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Abstract: In recent years, there has been the notable emergency of artificial intelligence (AI) as a
transformative force in multiple domains, including orthodontics. This review aims to provide
a comprehensive overview of the present state of AI applications in orthodontics, which can be
categorized into the following domains: (1) diagnosis, including cephalometric analysis, dental
analysis, facial analysis, skeletal-maturation-stage determination and upper-airway obstruction
assessment; (2) treatment planning, including decision making for extractions and orthognathic
surgery, and treatment outcome prediction; and (3) clinical practice, including practice guidance,
remote care, and clinical documentation. We have witnessed a broadening of the application of AI in
orthodontics, accompanied by advancements in its performance. Additionally, this review outlines
the existing limitations within the field and offers future perspectives.
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1. Introduction

AI is a subfield of computer science that refers to the ability of a machine to imitate
cognitive functions of human intelligence [1]. Over the last decade, the field of AI has
shown a lot of potential as it can be employed to solve a variety of tasks. The expert system
and machine learning are two important branches of AI. Unlike the knowledge-based
expert system, which is established based on predetermined rules and knowledge, machine
learning focuses on “learning” from training data to improve its capability [2,3]. In addition
to its strong adaptability and generalization capabilities, machine learning is capable of
processing large-scale data and has more open-source algorithms, which makes it one of
the most promising technologies in AI.

Artificial neural networks (ANNs), a sub-domain of machine learning, draw inspira-
tion from the biological neural system of the human brain [4]. ANNs have been notably
employed to analyze intricate connections between massive data [5]. An ANN typically
has a minimum of three layers, namely, an input layer, an output layer, and at least one
hidden layer [6]. Neurons within each layer are interconnected to establish a network
of processors. ANNs encompassing multiple hidden layers are commonly referred to as
deep learning, which has demonstrated exceptional performance in computer vision tasks
such as classification and segmentation [7]. Deep learning is becoming increasingly popu-
lar due to its high feasibility and growing computing performance, as well as advanced
model training algorithms [8]. In addition, one notable advantage of deep learning over
traditional machine learning is that it allows automated feature extraction without manual
intervention, enabling the better harnessing of the information within the data [9]. Convo-
lutional neural networks (CNNs), one of the most widely used deep learning algorithms,
exhibit particularly remarkable performance in handling high-resolution images [10–12].
In CNN, the hidden layers are substituted with three distinct functional layers, namely,
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convolutional layers, pooling layers, and fully connected layers. The convolutional layers
employ convolutional kernels as filters to generate feature maps. The convolution process
effectively reduces image complexity, making CNNs highly suitable for tasks like recog-
nizing objects, shapes, and patterns. The pooling layers are commonly employed after
convolutional layers to decrease the dimension of feature maps while retaining essential
information. Following several iterations of convolutional and pooling layers, the outputs
are integrated in the fully connected layers for further decision making. Consequently,
thanks to the abovementioned three layers, CNNs outperform algorithms such as ANNs in
image-related tasks [6,11].

Malocclusion is distinguished by an anomaly in teeth alignment, occlusion and/or
craniofacial relationships [13]. It is a deviation from the norm and the manifestation of
normal biological variability [14]. Numerous studies have indicated that the presence of
malocclusion not only affects oral health and dental aesthetics but also has a negative impact
on psychological well-being and social interactions [15–17]. Malocclusion is considered the
world’s third most prevalent oral disease, and nearly 30% of the population present with
great need of orthodontic treatment [18,19]. Clinical orthodontic practice often requires
a significant amount of time to conduct various analyses that necessitate the extensive
clinical experience of orthodontists. These workloads have affected the efficiency of clinical
orthodontic practice and have also made orthodontic treatment less accessible for non-
specialists due to the requirement for clinical experience.

