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Abstract: The purpose of this study was to verify the physiological and anthropometric determinants
of triathlon performance in female and male athletes. This study included 40 triathletes (20 male and
20 female). Dual-energy X-ray absorptiometry (DEXA) was used to assess body composition, and
an incremental cardiopulmonary test was used to assess physiological variables. A questionnaire
about physical training habits was also completed by the athletes. Athletes competed in the Olympic-
distance triathlon race. For the female group, the total race time can be predicted by V̇O2max
(β = −131, t = −6.61, p < 0.001), lean mass (β = −61.4, t = −2.66, p = 0.018), and triathlon experience
(β = −886.1, t = −3.01, p = 0.009) (r2 = 0.825, p < 0.05). For the male group, the total race time can be
predicted by maximal aerobic speed (β = −294.1, t = −2.89, p = 0.010) and percentage of body fat
(β = 53.6, t = 2.20, p = 0.042) (r2 = 0.578, p < 0.05). The variables that can predict the performance of
men are not the same as those that can predict the triathlon performance of women. These data can
help athletes and coaches develop performance-enhancing strategies.

Keywords: triathlon; ports physiology; performance; women; maximal aerobic speed

1. Introduction

Although female participation in triathlon is still lower than male participation
(25–40%), there has been a significant increase in female participation in this sport since
1990 [1–3]. Female participation has increased not only in triathlon, but also in several other
sports. In running, female participation reached the same percentage as male participation
in 2018, and at the most recent Olympic Games (Tokyo 2020), female participation set a new
record, reaching 49% [4].

Despite a recent surge of female participation in sports, most scientific studies on
sports sciences continue to focus on men [4]. Therefore, the results of the studies conducted
on male athletes on sports training are applied to both male and female athletes, despite
the lack of a reasonable scientific justification [5,6].

The literature’s consensus that maximal oxygen uptake (V̇O2max), the percentage of
V̇O2max that can be sustained for an extended period of time, the running economy, and
body composition are important variables associated with performance in long-distance
events [7]. However, the relative importance of each one can differ for male or female

Healthcare 2023, 11, 622. https://doi.org/10.3390/healthcare11040622 https://www.mdpi.com/journal/healthcare

https://doi.org/10.3390/healthcare11040622
https://doi.org/10.3390/healthcare11040622
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com
https://orcid.org/0000-0002-4399-1655
https://orcid.org/0000-0001-5749-6877
https://orcid.org/0000-0003-1981-1092
https://orcid.org/0000-0001-8229-8565
https://orcid.org/0000-0003-0184-6780
https://orcid.org/0000-0003-1247-6754
https://orcid.org/0000-0002-2412-9103
https://orcid.org/0000-0002-7004-4565
https://doi.org/10.3390/healthcare11040622
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com/article/10.3390/healthcare11040622?type=check_update&version=1


Healthcare 2023, 11, 622 2 of 12

performance, once there are several physiological (red cell mass, hemoglobin, muscular
fiber type percentage, muscle capillarization, vasodilatory capacity, and energetic substrate
use) and body composition (fat mass percentage, lean mass) differences between sexes [8].
The variables associated with triathlon performance have previously been studied. There-
fore, prediction equations for triathlon performance have also been developed; however,
previous studies have only included male athletes, or when female athletes were included,
the sex was not evaluated as a biological variable [9,10]. The knowledge of the main pre-
dictive variables of performance for each sex separately, can help coaches in directing the
training sessions to obtain adaptive responses of the most important predictive variables of
performance and optimize the improvement of sports performance.

Therefore, the purpose of this study was to confirm the levels of association between
physiological and body composition variables and performance in an Olympic-distance
triathlon test for each sex and, later, to describe a performance prediction equation for the
modality based on the measured variables for each sex. Second, the study aimed to compare
physiological and body composition variables between sexes. We hypothesized that the
level of association between the measured variables and triathlon race results would differ
between sexes, and thus the Olympic-distance triathlon race prediction equations would
differ for each sex.

2. Materials and Methods
2.1. Participants

Triathletes were invited to take part in the study via social media (WhatsApp, Insta-
gram, and email), as well as folders distributed at triathlon competitions. The inclusion
criteria for participating in the study were being enrolled in the 30th Santos International
Olympic Triathlon in February 2022, between the ages of ≥18 and no more than 61 years,
both sexes, training triathlon regularly for at least 6 months, and having a medical al-
lowance. The exclusion criteria included being pregnant, having competed in the alternate
modality, failure to finish the race, or failure to submit to laboratory tests for any reason.
Initially, 42 athletes were selected to participate in the study (22 men and 20 women).
Two male athletes were excluded from the study, one was due to the fact that he did not
finish the race and one was due to the fact that he failed to submit to laboratory tests. As
a result, the study includes 20 male athletes and 20 female athletes. Data were collected
during the pre-season. Table 1 shows the descriptive characteristics of the sample.

