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Abstract: Prostate cancer (PCa) is becoming one of the most frequently occurring cancers among men
and causes an even greater number of deaths. Due to the complexity of tumor masses, radiologists
find it difficult to identify PCa accurately. Over the years, several PCa-detecting methods have been
formulated, but these methods cannot identify cancer efficiently. Artificial Intelligence (AI) has both
information technologies that simulate natural or biological phenomena and human intelligence in
addressing issues. AI technologies have been broadly implemented in the healthcare domain, includ-
ing 3D printing, disease diagnosis, health monitoring, hospital scheduling, clinical decision support,
classification and prediction, and medical data analysis. These applications significantly boost the
cost-effectiveness and accuracy of healthcare services. This article introduces an Archimedes Opti-
mization Algorithm with Deep Learning-based Prostate Cancer Classification (AOADLB-P2C) model
on MRI images. The presented AOADLB-P2C model examines MRI images for the identification of
PCa. To accomplish this, the AOADLB-P2C model performs pre-processing in two stages: adaptive
median filtering (AMF)-based noise removal and contrast enhancement. Additionally, the presented
AOADLB-P2C model extracts features via a densely connected network (DenseNet-161) model with
a root-mean-square propagation (RMSProp) optimizer. Finally, the presented AOADLB-P2C model
classifies PCa using the AOA with a least-squares support vector machine (LS-SVM) method. The
simulation values of the presented AOADLB-P2C model are tested using a benchmark MRI dataset.
The comparative experimental results demonstrate the improvements of the AOADLB-P2C model
over other recent approaches.

Keywords: artificial intelligence; healthcare; prostate cancer; medical imaging; deep learning

1. Introduction

Prostate cancer (PCa) is a major factor for the increasing death rates in cancer and is
most commonly identified among men [1]. In spite of its prevalence, PCa can be frequently
non-aggressive, making it difficult to find. This results in the disease presenting higher risks
to patients as to warrant treatments, such as radiation therapy or prostatectomies (prostate
surgery) [2]. Histopathologically, Gleason grading can be a robust prognostic predictor
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in prostate carcinoma [3], but Gleason grading is difficult to execute and subjective, with
important intra- and inter-observer variabilities. Whereas uropathologists have a higher
agreement rate, this skill is often unavailable. The current guidelines require the involve-
ment of pathologists in determining the proportion of cancer through various Gleason
grading systems, which increases the workload for pathologists and exacerbates subjective
issues [4]. In recent decades, research has shifted toward utilizing Artificial Intelligence (AI)
and statistics to improve the accuracy of estimation and diagnosis outcomes. The utility of
computer-oriented learning techniques is becoming the main research area in PCa [5], and
Artificial Neural Networks (ANN) are progressively being utilized for building advanced
prognostic methods for the detection of PCa. To obtain structured data which include
outcomes and input variables with some knowledge of PCa insights, it is enough to train a
machine learning model [6]. For example, numerous new tools are available for diagnosing
and screening PCa, such as biomarkers (molecular imaging and exosomes), genomics, and
magnetic resonance imaging (MRI). In this case, AI has an important role in two ways.
By analyzing large amounts of data and leveraging advancements in machine learning
(ML) techniques, urologists can reduce the number of unnecessary prostate biopsies while
maintaining the accuracy of identifying aggressive prostate cancer [7].

Furthermore, the usage of AI, extracellular vehicles, and genomics may offer a rapid
and more reliable PCa test. Machine learning (ML) is a subfield of Artificial Intelligence that
involves the development and deployment of techniques for analyzing data and its charac-
teristics. It does not require specific inputs from the environment to perform its tasks [8].
ML methods are categorized in accordance with the kind of feature and label. For labeling,
ML is categorized into three methods, including reinforcement learning, supervised, and
unsupervised methods. Regarding features, ML is categorized into non-handcrafted or
handcrafted feature-oriented approaches [9–12]. Deep Learning (DL) is a kind of ML that
allows machine devices to learn from experiences and realize atmosphere with regard to a
hierarchical model. Computers gain knowledge through learning experiences, and there is
no need for a human to provide every piece of information beforehand [13]. Currently, the
Deep Convolutional Neural Network (DCNN), an altered form of Artificial Neural Net-
works (ANN), has been proven to have high efficacy if implemented to digitalize images, a
type of computer-aided diagnosis (CAD) analysis.