A series of studies have shown that AI can significantly enhance the efficiency of clini-
cal orthodontic practice [20,21]. Several commercially available AI-driven software (3Shape
Dental System 2.22.0.0, Uceph 4.2.1, Mastro 3D V6.0 etc.) programs have found widespread
applications in orthodontic care. With the ongoing advancement of AI algorithms, com-
puting capabilities and the growing availability datasets, the scope of AI applications in
orthodontics is expanding, accompanied by continuous performance improvement. Stay-
ing updated on the latest developments of AI applications in orthodontics through timely
summaries helps researchers gain a rapid and accurate understanding of this field. In
addition, despite obtaining encouraging results, there is still significant room for progress
in the application of AI in orthodontics. Therefore, this review provides a comprehensive
summary of the current state of AI applications in orthodontics, encompassing diagnosis,
treatment planning, and clinical practice. Additionally, the review discusses the current
limitations of AI and offers future perspectives, aiming to offer valuable insights for the
integration of AI into orthodontic practice.

2. Application of AI in Orthodontics
2.1. Diagnosis

A satisfactory orthodontic diagnosis relies on a series of analysis, like cephalometric
analysis, dental analysis, facial analysis, skeletal maturation determination and upper-
airway obstruction assessment, to comprehensively evaluate patients’ overall profile, in-
cluding their facial profile, dental and skeletal relationship, skeletal maturation stages and
upper-airway patency [22].

2.1.1. Cephalometric Analysis

Cephalometric analysis, especially landmarking on lateral cephalograms, serves as
the foundation of orthodontic diagnosis, treatment planning and treatment outcome assess-
ment. Conventional manual landmarking is time-consuming, experience-dependent and
can be inconsistent within and across orthodontists, significantly affecting the efficiency
and accuracy of clinical practice [23–26]. The automated landmark detection was reported
as early as the mid-1980s, but the error margin was too high to be implemented in clinical
practice [27]. In recent years, with the advancement of AI, numerous studies have been
conducted using cephalometric analysis, the reproducibility, efficiency, and accuracy of
which are continuously being enhanced [24,28–65]. Notably, cephalometric analysis has
emerged as the most extensively explored domain of AI applications in orthodontics. Given
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the vast amount of the relevant literature available, it is impractical to list all of the relevant
literature about automated cephalometric analysis. Consequently, this review only summa-
rizes the pertinent literature published within the past five years, as depicted in Table 1, in
order to offer the latest advancements in this field [24,28–65].

Table 1. The application of AI in cephalometric analysis in the past 5 years.

Author (Year) Data Type Dataset Size
(Training/Test)

No. of Landmarks/
Measurements Algorithm Performance

Payer et al.
(2019) [28]

Lateral
cephalograms 150/250 19/0 CNN

Error radii: 26.67% (2 mm), 21.24%
(2.5 mm), 16.76% (3 mm), and 10.25%
(4 mm).

Nishimoto et al.
(2019) [29]

Lateral
cephalograms 153/66 10/12 CNN Average prediction errors: 17.02 pixels.

Median prediction errors: 16.22 pixels.

Zhong et al.
(2019) [30]

Lateral
cephalograms

150/100
(additional
150 images than
validation set).

19/0 U-Net

Test 1:
MRE: 1.12 ± 0.88 mm.
SDR within 2, 2.5, 3, and 4 mm:
86.91%, 91.82%, 94.88%, and 97.90%,
respectively.
Test 2:
MRE: 1.42 ± 0.84 mm.
SDR within 2, 2.5, 3, and 4 mm:
76.00%, 82.90%, 88.74%, and 94.32%,
respectively.

Park et al.
(2019) [31]

Lateral
cephalograms 1028/283 80/0 YOLOv3, SSD

YOLOv3 demonstrated overall
superiority over SSD in terms of
accuracy and computational
performance.
For YOLOv3, SDR within 2, 2.5, 3, and
4 mm: 80.40%, 87.4%, 92.00%, and
96.2%, respectively.

Moon et al.
(2020) [32]

Lateral
cephalograms

Training: 50, 100,
200, 400, 800, 1200,
1600, 2000.
Test: 200.

