1, 2, and 3-back. Each phase consists
of 60 trials. We saved the scores for the target (when they should press a keyboard
button, confirming the target matches) and non-target (when they should not press a
button because the target does not match) across the three phases and total.

In the stim phase (second and third phases), the volunteers were equally and randomly
allocated to a group. The first group started with gamma-BB stimuli. They listened to the
prepared audio recording for 10 min with their eyes closed, then performed the memory
tasks (Digit Span and N-back). After a 5-min interval, the subjects were presented to the
control stim for 10 min, with eyes closed, and then performed the same memory tasks. The
second group had this sequence inverted. The auditory stimuli continued until the tasks
were completed in each phase. The order of the two memory tasks was presented on a
rotating basis known as “Latin Squares” to prevent any carryover effects from one task to
another. Figure 1 illustrates the experimental procedure.
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The amplifier device used to record the EEG signals was the EEGO™ rt, with a waveg-
uard™ original cap of 64 electrodes in 10/20 configuration from ANT Neuro corporation.
We connected the ANT-Neuro device through the OpenViBE platform to acquire the signal
at a sampling rate of 1024 Hz. A notch filter of 60 Hz was applied to mitigate external
interference. Then, the EEG signal was saved in two extensions: .ov (OpenViBE exten-
sion) and .csv (Comma-Separated Values extension) for posterior analysis in Matlab. All
electrode-skin impedances were maintained below 10 kΩ during the experiments.

2.2. Pre-Processing Stage

We applied an interactive template matching and suppression (ITMS) procedure in
the pre-processing stage to detect and suppress blink artifacts [28]. The ITMS approach
estimated a waveform of the blink-artifact after ten interactions from the original blink-
artifact template resampled at the sampling rate of the EEG device (1024 Hz). Then, the
blink-artifact model was suppressed from the raw EEG data. The ITMS algorithm is single-
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channel interaction-based. We applied the algorithm to the electrodes from the frontal
lobe [29], channels: FP1, FPz, FP2, AF7, AF3, AF4, and AF8. Then, the data were filtered
using a designed FIR filter, order 400, with cut-off frequencies of 0.1 to 100 Hz. Additionally,
we proceeded with a visual inspection to confirm that no movement artifacts remained.

2.3. Features Extraction

We extract the power spectral density (PSD) using the sine-multitaper approach
described by Barbour and Parker [30]. This approach is a recursive method suited to long
time series, in which parameter tuning such as time bandwidth or segment length is not
required. We extracted the relative PSD for the delta (0.1 to 4 Hz), theta (4 to 8 Hz), alpha (8
to 12 Hz), beta (12 to 30 Hz), and gamma (30 to 80 Hz) range.

In order to compare the experimental to the control stim, without and during tasks,
the features—PSD and task scores—of the phase without stimulation were subtracted from
the stimulation phase (experimental and control). The learning effects that can be caused
by the performance of memory tasks were repeatedly decreased by Latin squares rotation
and the standardization by the phase without stimulus.

We performed the Principal Component Analysis (PCA) to reduce dimensionality
using the algorithm of Singular Value Decomposition (SVD), the default mode of the Matlab
function pca(). This function extracts data in the directions with the highest variances. We
have several matrices, 30 × 64 (one matrix for each condition and each frequency band),
composed by the PSD values, where 30 was the number of volunteers, and 64 was the
number of channels. We reduced to matrices 30 × 1 (the first component representing all
channels). Then, we stored the first component of each phase (10 min stimulation and
memory tasks under gamma-BB stim and control stim). We also extracted five channels
that most contributed to the first component.

2.4. Statistical Analysis

We performed the non-parametric permutation test (50,000 permutations) using the
first component and PSD of the channel that most contributed to the first component
considering all conditions. Then, we compared these features for gamma-BB stim and
control stim in a rest state, with eyes closed, and while performing memory tasks; across
the delta, theta, alpha, beta, and gamma frequencies range. All the groups had the same
size (30 samples). We also compared the resting state phases without any working memory
task, with eyes closed, to the resting state with gamma-BB stim and control stim.