This article applies an Archimedes Optimization Algorithm with Deep Learning-
based Prostate Cancer Classification (AOADLB-P2C) model to MRI images. The presented
AOADLB-P2C model majorly examines MRI images for the identification of PCa. To ac-
complish this, the AOADLB-P2C model performs pre-processing in two stages: adaptive
median filtering (AMF)-based noise removal and contrast enhancement. Furthermore,
the presented AOADLB-P2C model extracts features via a densely connected network
(DenseNet-161) model with a root-mean-square propagation (RMSProp) optimizer. Finally,
the presented AOADLB-P2C model classifies PCa using the AOA with a least-squares sup-
port vector machine (LS-SVM) method. The simulation values of the presented AOADLB-
P2C model are tested using a benchmark MRI dataset. In short, the key contributions of
the current study are listed below:

• An intelligent AOADLB-P2C technique is presented, and it comprises AMF-based
pre-processing, DenseNet-161-based feature extraction, RMSProp optimizer, LS-SVM
classification, and AOA-based hyperparameter tuning. To the best of the researchers’
knowledge, a AOADLB-P2C model has never been presented in the literature.

• A RMSProp optimizer is applied in this study for the selection of hyperparameters
involved in the DenseNet-161 model.

• The parameter optimization of the LS-SVM model using the AOA algorithm and
cross-validation helps in boosting the predictive outcome of the proposed model for
unseen data.

• The performance of the proposed model is validated using a PCa dataset.
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The rest of the paper is organized as follows. Section 2 provides a detailed review
of the literature and Section 3 introduces the proposed model. Next, Section 4 offers the
comprehensive analytical results and Section 5 concludes the work.

2. Related Works

The current section provides a detailed survey of existing models related to PCa
classification. Liu et al. [14] modeled a DL method by combining the Inception-v3 and
S-Mask region-based Convolutional Neural Network (R-CNN) models and used it in the
ultrasound image-aided prognosis of PCa. The enhanced S-Mask R-CNN was leveraged to
achieve a precise segmentation of the generated candidate regions and prostate ultrasound
images. Furthermore, the RoI align method was also leveraged to realize the pixel-level
feature point position. The respective binary mask of the prostate images was produced by
the convolutional networks to distinguish the background and the prostate regions. In [15],
a new automated classifier technique was modeled by merging several DL techniques to
identify PCa from MRI and ultrasound (US) images. The devised technique also explains
why a particular decision is given for the input MRI or US image. Numerous pretrained
DL methods with custom-developed layers were included in this study on top of the
corresponding pre-trained techniques and were implemented in the database.

Toledo-Cortés et al. [16] modeled a quantum-inspired deep probabilistic learning
ordinal regression approach for medical image diagnosis. The proposed model leverages
the advantages of intrinsic ordinal information of disease phases and representational
power of DL techniques. The technique was assessed using two distinct medical image
analyzing tasks, including the diabetic retinopathy grade estimation on eye fundus images
and PCa diagnosis. Alam et al. [17] devised and authenticated several classifier methods
on a supervised ML algorithm to forecast the occurrence of PCa. A modified LR method
was modeled and applied on the images captured from patients who are vulnerable to
PCa. This devised classifier method used various stages of tumor and clinical features. The
clinical features included smoking history, BMI, cystitis infections, and age. Zhong et al. [18]
conducted research work in which the main objective was to devise a Deep Transfer Learn-
ing (DTL)-oriented method for differentiating indolent lesions from clinically significant
(CS) PCa lesions. The researchers compared the DTL-related method with a DL technique
without TL and PIRADS v2 score over three Tesla multi-parametric MRI (3T mp-MRI) with
Whole Mount Histopathology (WMHP) validations.