Table 1. Anthropometric data for men and women.

Women
(n = 20)

Men
(n = 20) p-Value Cohen’s d Power

Age
(years)

42.7 ± 7.3
(3.9–45.9)

43.7 ± 9.3
(38.2–46.4) 0.880 0.05 0.052

Body mass
(kg)

58.8 ± 6.7
(55.9–61.8)

74.8 ± 6.9
(71.8–77.9) <0.001 2.35 0.999

Height
(cm)

165.0 ± 5.7
(163.0–168.0)

175.0 ± 8.2
(171.0–178.0) <0.001 1.35 0.986

Fat mass
(kg)

13.3 ± 7.2
(9.9–16.9)

12.8 ± 5.0
(10.6–15.0) 0.826 0.07 0.055

Lean mass
(kg)

42.2 ± 6.5
(45.1–39.4)

58.3 ± 5.8
(55.8–60.8) <0.001 2.60 1.000

% Body fat 23.3 ± 11.3
(18.3–28.2)

17.8 ± 6.3
(15.0–20.6) 0.066 0.60 0.453

% Gynoid
fat

53.2 ± 6.0
(50.6–55.9)

39.1 ± 5.1
(36.8–41.3) <0.001 2.53 1.000

% Android
fat

42.9 ± 6.6
(40.0–45.8)

57.1 ± 5.4
(54.7–59.5) <0.001 2.36 0.999

Mean ± standard deviation. Confidence interval: 95%.
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2.2. Procedures

All experimental procedures followed the Declaration of Helsinki and the Recom-
mendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in
Medical Journals. The study was approved by the Human Ethics Committee of the Uni-
versity Federal of São Paulo-UNIFESP (approval number 5.059.538, 25 October 2021). The
participants were given information about the purpose of the research, all of the proposed
physiological laboratory tests, and the risks and benefits. The researchers justified the prin-
ciples of respect for the volunteers, as well as the guarantee of privacy, confidentiality, and
anonymity rights. After all, every participant signed the informed consent form. Initially,
the volunteers completed an online questionnaire from the Google Forms Platform about
their training habits and medical conditions. Then, they attend the Exercise Physiology
Laboratory at UNIFESP once, during the morning period. During the visit, volunteers
were measured for height, body mass, and body composition. Thereafter, participants
were submitted to a running economy evaluation. After 30 min of rest, participants were
subjected to a cardiorespiratory maximal treadmill test. They were instructed to abstain
from strenuous training in the last 24 h before the test and not consume hyper-stimulating
foods on the day (e.g., caffeine). Wearing light clothes and comfortable running shoes was
also recommended.

The organizers provided the results of the total race time and split times of the
competition, which were taken from the official website of the event (https://www.
internacionaldesantos.com.br, accessed on 5 March 2022). All the data were collected
in January 2022 (pre-competition phase), 1 month before the 30th Santos International
Olympic Triathlon.

2.3. Questionnaire

The questionnaire includes two open questions about their medical condition: Do you
have any chronic diseases? Do you take any medications? The questionnaire also includes
four open questions about their training habits: How many hours per week do you cycle
train? How many hours per week do you train for running? How many hours per week do
you train for swimming? How many days, months, or years have you been training for
a triathlon?

2.4. Morphological Variables

Body mass and height were measured to the nearest 0.1 kg and 0.1 cm using a cali-
brated stadiometer Filizola® PL (Filizola, São Paulo, SP, Brazil), respectively. Body composi-
tion was determined using dual-energy X-ray absorptiometry (DEXA, software version 12.3,
Lunar DPX, GE Healthcare, Madison, WI, USA). The volunteers were instructed to drink
water ad libitum and were not given any instructions about fasting or taking any specific
feedings prior to the procedure. They were all evaluated after bladder voiding [11]. These
procedures had been shown to be a reliable method for assessing body composition [12,13].