Subsequently, we detected the outliers using a boxplot with outliers labeled in Jasp
software version 0.16.4.0 in the first component and the PSD of the channel that most
contributed to the first component. We compared the groups again after excluding the
outliers from both groups in order to keep the same size.

Finally, we also compared the memory task scores under experimental to control
stimuli using the non-parametric paired test Wilcoxon, correcting for multiple comparisons
and controlling for false discovery rate (FDR). We used the Matlab function fdr_bh().

3. Results

Figure 2 shows the raw EEG signal and the results after applying the ITMS algorithm
and filtering in the pre-processing stage.

Figure 3 shows the first component scores per volunteer in each frequency band.
Tables 2–4 show the five channels that most contributed to the first component, how much
this component explains the data, and the p-values for the permutation test using the first
component. Channel F2 was the most highlighted across all conditions.
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Figure 3. Plot of the scores of the first component per volunteer for the stimulation phase in a rest
state across the bands (delta, theta, alpha, beta, and gamma).

Table 2. The five channels contributed most to the PCA first component, total variance explained by
the first component, and p-values for permutation test results for experimental and control stimulation
in a rest state.

Freq. Gamma-BB Stimulation
without Task Explained (%) Control Stimulation

Without Task Explained (%) p-Value

Delta F2, F3, F1, Fz, F4 61 F2, Fz, F4, F6, F8 58 0.5560
Theta FC6, FC5, C5, FT7, C6 84 F2, AF7, F7,FCz, Fz 72 0.6317
Alpha TP8, P2, PO8, Pz, C1 79 P2, Pz, PO8, PO6, PO4 79 0.9798
Beta Pz, P1, P2, C1, Cz 72 C5, C3, C1, PO7, P1 76 0.2670

Gamma C5, C6, FC5, C3, FT7 79 C1, CP4, CP3, TP8, Pz 76 0.7234

Figures 4–6 show the violin graph of the relative PSD of channel F2 in experimental
and control conditions across the delta, theta, alpha, beta, and gamma frequencies and their
respective p-value. The positive values of the y-axis mean higher energy for the stim phase
compared to the without stim, while the negative values indicate the opposite.
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Table 3. The five channels contributed most to the PCA first component, total variance explained by
the first component and p-values for permutation test results for experimental and control stimulation
during the digit span task.

Freq.
Digit Span with

Gamma-BB
Stimulation

Explained (%) Digit Span with
Control Stimulation Explained (%) p-Value

Delta F7, FC5, F1, F3, FC3 52 F2, Fz, F1, F3, F7 70 0.1737
Theta FC3, F1, FC1, F2, C3 61 AF3, AF8, F2, Fz, AF4 69 0.4415
Alpha C5, C4, C3, CP3, FT7 56 PO6, PO8, P8, O1, P6 72 0.6782
Beta AF4, AF3, FCz, F2, FC3 71 F2, FP1, Fz, F1, AF4 74 0.2295

Gamma C3, FC3, F1, CP2, P2 64 Fz, F2, AF3, F1, FCz 68 0.6192

Table 4. The five channels contributed most to the PCA first component, total variance explained by
the first component, and p-values for permutation test results for experimental and control stimulation
during the n-back task.

Freq.
N-Back with
Gamma-BB
Stimulation

Explained (%) N-Back with Control
Stimulation Explained (%) p-Value

Delta F2, F7, F8, FCz, F1 83 F2, FCz, F7, Fz, F1 75 0.8736
Theta FPz, FP1, FCz, AF4, AF3 79 AF4, FCz, AF3, F2, FPz 63 0.9725
Alpha CP3, P5, P3, CP5, FC6 67 P4, CP3, CP1, P2, CP4 55 0.3467
Beta F7, F2, FCz, AF8, FC2 73 F2, Fz, FCz, F1, C2 79 0.8759