19, 40, 80 CNN (YOLOv3)

The accuracy of AI is positively
correlated with the number of training
datasets and negatively correlated
with the number of detection targets.

Hwang et al.
(2020) [33]

Lateral
cephalograms 1028/283 A total of 80 CNN (YOLOv3) Mean detection error: 1.46 ± 2.97 mm.

Oh et al. (2020)
[34]

Lateral
cephalograms

150/100
(additional
150 images than
validation set).

19/8 CNN (DACFL)

MRE: 14.55 ± 8.22 pixel.
SDR within 2, 2.5, 3, and 4 mm: 75.9%,
83.4%, 89.3%, and 94.7%, respectively.
Classification accuracy: 83.94%.

Kim et al.
(2020) [35]

Lateral
cephalograms 1675/400 23/8

Stacked hourglass
deep learning
model.

Point-to-point error: 1.37 ± 1.79 mm.
SCR: 88.43%.

Kunz et al.
(2020) [36]

Lateral
cephalograms 1792/50 18/12 CNN

The CNN models showed almost no
statistically significant differences
with the humans’ gold standard.

Alqahtani et al.
(2020) [37]

Lateral
cephalograms -/30 16/16

Commercially
available
web-based
platform (CephX,
https://www.orca-
ai.com/, accessed
on 23 August 2023)

The results obtained from CephX and
manual landmarking did not exhibit
clinically significant differences.

Lee et al. (2020)
[38]

Lateral
cephalograms 150/250 19/8 Bayesian CNN

Mean landmark error: 1.53 ± 1.74 mm.
SDR within 2, 3, and 4 mm: 82.11%,
92.28%, and 95.95%, respectively.
Classification accuracy: 72.69~84.74.

Yu et al. (2020)
[39]

Lateral
cephalograms A total of 5890

Four skeletal
classification
indicators.

Multimodal CNN
Sensitivity, specificity, and accuracy
for vertical and sagittal skeletal
classification: >90%.

https://www.orca-ai.com/
https://www.orca-ai.com/
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Table 1. Cont.

Author (Year) Data Type Dataset Size
(Training/Test)

No. of Landmarks/
Measurements Algorithm Performance

Li et al. (2020)
[40]

Lateral
cephalograms

150/100
(additional
150 images than
validation set).

19/0 GCN

MRE: 1.43 mm.
SDR within 2, 2.5, 3, and 4 mm:
76.57%, 83.68%, 88.21%, and 94.31%,
respectively.

Tanikawa et al.
(2021) [41]

Lateral
cephalograms

1755/30 for each
subgroup 26/0 CNN

Mean success rate: 85~91%.
Mean identification error:
1.32~1.50 mm.

Zeng et al.
(2021) [42]

Lateral
cephalograms

150/100
(additional
150 images than
validation set).

19/8 CNN

MRE: 1.64 ± 0.91 mm.
SDR within 2, 2.5, 3, and 4 mm:
70.58%, 79.53%, 86.05%, and 93.32%,
respectively.
SCR: 79.27%.

Kim et al.
(2021) [24]

Lateral
cephalograms

2610/100
(additional
440 images than
validation set)

20/0 Cascade CNN Overall detection error:
1.36 ± 0.98 mm.

Hwang et al.
(2021) [43]

Lateral
cephalograms 1983/200 19/8 CNN (YOLOv3)

SDR within 2, 2.5, 3, and 4 mm:
75.45%, 83.66%, 88.92%, and 94.24%,
respectively.
SCR: 81.53%.

Bulatova et al.
(2021) [44]

Lateral
cephalograms -/110 16/0 CNN (YOLOv3)

(Ceppro software)

Total of 12 out of 16 points showed no
statistical difference in absolute
differences between AI and manual
landmarking.

Jeon et al.
(2021) [45]

Lateral
cephalograms -/35 16/26 CNN

None of the measurements showed
statistically differences except the
saddle angle, linear measurements of
maxillary incisor to NA line and
mandibular incisor to NB line.

Hong et al.
(2022) [46]

Lateral
cephalograms 3004/184 20/ Cascade CNN Total mean error was 1.17 mm.