2.5. Running Economy Test

The volunteers were subjected to a treadmill running test for 4 min on a motorized
treadmill (Inbrasport, ATL, Porto Alegre, Brazil) using a computer-based breath, via a breath
gas exchange analyzer (Quark, Comedy, Italy) at a constant speed of 8 km/h, which was
below the ventilatory threshold (VT) for all volunteers. Prior to each test, the calibration
procedure was carried out according to the manufacturer’s instructions. The last minute
was taken into account when calculating the average oxygen uptake, CO2 production, and
respiratory exchange rate (RER). The RER should be lower than 1.0., as all the participants
were exercising lower than the ventilatory threshold intensity. According to Silva et al. [14],
these variables were used to calculate the oxygen cost and the energy cost of running.

https://www.internacionaldesantos.com.br
https://www.internacionaldesantos.com.br


Healthcare 2023, 11, 622 4 of 12

2.6. Cardiorespiratory Maximal Treadmill Test

After a 30-min recovery period from the running economy test, which was enough
to return all volunteers’ heart rates to rest levels, they were subjected to the cardiores-
piratory maximal treadmill test. The same computer-based metabolic analyzer (Quark,
Comedy, Italy) was used to measure V̇O2max, VT, and respiratory compensation point
(RCP). The maximal aerobic speed (MAS) was also measured. V̇O2max was defined as
a stable increase in oxygen uptake (less than 2.1 mL/kg/min) even after increasing exercise
intensity [15]. VT was calculated using the following criteria: An increase in the ventilatory
equivalent for oxygen without an increase in the equivalent for carbon dioxide and an
increase in end-tidal pressure of oxygen. The RCP was determined by increasing the CO2
equivalent ventilatory and decreasing the end-tidal pressure of CO2 [16]. Two independent
investigators determined VT and RCP, and a third researcher was consulted in the event
of disagreement. The MAS was defined as the lowest exercise intensity that produced
V̇O2max [10].

2.7. Total Race and Split Time Results

Total race and split time results were provided by the organizers of the 30th Santos
International Olympic Triathlon, which were accessed via the official website of the event
(https://www.internacionaldesantos.com.br/, accessed on 5 March 2022).

2.8. Statistical Analysis

The data were presented in the form of mean and standard deviations. According
to the Kolmogorov–Smirnov and Levene’s tests, all variables had a normal distribution
and homogeneous variability. A Student’s t-test for independent samples was used to
compare the variables of male and female athletes. To determine the magnitude of the
differences, between group effect sizes were computed for each outcome. Using Cohen’s
effect sizes, the magnitude of any change was judged according to the following criteria:
d < 0.2 was considered as ignored; 0.2 ≤ d < 0.5 was considered as a “small” effect size;
0.5 ≤ d < 0.8 represented a “moderate” effect size; 0.8 ≤ d < 1.3 a “large” effect size;
and d ≥ 1.3 a “very large” effect [17]. The Pearson linear correlation coefficient and
dispersion diagrams were used to validate the level of association between each split time
and total race time with other measured variables. To compare the triathlon race time to the
previous triathlon experience, a one-way ANOVA was used. Thereafter, we considered the
significant correlations for the stepwise adjustment of the multiple linear regression model.
The formula of the regression model is x = α + β·y + E, where x is the dependent variable,
y is the independent variable, α is the intercept, β is the slope, and E is the residual. For
each regression equation, the coefficient of determination (r2), a number that measures
how well a statistical model predicts an outcome, was presented. For all regression models
presented, Durbin–Watson Test (to detect autocorrelation), variance inflation factor (VIF)
and tolerance (to detect multicollinearity), the normality of the distribution of residuals,
and Q-Q plot (to detect homoscedasticity) were presented. The G*Power version 3.1.9.2
(Franz, Universität Kiel, Germany) was used to determine the sample size and analyze
the test power level. A sample size calculation for regression analysis for overall race time
with two predictors, using previous published data from Puccinelli et al. [10] (r2 = 0.607),
showed that 20 athletes were needed to detect a relevant difference with 80% power and
a significance level of 5%. The powers of the analyses were also calculated. The analyses
were carried out using the IBM SPSS Statistics (version 22, USA) software, with the level of
significance set at p < 0.05.

3. Results

In terms of physiological variables, men had significantly higher values for V̇O2max
(L/min) (p < 0.001, d = 2.74), V̇O2max (mL/kg/min) (p = 0.020, d = 0.769), MAS (p < 0.001,
d = 1.30), VT speed (p = 0.011, d = 0.843), and RCP speed (p < 0.001, d = 1.78). The results
showed no significant difference in the percentage of V̇O2max at VT (p = 0.129, d = 0.490)

https://www.internacionaldesantos.com.br/
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or RCP (p = 0.558, d = 0.173) between men and women. Running economy, as measured by
oxygen cost or energy cost, did not differ significantly between sexes (p = 0.540, d = 0.196
and p = 0.600, d = 0.167, respectively) (Table 2).