Gamma FC2, FCz, F2, C2, Cz 80 FCz, C2, P2, F2, C1 71 0.9506
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The groups did not present differences considering the first component and channel
F2, nor after outlier detection and exclusion for any condition. Figure 7 exemplifies how
we identified the outliers using a boxplot in Jasp software.
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Figure 8 shows the results for the memory task scores. The positive values of the
y-axis mean a higher score for the stim phase compared to the without stim, while negative
values indicate the opposite. The results were not significant after correction for multiple
comparisons and FDR.
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4. Discussion

BB is a technique that is growing in popularity among neuroscientists. Among the
sparse and controversial studies found in the literature, only Mujib et al. [19] investigated
gamma-BB stimulation with EEG and working memory performance analysis, similar to
our approach. However, our study presents some improvements, such as the presence of a
control condition with a potential placebo effect, besides a detailed cross-over experiment
with new approaches for signal processing.

This study investigated if brain entrainment could be achieved by gamma-BB stim-
ulation and if the working memory could be enhanced. The analyzed features showed
that after listening to either experimental or control stimulation conditions, no significant
changes occurred in the PSD of the F2 channel and the first principal component. It suggests
that brain entrainment was not achieved in gamma-BB stimulation.

Interpreting the effects induced by BB stimulation is a complex task since the BB
stimuli have been assessed using different variables (neurophysiological and cognitive-
behavioral) with heterogeneous methodologies. It is still unclear whether BB stim leads to a
frequency following the response of the presented frequencies or whether it evokes different
responses in the brain. Some studies report brain entrainment with BB stim. Jirakittayakorn
and Wongsawat [20] showed that the FFT absolute power of gamma oscillation increased
with time, especially in the frontal and central regions of the brain after the participants
were exposed to the 40 Hz BB. The greatest induced changes were found within 15 min
of listening. Similarly, Mujib et al. [19] found significant differences in the group with BB
stimulus at 30 Hz. The authors observed an increase in the frontal gamma band power
during the stim stage and both theta and gamma power increase in the bilateral frontal and
left parietal cortex post-stim state.
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Additionally, Corona-Gonzalez et al. [22] found no significant differences between
two BB stimulation (theta and beta BB) sessions in brain entrainment. Similarly, in Wah-
beh [12], there were no significant differences between the experimental (BB frequency in
7 Hz) and control conditions in any of the EEG measures. Furthermore, Gao et al. [21]
identified no apparent brainwave entrainment effect. However, connectivity changes were
detected following relative power variation during BB stim. Their observation supports
that functional brain connectivity under BB stim is worth further study.

Brain activity during BB stimulation mainly influences the signal phase since neurons
sensitive to time delays are primarily located in the brainstem, where their activation power
is weaker [7,25]. As Gao et al. [21] reported, these effects suggest that BB could affect func-
tional brain connectivity, but not necessarily by inducing a frequency-following response.

To better understand the mechanism of BB stimulation and modification in brain
networks following memory enhancement with BB stimulation, it is vital to study the brain
regions involved in processing working memory and auditory stimulation [31]. Although
we did not find significant results comparing the PSD of the F2 channel, this channel seems
important for the memory process, especially in theta frequency [32]. This channel might
be important for memory because the frontal cortex is believed to be a source of top-down
control of cortical sensory activity during goal-directed behavior. The medial prefrontal
cortex has extensive evidence of increased spectral power during mental efforts, such as
heightened attention required for short-term memory encoding. Studies applied auditory
stimuli in the gamma frequency in humans and produced gamma entrainment in the frontal
area [33,34]. Also, topographical distributions in Scholz et al. [35] suggest the generation of
memory-related low beta oscillations in medial and frontal neural structures.

Contrary to what we expected, we found no evidence of any influence of BB on
working memory scores. Some studies, such as Khattak [23] and Sharpe et al. [24], found
memory enhancement after gamma-BB exposure. The study of Khattak [23] considered a
larger sample size (N = 60) with an equal number of female and male participants. The
participants who listened to the gamma frequency performed better on the word-free
recall test than on the white noise condition. Sharpe et al. [24] did an exploratory pilot
study with nine participants. The participants performed eight sessions over four weeks of
pre- and post-exposure evaluation to a 5-min long binaural beat. They considered 25, 40,
and 100 Hz for BB stimulation, and the memory score improved at a greater significance
for 40 Hz. Considering the methodology of this paper, as the PCA technique reduces
dimensionality through a linear combination in the directions with the highest variance, it
considers different channels and weights to compose the first component. Thus, when we
compare the first components, we have differences in the spatial source dependence that
can lead to no significant results.