Accuracy percentage: 74.2%.

Le et al. (2022)
[47]

Lateral
cephalograms 1193/100 41/8 CNN (DACFL)

MRE of 1.87 ± 2.04 mm.
SDR within 2, 2.5, 3, and 4 mm:
73.32%, 80.39%, 85.61%, and 91.68%,
respectively.
Average SCR: 83.75%.

Mahto et al.
(2022) [48]

Lateral
cephalograms -/30 18/12

Commercially
available
web-based
platform
(WebCeph, https:
//webceph.com,
accessed on 23
August 2023)

Intraclass correlation coefficient:
7 parameters >0.9 (excellent
agreement), 5 parameters: 0.75~0.9
(good agreement).

Uğurlu et al.
(2022) [49]

Lateral
cephalograms

1360/180
(additional
140 images than
validation set)

21/0 CNN (FARNet)
MRE: 3.4 ± 1.57 mm.
SDR within 2, 2.5, 3, 4 mm: 76.2%,
83.5%, 88.2%, 93.4%, respectively.

Yao et al. (2022)
[50]

Lateral
cephalograms

312/100
(additional
100 images than
validation set)

37/0 CNN

MRE: 1.038 ± 0.893 mm.
SDR within 1, 1.5, 2, 2.5, 3, 3.5, 4 mm:
54.05%, 91.89%, 97.30%, 100%, 100%,
100%, respectively.

Lu et al. (2022)
[51]

Lateral
cephalograms 150/250 19/0 GCN

MRE: 1.19 mm.
SDR within 2, 2.5, 3, and 4 mm:
83.20%, 88.93%, 92.88%, and 97.07%,
respectively.

https://webceph.com
https://webceph.com
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Table 1. Cont.

Author (Year) Data Type Dataset Size
(Training/Test)

No. of Landmarks/
Measurements Algorithm Performance

Tsolakis et al.
(2022) [52]

Lateral
cephalograms -/100 16/18

CNN
(commercially
available software:
CS imaging V8).

Differences between the AI software
(CS imaging V8) and manual
landmarking were not clinically
significant.

Duran et al.
(2023) [53]

Lateral
cephalograms -/50 32/18

Commercially
available web-based
platform (OrthoDx,
https://ortho
dx.phime
ntum.com;
WebCeph, https:
//webceph.com,
accessed on 23
August 2023)

Consistency between AI software and
manual landmarking:
A statistically significant good level:
angular measurements; a weak level:
linear measurement and soft tissue
parameters.

Ye et al. (2023)
[54]

Lateral
cephalograms -/43 32/0

Commercially
available software
(MyOrthoX,
Angelalign, and
Digident)

MRE:
MyOrthoX: 0.97 ± 0.51 mm.
Angelalign: 0.80 ± 0.26 mm.
Digident: 1.11 ± 0.48 mm.
SDR (%) (within 1/1.5/2 mm):
MyOrthoX: 67.02 ± 10.23/
82.80 ± 7.36/89.99 ± 5.17.
Angelalign: 78.08 ± 14.23/
89.29 ± 14.02/93.09 ± 13.64.
Digident: 59.13 ± 10.36/
78.72 ± 5.97/87.53 ± 4.84.

Ueda et al.
(2023) [55]

Lateral
cephalometric data A total of 220 0/8 RF Overall accuracy: 0.823 ± 0.060.

Bao et al.(2023)
[56]

Reconstructed
lateral
cephalograms
from CBCT

-/85 19/23

Commercially
available software
(Planmeca Romexis
6.2)

For landmarks:
MRE: 2.07 ± 1.35 mm
SDR within 1, 2, 2.5, 3, and 4 mm:
18.82%, 58.58%, 71.70%, 82.04%, and
91.39%, respectively.
For measurements:
The rates of consistency within the
95% limits of agreement:
91.76~98.82%.