Table 2. Measured variables in the cardiorespiratory maximal test and performance for each sex.

Women
(n = 20)

Men
(n = 20) p-Value Cohen’s d Power

Cardiorespiratory
maximal test

V̇O2max (L/min)
2.90 ± 0.39
(2.72–3.07)

4.08 ± 0.47
(3.88–4.28) <0.001 2.74 1.00

V̇O2max
(mL/kg/min)

49.7 ± 7.6
(46.3–53.0)

54.6 ± 5.0
(52.4–56.8) 0.020 0.769 0.659

MAS (km/h) 14.9 ± 1.8
(14.1–15.7)

17.1 ± 1.6
(16.4–17.8) <0.001 1.30 0.979

V̇O2 at VT
(mL/kg/min)

38.0 ± 6.3
(35.3–40.0)

40.4 ± 4.0
(38.6–42.2) 0.164 0.499 0.336

% V̇O2max at VT
76.2 ± 5.3
(73.9–78.6)

73.8 ± 4.7
(71.7–75.9) 0.129 0.490 0.326

Speed at VT (km/h) 10.7 ± 1.6
(10.0–11.4)

11.8 ± 1.1
(11.4–12.3) 0.011 0.843 0.738

V̇O2 at RCP
(mL/kg/min)

45.1 ± 6.9
(42.1–48.1)

49.1 ± 4.7
(47.4–51.1) 0.025 0.736 0.621

% V̇O2max at RCP
90.5 ± 3.9
(88.7–92.2)

89.8 ± 3.7
(88.2–91.4) 0.588 0.173 0.083

Speed at RCP
(km/h)

12.8 ± 1.6
(12.0–13.5)

14.4 ± 1,2
(13.9–15.0) <0.001 1.78 0.999

Oxygen cost
(mL/kg/km)

226.0 ± 20.3
(217.0–235.0)

222.0 ± 18.1
(214.0–230.0) 0.540 0.196 0.092

Energy cost
(Kcal/kg/km)

1.11 ± 0.09
(1.07–1.15)

1.09 ± 0.09
(1.05–1.13) 0.600 0.167 0.080

Race performance

Swimming (seconds) 2072 ± 518
(1844–2219)

1796 ± 265
(1680–1912) 0.041 0.670 0.670

Cycling (seconds) 4274 ± 405
(4097–4452)

3969 ± 329
(3825–4114) 0.013 0.826 0.720

Running (seconds) 3143 ± 546
(2904–3382)

3060 ± 371
(2853–3266) 0.608 0.163 0.079

Total race time
(seconds)

9489 ± 1357
(8894–10083)

8825 ± 920
(8421–9228) 0.078 0.573 0.423

Mean ± standard deviation. Confidence interval: 95%. MAS: Maximal aerobic speed; V̇O2 at VT: V̇O2 at
ventilatory threshold; % V̇O2max at VT: % V̇O2max at ventilatory threshold; V̇O2 at RCP: V̇O2 at respiratory
compensation point; % V̇O2max at RCP: % V̇O2max at respiratory compensation point.

Men were significantly faster in the swimming split (p = 0.041, d = 0.670) and cycling
split (p = 0.013, d = 0.826) of the Olympic-distance triathlon race, but there was no significant
difference in the running split (p = 0.608, d = 0.163) or total race time (p = 0.078, d = 0.573)
(Table 2). There was no significant difference in the years of triathlon experience (p = 0.807)
between women [3(1–3)] and men [3(1–3)]. The level of association between each split
and total race performance with body composition or physiologic variables was presented
in Table 3.
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Table 3. Pearson’s correlation coefficient between performance in swimming, cycling, running, total
race time, and measured variables for both sexes.

Swimming
(n = 20)

Cycling
(n = 20)

Running
(n = 20)

Total Time
(n = 20)

Fat mass (kg) W: r = 0.278
M: r = 0.475 *

W: r = 0.604 *
M: r = 0.245

W: r = 0.612 *
M: r = 0.657 *

W: r = 0.533
M: r = 0.560 *

Lean mass (Kg) W: r= −0.345
M: r= −0.257

W: r= −0.530 *
M: r= −0.210

W: r= −0.413
M: r= −0.382

W: r= −0.456 *
M: r= −0.344

% Body fat W: r = 0.353
M: r = 0.495 *

W: r = 0.653 *
M: r = 0.300

W: r = 0.648 *
M: r = 0.702 *

W: r = 0.590 *
M: r = 0.609 *

% Gynoid fat W: r = 0.188
M: r= −0.541 *

W: r= −0.037
M: r= −0.597 *

W: r= −0.035
M: r= −0.258

W: r = 0.046
M: r= −0.501 *

% Android fat W: r= −0.138
M: r = 0.580 *

W: r = 0.108
M: r = 0.598 *

W: r = 0.110
M: r = 0.353

W: r = 0.024
M: r = 0.561*

V̇O2max
(L/min)