Wang and Wang [19] formulated a DL-oriented technique for automatic classification
of clinically significant (CS) and clinically insignificant (CiS) PCa based on multiparametric
MRI (mpMRI) images. Their study also intended to select suitable mpMRI series for PCa
categorization in various anatomic zones. For the selection of optimal integration of the
series for PCa classification in a particular zone and PCa classification, the researchers
devised Multi-Input Selection Networks (MISNs). A MISN is a multi-input or multi-output
classifier network that has a total of nine branches for processing nine input images from
the mpMRI data. Poojitha and Sharma [20] discussed the saliency maps of images utilizing
Deep Convolutional Generative Adversarial Networks (DCGANs) by implementing a
semantic segmentation method with salient maps, offered by pathology specialists. This
structure was modeled by integrated the fine-tuned VGGnet, CNNs, and RNNs. The
authors presented a new method in which LSTM-RNN was used for sequential sub-band
images of shearlet coefficients.

According to [21], novel urinary and serum biomarkers have been established in
recent years. However, the researchers continuously search for novel biomarkers under
different conditions and patient settings. In spite of these, there is a lack of particular rules
with high level of evidence on the utilization of these markers. The count of the analysis,
which focuses on the characterization of a particular PCa metabolic phenotype by utilizing
distinct experimental methods, has been reported. In a study conducted earlier [22], a dual
5α-reductase inhibitor (5-ARI), i.e., dutasteride, was found, and it blocks testosterone from
being converted into its active element, i.e., dihydrotestosterone (DHT), and decreases
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prostate volume, thus enhancing urinary flow rate. The Bipolar Transurethral Resection of
the Prostate (B-TURP) process tends to enhance the outcomes and efficiency in comparison
with the typical TURP, yet the incidence of side-effects in the B-TURP is lower.

Ferro et al. [23] reviewed existing evidence on the approaches and examinations
conducted in existing literature on radiomics in PCa patients. The review also recommends
its potential in terms of personalized medicine and future applications. The analysis
conducted by Massanova et al. [24] related several means of PV estimate, comprising Digital
Rectal Examination (DRE), Transrectal Ultrasound (TRUS), MRI, and radical prostatectomy
specimens to determine the best method for volume measurement.

Several CAD models have been proposed in the literature for PCa classification pro-
cess. Although several ML and DL models are available in the literature for liver cancer
classification, there is a need to enhance the classification performance. Owing to the
continuous exploration of this research domain, the number of parameters in DL models
also increases quickly, which in turn results in model overfitting. At the same time, different
hyperparameters exert a significant impact on the efficiency of CNN models. Particularly,
hyperparameters, such as epoch count, batch size, and learning rate selection, are essential
to attain an effectual outcome. Since the ‘trial and error’ method for hyperparameter tuning
is a tedious and erroneous process, metaheuristic algorithms can be applied. Therefore, the
current study employs the RMSProp optimizer for DenseNet and AOA algorithms in a
LS-SVM model.

3. The Proposed Model

In this article, the authors propose a novel AOADLB-P2C method for PCa diagnosis
from MRI images. Initially, the proposed AOADLB-P2C model pre-processes the MRI
images in two stages, i.e., AMF-based noise removal and contrast enhancement. Moreover,
the RMSProp optimizer with the DenseNet-161 model is applied for the purpose of feature
extraction. Finally, the presented AOADLB-P2C model classifies the images for PCa using
the AOA with LS-SVM models. Figure 1 shows the overall working process of the proposed
AOADLB-P2C system.

3.1. Pre-Processing

At first, the proposed AOADLB-P2C model pre-processes the MRI images in two
stages using AMF-based noise removal and contrast enhancement [25]. A simple MF is
employed at the median of the window to replace the centre pixel that is regarded as a
window. Once the central pixel is categorized as (salt) or (pepper), it is replaced by the
middle value of the window. The major drawback of the standard MF is that, although
the pixels are regarded as incorrect (except 0 or 255), it gets substituted with the median
of the window. This reduces the whole visual quality of the image. In addition, it is not
possible for an MF to preserve the edges. In general, the window is sorted in an ascending
order. The median is deemed to be the middle value. Therefore, the undamaged pixels get
substituted with the median value. The following stage is to employ the Contrast Limited
Adaptive Histogram Equalization (CLAHE) approach on the noise-removed images. It
has the best tractability in electing the local histogram map ping function. The CLAHE
approach separates the images into suitable regions and enforces the histogram equalization
approach upon them. Then, the clipped pixels are reassigned to every gray level. This
novel histogram is unlike the typical histogram since the intensity of all the pixels gets
constrained by the user-selectable maximum number. Hence, the CLAHE model might
limit the noise enhancement outcome.
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3.2. Feature Extraction