Analogous to the present study’s findings, Shekar et al. [26] did not find a statistically
significant improvement between listening to the BB frequency of alpha and gamma and a
constant tone of 340 Hz on memory task scores. However, they found a significant decrease
in auditory and visual reaction time after entrainment with alpha and gamma binaural
beats. This study had an equal number of female and male participants (N = 40), thus
controlling for possible sex-related differences in hearing binaural beats [6]. It suggests that
BB can enhance attention, not specifically memory performance.

Engelbregt et al. [25] compared white noise (WN), 40 Hz gamma BB and 40 Hz gamma
monaural beat (MB). The participants (N = 24) performed two tasks under WN, BB, and
MB stimulation conditions in a within-subject cross-over design. The authors masked the
MB and BB conditions with white noise. They did not find significant results for working
memory measured by Klingberg task scores. However, they found reduced reaction times
for attention measured by the Flanker task in BB and MB conditions.

Moreover, Jirakittayakorn [20] found that the average numbers of words recalled by
each participant before and after listening to the stimulus were not significantly different.
In their protocol, the word list recall task was conducted before and after listening to the
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gamma-BB (40 Hz) for 20 min. However, after BB stimulation, better scores were found in
remembered words at number 8.

Mujib et al. [19] evaluated participants’ short-term memory performance through digit
span tasks under alpha (10 Hz), beta (14 Hz), and gamma (30 Hz) BB stimulation. They
found increases in the cognitive score for the alpha condition, while a significant decrease
in reaction time was noted for alpha and gamma.

Even though we did not analyze the reaction time feature, the studies conducted by
Engelbregt et al. [25], Shekar et al. [26], and Mujib et al. [19] support the notion that faster
attention processing may be attributed to the influence of gamma-BB. However, these
studies did not find evidence that gamma-BB significantly influences working memory.
Therefore, they further substantiate our findings.

Most studies found in the literature did not report whether the BB stim was embedded
with a masking stimulus. In contrast, others masked the stimulation with white noise,
pink noise, piano music, or natural sounds [10,12,25,27,36]. Inspired by Lim et al. [27] and
Kraus & Michaela [10], we masked the BB stim with music to amuse the long protocol; it is
worth highlighting it is a common way to find BB stim available on the internet. However,
unmasked BB stim expressed larger effects than those masked with music [37]. It can be one
of the reasons for not achieving brain entrainment through our approach in PSD analysis.

5. Conclusions

As a noninvasive method, BB stim can be easily applied for rehabilitation purposes.
However, the role of BB stimulation in the brain is still unclear, and the frequency choice
for memory enhancement is not trivial. Our results did not present significant differ-
ences between experimental and control conditions for working memory performance and
PSD features.

In this context, few studies examine the relationship between auditory binaural stimu-
lation and memory in healthy people. They present different approaches, such as frequency
choice, duration of stimulation, study design, and assessment tool for working memory.
Despite some studies containing similar approaches, many aspects are still unclear. The
importance of the time the effect of auditory beats may persist is still unknown. Further-
more, whether BB in the gamma band elicits brain entrainment or alters brain connectivity
is unclear. Which BB frequency works best to enhance memory performance and which
carrier tones are most appropriate is also an unclear aspect.

Finally, the current study added further substance to the growing literature. Specif-
ically, it presented a detailed and reproducible method describing the effects of BB in
gamma frequency for working memory task scores and PSD. We also combined different
approaches for signal processing and data analysis. For further studies, we suggest trigger-
ing the tasks so it would be possible to analyze different phases of working memory, such
as encoding and retrieval. In addition, connectivity analysis and correlations with task per-
formance would also characterize working memory under gamma frequency stimulation.
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