W: r= −0.713 *
M: r= −0.169

W: r= −0.776 *
M: r= −0.154

W: r= −0.711 *
M: r= −0.361

W: r= −0.790 *
M: r= −0.288

V̇O2max
(mL/kg/min)

W: r= −0.634 *
M: r= −0.375

W: r= −0.781 *
M: r= −0.237

W: r= −0.828 *
M: r= −0.678 *

W: r= −0.808 *
M: r= −0.539 *

MAS (km/h) W: r= −0.633 *
M: r= −0.442

W: r= −0.690 *
M: r= −0.406

W: r= −0.845 *
M: r= −0.790 *

W: r= −0.788 *
M: r= −0.676 *

V̇O2 at VT
(mL/kg/min)

W: r= −0.659 *
M: r= −0.475 *

W: r= −0.794 *
M: r= −0.343

W: r= −0.802 *
M: r= −0.614 *

W: r= −0.811 *
M: r= −0.573 *

% V̇O2max at VT
(%)

W: r= −0.166
M: r= −0.278

W: r= −0.141
M: r= −0.235

W: r= −0.089
M: r= −0.036

W: r= −0.141
M: r= −0.182

Speed at VT
(km/h)

W: r= −0.490 *
M: r= −0.591 *

W: r= −0.701 *
M: r= −0.385

W: r= −0.787 *
M: r= −0.803 *

W: r= −0.713 *
M: r= −0.719 *

V̇O2max at RCP
(mL/kg/min)

W: r= −0.581 *
M: r= −0.548 *

W: r= −0.757 *
M: r= −0.298

W: r= −0.793 *
M: r= −0.695 *

W: r= −0.581 *
M: r= −0.620 *

% V̇O2max at
RCP

W: r = 0.208
M: r= −0.386

W: r = 0.107
M: r= −0.240

W: r = 0.149
M: r= −0.050

W: r = 0.171
M: r = 0.224

Speed at RCP
(km/h)

W: r= −0.576 *
M: r= −0.556 *

W: r= −0.731 *
M: r= −0.416

W: r= −0.842 *
M: r= −0.851 *

W: r= −0.777 *
M: r= −0.744 *

Oxygen cost
(mL/kg/min)

W: r= −0.065
M: r = 0.034

W: r= −0.510 *
M: r= −0.60

W: r = 0.292
M: r = 0.141

W: r= −0.294
M: r = 0.061

Energy cost
(kcal/kg/km)

W: r = 0.014
M: r = 0.070

W: r= −0.453 *
M: r= −0.040

W: r= −0.207
M: r = 0.200

W: r= −0.213
M: r = 0.109

W: Women; M: Men; r: Pearson’s correlation coefficient; p-value between parenthesis; * p < 0.05; mean ± standard
deviation. Confidence interval: 95%. MAS: Maximal aerobic speed; V̇O2 at VT: V̇O2 at ventilatory threshold;
% V̇O2max at VT: % V̇O2max at ventilatory threshold; V̇O2 at RCP: V̇O2 at respiratory compensation point; %
V̇O2max at RCP: % V̇O2max at respiratory compensation point.

When female (p = 0.113) and male (p = 0.217) athletes with less than 1 year, 1–3 years,
and more than 3 years of triathlon training experience were compared, no significant differ-
ence in the triathlon race time was found. There was also no significant difference in swim-
ming, cycling, and running split times between those with less than 1 year, 1–3 years, and
more than 3 years of triathlon training experience in the female group (p = 0.053, p = 0.397,
p = 0.137, respectively) and male group (p = 0.077, p = 0.248, p = 0.380, respectively).

Multiple linear regression adjusted models were fitted to determine which measured
body composition and physiological variables can better predict the results by the stepwise
method in each split time and the overall race time for women and men. The statistical
models resulting from the analyses for the female sample are presented in Table 4, while
those for the male sample are presented in Table 5.
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Table 4. Multiple linear regression models for estimating performance in swimming, cycling, running,
and total race time for female athletes.