At this stage, the RMSProp optimizer is applied with the DenseNet-161 model for
the purpose of feature extraction [26]. This model possesses dense convolution network
(DenseNet) that accomplishes the maximum classification performance on large data, such
as CIFAR-10 and ImageNet. The ResNet model acquires a duplicate feature map and
contains several parameters, which make the training process a difficult one. On the other
hand, the DenseNet model is comprised of thin layers and learns from a small number
of feature maps, whereby every layer feeds data to the adjacent layer. The connecting
model has more than one convolutional layer in a dense block of the DenseNet model.
This feed-forward connection raises the overall number of layers from L to L(L + 1)/2.
Consequently, the network gets trained in an effective manner, which not only reduces
the over-fitting issue but also enhances the performance of the model. The DenseNet-161
model correspondingly comprises four dense blocks with (6, 12, 36, and 24) sub-blocks.
Every sub-block has two convolutional layers that result in a total count of 156 layers with
5 convolutional layers having a growth rate of k = 48. Here, k represents the feature map.
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In model compression, the transition layer plays a crucial role. If the number of channels
in the output feature maps of the dense block is m, then the subsequent transition layer
creates [θm] output feature map. Here, 0 < θ ≤ 1 represents the compression factor. When
θ = 1, the number of feature mappings through the transition layer remains unchanged.
This model is appropriate for embedded devices due to its thick compressibility and
connectivity. With the help of the DenseNet-161 model as the pre-trained module, the
knowledge (weight value) of the basic structure learnt in the first and middle layers gets
transmitted to the presented method. The fundamental parameter, i.e., the pre-trained
model, learns to categorize different objects in the ImageNet, and it has been utilized for
the classification of the images of humans who carry baggage. Thus, the transfer learning
fastens the training procedure and improves the novel CNN model.

To adjust the hyperparameters related to the DenseNet method, the RMSProp opti-
mizer is exploited in this study [27]. The RMSprop is an optimization algorithm for neural
networks that uses the magnitude of recent gradients to normalize the rest of the gradients.
It is similar to the standard Stochastic Gradient Descent (SGD) algorithm, but it uses a mov-
ing average of the squared gradient values to scale the learning rate. This function helps
in preventing oscillations and divergence in the optimization process. The RMSprop is
often used in Deep Learning techniques and is known to work well with Recurrent Neural
Networks (RNNs). The RMSprop is an enhanced model of Adagrad, and its upgrading
process is similar to that of the Adagrad optimizer. It calculates the exponential decay
average of the squared gradient as given below:

Gt = βGt−1 + (1− β)gt
⊙

gt = (1− β)
t

∑
τ=1

βt−τ gτ

⊙
gτ , (1)

In Equation (1), β denotes the decaying rate that is usually set as 0.9. In addition, the
upgraded values of the parameter from the RMSprop are same as the Adagrad:

∆θt = −
α√

Gt + ε

⊙
gτ . (2)

Furthermore, the simplified model of the Adagrad is given below:

g′t =
1√

Gt + ε

⊙
gτ , (3)

The upgraded value of the RMSprop is defined by Equation (4) as given below:

∆θt = −αg′t. (4)

Hence, the RMSprop is an enhanced method based on the gradient. To conduct the
analysis, the rate of learning optimized approach is employed to enhance the training efficacy.

3.3. Prostate Cancer Classification

For PCa detection, the LS-SVM model is used. The LS-SVM is a well-organized ML
algorithm that functions on the basis of statistical learning approach developed by Vapnik.
The LSSVM algorithm effectively overcomes the higher-dimensional nonlinear and local
minimal problems [28]. It can be established in a SVM method with two other features.
Initially, inequality is constrained by the equality constraints after which it transmits two
programming problems to the linear expression. These additional features accelerate the
computational time of the LSSVM on the SVM method. Figure 2 demonstrates the structure
of the SVM hyperplane.
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The learning process of the LSSVM is shown below. (xi, yi), i = 1, 2, . . . , n, where xi
represents the ith predictor parameter and yi denotes the ith outcome parameter. The linear
regression function is given below:

f (x) = wT g(x) + b (5)