Modality r2 Z Df p-Value SEE Tolerance VIF Durbin–
Watson Power

Time 1500 m (s) = 4817 − 877 (absol. V̇O2max) − 378 (T.E.)
Swimming 0.634 13.8 2.16 <0.001 304 >0.997 1 2.17 0.99

Time 40 Km (s) = 6347 − 41.8 (relat. V̇O2max)
Cycling 0.610 28.2 1.18 <0.001 246 0.961 1 1.59 0.99

Time 10 Km (s) = 6766 − 284 (speed at RCP)
Running 0.709 43.8 1.18 <0.001 287 1 1 2.35 0.99

Total time (s) = 19077.4 − 131 (relat. V̇O2max) − 61.4 (lean mass) − 886.1 (T.E)
Total Time 0.825 23.6 3.15 <0.001 561 1 <1.08 2.15 1.00

Absol. V̇O2max: Absolute V̇O2max (L/m); T.E.: Triathlon experience > 3 years; Relat. V̇O2max: V̇O2max relative
to body mass (mL/kg/min); speed at RCP: Speed at respiratory compensation point.

Table 5. Multiple linear regression models for estimating performance in swimming, cycling, running,
and total race time for men.

Modality R2 Z Df p-Value SEE Tolerance VIF Durbin–
Watson Power

Time 1500 m (s) = 1836.8 − 89.6 (speed at RCP) + 22 (% Android fat)
Swimming 0.494 8.31 2.17 0.003 183 0.907 1.1 1.82 0.95

Time 40 Km (s) = 1907.2 + 36.1 (% Android fat)
Cycling 0.357 10 2.18 0.005 257 1 1 2.17 0.88

Time 10 km (s) = 7750 − 325 (speed at RCP)
Running 0.724 47.3 1.18 <0.001 241 1 1 1.71 0.99

Total time (s) = 12850 − 294.1 (MAS) + 56.3 (% Body Fat)
Total Time 0.578 11.7 2.17 <0.001 582 0.808 <1.24 1.60 0.99

Speed at VT-2: Speed at ventilatory threshold-2 (km/h); MAS: Maximal aerobic speed (km/h).

For the women, in swimming, the variables that better adjusted to the model were
absolute V̇O2max (β = −877, t = −4.50, p < 0.001) and experience in triathlon competition
(β = −378, t = −245, p = 0.026), and both explain 63.4% of the split time performance in
swimming. In cycling, the best model used only one variable: V̇O2max relative to body
mass (β = −41.8, t = −5.31, p < 0.001), and it can explain 61% of the cycling split time.
Similarly, the best model for running used only one variable: The speed at RCP (β = −325,
t = −6.62, p < 0.001), and it can explain 70.9% of the running split time. Finally, for total
race time, the best model includes V̇O2max (β = −131, t = −6.61, p < 0.001), lean mass
(β = −61.4, t = −2.66, p = 0.018), and triathlon experience (β = −886.1, t = −3.01, p = 0.009),
and they can explain 82.5% of the overall race time (Table 4).

For the men, in swimming, the best variables were speed at RCP (β = −89.6, t = −2.31,
p = 0.034) and percentage of android fat (β = 22.0, t = 2.50, p = 0.023), and both can explain
49.4% of the swimming performance. In cycling, the best equation used only one variable:
Percentage of android fat (β = 36.1, t = 3.16, p = 0.005), and it can explain 35.7% of the
cycling split time. Similarly, in running, the best model used only one variable: Speed at
RCP (β = −325, t = −6.88, p < 0.001), and it can predict 72.4% of the running performance.
For the total race time, the variables that best adjusted to the model were MAS (β = −294.1,
t = −2.89, p = 0.010) and percentage of body fat (β = 53.6, t = 2.20, p = 0.042), and both can
predict 57.8% of the performance (Table 5).

4. Discussion

The main findings of this study were as follows: (I) The variables that better adjusted
to the regression models for triathlon performance were different for male and female
athletes; (II) for women, V̇O2max was part of the prediction equations for performance in
swimming, cycling, and overall race time; (III) for women, the triathlon experience time
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was part of the prediction equations for performance in swimming and overall race time;
(IV) for women, the lean mass was part of the prediction equations for the overall race time;
(V) for men, body composition (android fat mass percentage or body fat percentage) was
part of the prediction equations for performance in swimming, cycling, and overall race
time; and (VI) the model for predicting performance in running split, which is the speed
at RCP, was the only one that was found to be very similar between sexes. The current
study’s findings confirmed this initial hypothesis, as the regression models for performance
in swimming, cycling, and overall race time differed between sexes.