In Equation (5), w and b correspondingly determine the weight vector and the deviation.

min J(ω, ζ) =
1
2

ωTω +
1
2

C
m

∑
i=1

ζ2 (6)

In Equation (6), C and ζi correspondingly indicate the error penalty and the slack pa-
rameter. Based on Mercer’s condition, the linear kernel purpose is selected as shown below:

K
(
xi, xj

)
= φ(xi)

Tφ
(

xj
)

(7)

The final LSSVM approach is calculated based on the following expression:

f (x) =
m

∑
i=1

aiK(x, xi) + b (8)

where ai indicates the Lagrangian multiplier.
To adjust the LS-SVM parameters, the current research work utilizes the AOA.

Hashim et al. [29] proposed the AOA algorithm based on the Archimedes’ principle that is
deemed to be the law of physics. This principle focuses on an object that is immersed, either
fully or partly in a fluid. In general, there exists an upward force (termed ‘buoyancy’) ex-
erted by the liquid on the body. This force corresponds to the weight of the fluid displaced
by the body. In this work, immersed objects are deemed to be an individual population (i.e.,
solution candidates). This technique begins with the population initialization and, along
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with that, the position of each object is arbitrarily initiated inside the problem searching
spaces. Then, their respective Fitness Function (FF) is evaluated. In the iteration model,
the AOA upgrades the object density (deni) and volume (voli) of the ith object once the
acceleration is upgraded based on the collision with a neighboring object. The position of
all the objects (Oi) is defined as follows:

Oi = li + rand× (ui − li), i = 1, 2, . . . , N (9)

where li and ui characterize the lower and upper limits of the ith object, and N represents
the object amount.

deni = rand, voli = rand (10)

Consider that rand represents a random number in the range of {0, 1}, the acceleration
(acci) of the ith objective is initialized as follows:

acci = li + rand× (ui − li) (11)

The initial FF is assessed, and the object with the optimal fitness is allotted as xbest,
denbest, volbest, and accbest.

The updating methods of the ith object density and volume for the iteration t + 1 are
formulated as follows:

dent+1
i = dent

i + rand×
(

denbest − dent
i

)
(12)

volt+1
i = volt

i + rand×
(

volbest − volt
i

)
(13)

In these expressions, t denotes the current iteration and rand denotes a random number.
At first, there exists a collision amongst the objects that try to accomplish the equilibrium
state. This process is presented in the AOA through the Transfer Operator (TF) that assists
in the transformation from the exploration stage to the exploitation stage:

TF = exp
(

t− tmax

tmax

)
(14)

In this equation, t represents the iteration number and tmax denotes the maximal
iteration count. Here, the TF values get increased gradually. The density reducing factor
(d) helps the AOA to transfer from the global to the local search space:

dt+1 = exp
(

tmax − t
tmax

)
−
(

t
tmax

)
(15)

The values of dt+1 reduce with time while, on the other hand, the proper allocation of
these parameters helps in attaining a fine balance between the exploitation and exploration
stages [30]. The exploration stage is signified as the collision among the objects, while the
TF value is 0.5. The acceleration of the ith object at t + 1 iterations is upgraded as follows:

acct+1
i =

denmr + volmr × accmr

dent+1
i × volt+1

i

(16)

Here, accmr denmr, and volmr, indicate the acceleration, density, and volume of the
random material (mr). The exploitation phase in the AOA assumes that there is no collision
among the objects. If TF > 0.5, there is no collision between the objects while an object’s
acceleration is updated for the iteration t + 1 using Equation (17):

acct+1
i =

denbest + volbest × accbest

dent+1
i × volt+1

i

(17)
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In Equation (17), accbest represents the acceleration of an object that is optimal with
respect to fitness function. It is crucial to normalize the acceleration of each particle
as it defines the step percentage that every particle might change and is given in the
following expression:

acct+1
i−norm = u×

(
acct+1

i −min(acc)
max(acc)−min(acc)

)
+ l (18)

In this expression, l and u characterize the normalization range while the values that
are correspondingly allotted are 0.1 and 0.9. When an object is further away from the
global optima, then the value of the acceleration would be higher. The exploration phase is
conducted or else the exploitation phase is implemented.

The position of the ith particle gets upgraded in the exploration phase as follows:

xt+1
i = xt

i + C1 × rand× acct+1
i−norm × d×

(
xrand − xt

i
)

(19)

The location updating in the exploitation phase is formulated as follows:

xt+1
i = xt

i + F× C2 × rand× acct+1
i−norm × d×

(
T × xbest − xt

i
)

(20)

C1 is equal to 2, whereas C2 is equal to 6. T increases with time and is directly
proportional to the Transfer Operator. It is defined using the equation, T = C3 × TF. C3
shows a constant number, xbest indicates the place of the optimum particle, and F represents
the flag that is utilized to change the direction of particle movements. It can be determined
using the following expression:

F =

{
+1 i f P ≤ 0.5
−1 i f P > 0.5

(21)

where P = 2× rand− C4. Finally, the FF values are evaluated at the upgraded location.
The AOA methodology processes a FF to realize the enhanced classification results. It

describes a positive integer to achieve a good performance of the candidate results. In this
case, a minimized classifier error rate is assumed to be the FF as expressed in Equation (22):

f itness(xi) = Classi f ier Error Rate(xi) =
number o f misclassi f ied samples

Total number o f samples
∗ 100 (22)

4. Results and Discussion

The proposed model was simulated using the Python 3.6.5 tool on a PC configured
with the following specifications: i5-8600k, GeForce 1050Ti 4GB, 16GB RAM, 250GB SSD,
and 1TB HDD. The parameter settings are learning rate: 0.01, dropout: 0.5, batch size: 5,
epoch count: 50, and activation: ReLU. The current section discusses the PCa classification
results achieved by the proposed AOADLB-P2C model. The model was tested on a dataset
comprising 400 samples under two classes, as defined in Table 1. Figure 3 depicts some of
the sample images used in this study.

Table 1. Dataset details.

Class No. of Instances (Balanced)

Prostate 200

Brachytherapy 200

Total Number of Instances 400
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The confusion matrices generated by the proposed AOADLB-P2C model during
different runs of execution are displayed in Figure 4. The figure highlights that the proposed
AOADLB-P2C method recognized the images under the two classes accurately.

Table 2 and Figure 5 show the overall classification outcomes achieved by the proposed
AOADLB-P2C model under five runs. The outcomes imply that the presented AOADLB-
P2C model achieves enhanced outcomes under each run. For example, on run-1, the
AOADLB-P2C model acquires an average accubal of 93%, sensy of 93%, specy of 93%, Fscore
of 93%, and a MCC of 86.07%. Meanwhile, on run-3, the proposed AOADLB-P2C method
obtains an average accubal of 95%, sensy of 95%, specy of 95%, Fscore of 95%, and a MCC
of 90%. Eventually, on run-5, the proposed AOADLB-P2C approach acquires an average
accubal of 99.50%, sensy of 99.50%, specy of 99.50%, Fscore of 99.50%, and a MCC of 99%.
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Table 2. Analytical results of the AOADLB-P2C system under distinct measures and runs.

Class Accuracybal Sensitivity Specificity F-Score MCC

Run-1

Prostate 91.00 91.00 95.00 92.86 86.07

Brachytherapy 95.00 95.00 91.00 93.14 86.07

Average 93.00 93.00 93.00 93.00 86.07

Run-2

Prostate 93.50 93.50 95.50 94.44 89.02

Brachytherapy 95.50 95.50 93.50 94.55 89.02

Average 94.50 94.50 94.50 94.50 89.02

Run-3

Prostate 94.50 94.50 95.50 94.97 90.00

Brachytherapy 95.50 95.50 94.50 95.02 90.00

Average 95.00 95.00 95.00 95.00 90.00
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Table 2. Cont.