4.1. Physiological, Body Composition, and Performance Sex Differences

In terms of body composition, the male sample had significantly more lean mass than
the female sample. However, there was no difference in fat mass (kg) between sexes. The
% fat mass was also not significantly different (p = 0.066) between sexes; however, the
effect size of the difference was 0.6 (medium effect), and the power of this analysis was
very low (power = 0.453); therefore, caution should be exercised when claiming that there
is no difference in % fat mass between sexes. Despite the similarity of the total fat mass
(kg), the distribution of body fat differed significantly between sexes. Female athletes
had a higher gynoid percentage, while male athletes had a higher android percentage.
These data are consistent with the previous study [18] for non-athletes and athletes [19].
Moreover, these findings are especially important given that the regional fat distribution in
gynoid or android regions is associated with performance [19] and lipid profile [18].

In terms of physiological variables, male athletes had higher V̇O2max and MAS than
female athletes. However, the percentage of V̇O2max at VT and RCP did not differ between
sexes. Although the literature agrees that men have higher maximum oxygen consumption
values [8], data on VTs are contradictory. Puccinelli et al. [10] discovered that female
athletes had a higher percentage of V̇O2max at VT and RCP than male athletes. These
contradictory findings could be attributed to the varying levels of training of the athletes.
Moreover, Puccinelli et al. [10] reported that the V̇O2max values for male athletes were
59.9 ± 6.3 mL/kg/min and our male sample had a lower value of 54.6 ± 5.0 mL/kg/min,
whereas female V̇O2max values were comparable between the two studies (49.5 ± 7.8 and
49.7 ± 7.6 mL/kg/min, respectively).

The running economy did not differ between sexes. This finding is consistent with
previous literature data [4]. Men outperformed women in cycling and swimming, with the
difference being more evident in cycling. In the running split and the overall race time,
there was no significant difference between sexes; however, due to the fact that the power
of this statistical analysis was low (power = 0.079; power = 0.423, respectively), caution is
advised in interpreting this lack of significant difference between sexes.

4.2. Predictors of Triathlon Overall and Split Race Times for the Female Sample

For the female sample, absolute (L/min) and relative (mL/kg/min) V̇O2max values
are strongly related to all the split and overall race times. This is an expected result since
the higher the individual’s oxygen consumption capacity, the greater the exercise intensity
they can sustain [9,10]. The V̇O2max by the regression models for swimming split time,
cycling split time, and overall split time, demonstrate the importance of this variable in
female performance.

Triathlon experience appears to be an important variable in predicting performance
for female athletes, as evidenced by the prediction equations for swimming split time
and overall race time. Moreover, previous research has shown that triathlon experience is
an important predictor of performance in splits, particularly in swimming and total race
time [9,20–23]. Swimming in the sea, bay, lake, or river (current, temperature, navigation,
buoyancy, etc.) can have very different environmental conditions than swimming in a pool,
where most athletes train, and these differences can make triathlon training experience
especially important for swimming performance. Previous studies have already demon-
strated the positive impact of previous experience on performance in the triathlon’s total
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race time [20,21]. In the same direction, sports practice during childhood, even non-specific
physical activity, has previously been shown to be highly correlated to better performances
in swimming and total race times in the Olympic triathlon [24].

Apart from swimming, regarding body composition, body fat mass (kg or %) showed
a significant correlation with cycling and running split time and total race time for women.
These findings are consistent with previous literature data [5,9,25]. The lack of association
between body fat and swimming split time could be attributed to fatter individuals having
better body buoyancy due to lower body density, which contributes to passive floating
and gliding [25,26]. Even though there is a significant association between body fat and
running or cycling performance, it is not included in the regression models. The absence of
body fat in the equation can be explained by the fact that this variable is associated with
V̇O2max, and since V̇O2max composes the equation, body fat could also not compose the
equation to avoid the multicollinearity effect.

The cycling performance was strongly associated with lean mass. The important
relationship that exists between muscle mass and cycling performance can be explained
by a greater ability to apply force on the pedals, which will generate greater power and
displacement speed in cycling [27]. In contrast, the present study found no significant
association between muscle mass and swimming split performance. Despite the fact
that muscle mass contributes to propulsive force during swimming, it also contributes to
an increase in body density and the tendency for body sinking, which increases swimming
drag [28,29]. Therefore, when considering swimming speed as the function of drag and
propulsion forces, there is no agreement in the previous literature on whether muscle mass
has a positive or negative effect on swimming performance [24,26].