Class Accuracybal Sensitivity Specificity F-Score MCC

Run-4

Prostate 99.50 99.50 96.50 98.03 96.04

Brachytherapy 96.50 96.50 99.50 97.97 96.04

Average 98.00 98.00 98.00 98.00 96.04

Run-5

Prostate 99.00 99.00 100.00 99.50 99.00

Brachytherapy 100.00 100.00 99.00 99.50 99.00

Average 99.50 99.50 99.50 99.50 99.00
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The TACC and VACC values achieved by the proposed AOADLB-P2C technique on
PCa performance are shown in Figure 6. The figure infers that the proposed AOADLB-P2C
approach exhibits an improved performance with increased TACC and VACC values. It is
also noted that the AOADLB-P2C algorithm reaches the maximum TACC outcomes.
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The TLS and VLS values accomplished by the proposed AOADLB-P2C technique
on PCa performance are portrayed in Figure 7. The figure shows that the AOADLB-P2C
approach exhibits a superior performance with minimal TLS and VLS values. It is to be
noted that the proposed AOADLB-P2C methodology produces the lowest VLS outcomes.
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In Table 3, the outcomes of the comprehensive comparative study achieved by the
proposed AOADLB-P2C method and other recent models are given [10]. Figure 8 reports
the results from the comparative accuy and Fscore inspection, attained by the proposed
AOADLB-P2C method and other techniques. The results specify that the AOADLB-P2C
method accomplish superior results over other models. In terms of accuy, the AOADLB-
P2C model obtains a maximum accuy of 99.50% while the other models, including the NB,
DT, SVM-Gaussian, SVM-RBF, and GoogleNet, obtain lower accuy values of 98.46%, 97.29%,
98.36%, 98.12%, and 98.28% respectively. In addition, based on the Fscore, the AOADLB-P2C
technique achieves the highest Fscore of 99.50%, while the NB, DT, SVM-Gaussian, SVM-RBF,
and GoogleNet approaches achieve lower Fscore values of 98.81%, 98.83%, 97.91%, 98.52%,
and 98.69%, respectively.

Table 3. Comparative analytical results of the proposed AOADLB-P2C system and other recent
approaches.

Methods Accuracy Sensitivity Specificity F-Score

AOADLB-P2C 99.50 99.50 99.50 99.50

Naïve Bayes 98.46 98.47 98.64 98.81

DT Model 97.29 97.26 98.47 98.83

SVM-Gaussian Model 98.36 98.43 98.54 97.91

SVM-RBF Model 98.12 98.63 97.89 98.52

GoogleNet 98.28 98.28 98.49 98.69
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Figure 9 illustrate the sensy and specy analytical outcomes accomplished by the pro-
posed AOADLB-P2C methodology and other existing approaches. The outcomes show
that the AOADLB-P2C approach exhibits a superior performance over other techniques.
In terms of sensy, the proposed AOADLB-P2C methodology attains a maximum sensy of
99.50%, while the NB, DT, SVM-Gaussian, SVM-RBF, and GoogleNet methods attain lower
sensy values of 98.47%, 97.26%, 98.43%, 98.63%, and 98.28%, respectively. Likewise, in terms
of specy, the AOADLB-P2C technique attains a maximum specy of 99.50%, whereas the
NB, DT, SVM-Gaussian, SVM-RBF, and GoogleNet approaches attain lower specy values of
98.641%, 98.47%, 98.54%, 97.89%, and 98.49%, respectively.
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These results confirm the improved outcomes of the proposed AOADLB-P2C model
on prostate cancer classification process. The enhanced performance of the proposed
model is due to the inclusion of AMF-based pre-processing, DenseNet-161-based feature
extraction, RMSProp optimizer, LS-SVM classification, and AOA-based hyperparameter
tuning. Therefore, the proposed model can be employed for accurate PCa detection and
classification using MRI images.

5. Conclusions

In this research work, the authors introduced a new AOADLB-P2C model for PCa
diagnosis using MRI images. Initially, the AOADLB-P2C model pre-processes MRI images
in two stages using AMF-based noise removal and contrast enhancement. Moreover, the
RMSProp optimizer is applied with the DenseNet-161 model for the purpose of feature
extraction. Finally, the presented AOADLB-P2C model classifies PCa using the AOA
with the LS-SVM method. The presented AOADLB-P2C method was experimentally
evaluated using a benchmark MRI dataset. The comparative simulation values confirmed
the improved performance of the proposed AOADLB-P2C methodology over other recent
methodologies, with a maximum accuracy of 99.50%. Hence, the presented AOADLB-
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P2C method can be employed for PCa classification. In the future, the efficiency of the
AOADLB-P2C model can be improved using ensemble fusion models.
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