In terms of overall race time, muscle mass appears to be very important for female
athletes, as this variable composes the regression model used to predict the overall race time.
The speed at RCP, MAS, and V̇O2max (mL/kg/min) represented the measured variables
that showed the strongest association with running performance, which is consistent with
previous literature data [22,30,31]. Regarding the regression model for running split time,
the speed at RCP has been used to build the model.

4.3. Predictors of Overall Triathlon and Each Split Race Time for the Male Sample

Regarding the physiological variables, the V̇O2max (mL/kg/min) presented a signifi-
cant correlation with running split time and overall split time, similar to the MAS. At the
same time, the speed and V̇O2 measured at the VT and RCP had a significant correlation
with swimming and running split times, as well as overall race time. The significance of
these variables can be seen in the fact that the speed at RCP composes the regression models
used to predict the swimming and running time, whereas MAS composes the model used
to predict the overall race time. The inclusion of the MAS rather than the V̇O2max in the
prediction model of the overall race time can be justified since the MAS is known to be
dependent on the V̇O2max and running economy [10]. The lack of association of V̇O2max
and VT measurements with cycling performance may be due to some factors, such as the
lack of specificity of the assessment method. The test used to determine V̇O2max and
VTs was developed on a treadmill, and it is possible that an assessment performed on
a bicycle will be more effective in identifying the variables associated with cycling split
performance. Another complicating factor to consider is the tactical dimension in cycling
split, such as drafting, pacing, and contextual factors on race dynamics [32]. Moreover, the
results showed no significant association between running economy and performance. It is
already expected, since running economy is regarded as a particularly important variable
for distinguishing performance only among athletes with similar values for V̇O2max [33],
which is not the case in the present study.

In terms of body composition variables, lean mass (kg) was not related to any split or
overall race time. In contrast, fat mass (%) was associated with swimming, running, and
overall race time. In addition, the fat mass percentage was used to create regression models
to predict overall race time. Even though the total fat mass (%) was not associated with
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cycling split time, the distribution of fat mass affects performance in cycling and swimming
split times. The higher the percentage of fat mass in the android, the worse the performance.
With increased abdominal volume, it can be more difficult to assume an aerodynamic
posture on a time trial bike, which can impair cycling performance. In a time trial bike
position, the increase in abdominal volume can also make breathing mechanics difficult,
where small shifts in cyclist positions may have a meaningful impact on performance [34].
A higher android fat percentage can also impair optimal body posture while swimming.
McLean et al. [26] demonstrated that a higher android fat mass contributes to decreased
buoyancy, which increases drag forces and reduces swimming speed [25]. Therefore, fat
mass distribution is a very important variable associated with performance, and it was
used to construct the regression model for swimming and cycling split times.

The regression model used in this study to predict swimming split time was composed
of RCP speed and android fat mass (%). The android fat mass was the unique variable
that composed the regression model for cycling split time. It is possible that evaluating the
physiological variables in a more specific ergometer (bike) will yield regression models with
better predictive values. In this direction, for the running split time, only the RCP speed
is used to build the regression model. Finally, MAS and total body fat (%) composed the
regression model for overall race time. As a result, it is demonstrated that only a treadmill
assessment of MAS and a body composition assessment can predict more than 50% of the
overall race time in an Olympic-distance triathlon.

4.4. Limitations and Strengh of the Study

The lack of physiological measurements in swimming or cycling activities is one of the
study’s limitations. It is possible that with these additional evaluations (cardiorespiratory
maximal tests performed at cycle ergometer or at swimming pool), better equations for
predicting triathlon performance can be presented. The authors propose that future studies
should be designed with this goal in mind. The presentation of triathlon performance
prediction equations for female athletes is an important strength of the study, as women
are understudied, and the factors associated with performance differ between sexes. In
addition, the sample size can be considered as very adequate since it reached a high level
of power. As the power of a hypothesis test is 1 minus the probability of a type II error, the
probability of making a type II error was exceedingly small. Finally, another strength of the
study was using reliable and valid instruments, such as DEXA and breath, via the breath
gas exchange analyzer.

5. Conclusions

For women’s endurance performance, there are strong correlations between physio-
logical variables usually measured in a laboratory. Moreover, it was possible to develop
significantly predictive performance equations for triathlon total race time and splits. The
physiological measures evaluated in the incremental treadmill test and body composition
variables can predict more than 50% of the performance in the total time of the Olympic
triathlon event. In addition, regression models for predicting female performance can
predict a higher percentage of performance than models for predicting male performance.
Finally, and perhaps most importantly, the variables capable of predicting male perfor-
mance are not the same as those capable of predicting female performance, justifying the
need to evaluate and study each gender separately.
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