Kim et al.
(2021) [57]

Reconstructed
Posteroanterior
cephalograms
from CBCT

345/85 23/0 Multi-stage CNN MRE: 2.23 ± 2.02 mm
SDR within 2 mm: 60.88%.

Takeda et al.
(2021) [58]

Posteroanterior
cephalograms 320/80 4/1 CNN, RF

The CNN showed higher coefficient of
determination than RF and less mean
absolute error for the distance from
the vertical reference line to menton.
CNN with a stochastic gradient
descent optimizer had the best
performance.

Lee et al. (2019)
[59] CBCT 20/7 7 Deep learning Average point-to-point error: 1.5 mm.

Torosdagli et al.
(2019) [60] CBCT A total of 50 9/0 Deep geodesic

learning
Errors in the pixel space: <3 pixels for
all landmarks.

Yun et al.
(2020) [61] CBCT 230/25 93/0 CNN Average point-to-point error: 3.63 mm.

Kang et al.
(2021) [62] CT 20/8 16/0 Multi-stage DRL

Mean detection error: 1.96 ± 0.78.
SDR within 2, 2.5, 3, and 4 mm:
58.99%, 75.39%, 86.52%, and 95.70%,
respectively.

Ghowsi et al.
(2022) [63] CBCT -/100 53/0

Commercially
available software
(Stratovan
Corporation)

Mean absolute error: 1.57 mm.
Mean error distance: 3.19 ± 2.6 mm.
SDR within 2, 2.5, 3, and 4 mm: 35%,
48%, 59%, and 75%, respectively.

https://ortho
https://webceph.com
https://webceph.com
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Table 1. Cont.

Author (Year) Data Type Dataset Size
(Training/Test)

No. of Landmarks/
Measurements Algorithm Performance

Dot et al. (2022)
[64] CT

128/38
(additional
32 images as
validation set).

33/15 SCN

For landmarks:
MRE: 1.0 ± 1.3 mm.
SDR within 2, 2.5, and 3 mm: 90.4%,
93.6%, and 95.4%, respectively.
For measurements:
Mean errors: −0.3 ± 1.3◦ (angular),
−0.1 ± 0.7 mm (linear).

Blum et al.
(2023) [65] CBCT 931/114 35/0 CNN Mean error: 2.73 mm.

MRE, mean radial error; SDR, success detection rate; YOLOv3, You-Only-Look-Once version 3; SSD, Single-Shot
Multibox Detector; SCR, success classification rates; DACFL, deep anatomical context feature learning; CBCT, cone-
beam computed tomography; GCN, graph convolutional networks, FARNet, feature aggregation and refinement
network; DRL, deep reinforcement learning; CT, computerized tomography; SCN, SpatialConfiguration-Net.

In general, acceptable linear and angular measurement are less than 2 mm and 2◦,
respectively [23,36,38,43,44,47,54,66–70]. Following this criterion, although some commer-
cially available software can achieve high overall accuracy in automated landmarking on
lateral cephalograms, manual supervision is still recommended [47,48,53,54,56].

Compared to classical machine learning, deep learning, especially CNNs, demon-
strates superior performance and has been investigated more (Table 1). Several studies
have shown that You-Only-Look-Once version 3 (YOLOv3), a popular CNN algorithm,
has yielded remarkable results in automated landmarking [32,33,43,44]. Park et al. com-
pared the accuracy and computational efficiency of two CNN algorithms, YOLOv3 and the
Single-Shot Multibox Detector (SSD), in identifying 80 landmarks in lateral cephalometric
radiograph images. The results indicated that YOLOv3 exhibited superior accuracy and
computational performance compared to SSD [31]. To mitigate the risk of overfitting and
enhance the generalizability of data, Kim et al. collected 3150 lateral cephalograms taken by
nine different cephalography machines from multiple centers nationwide. The researchers
utilized the cascade CNN algorithm and achieved an overall automated detection error of
1.36 ± 0.98 mm [24]. The same team developed a CNN algorithm that reached 1.17 mm
of total mean error in lateral cephalogram landmark identification despite the presence of
genioplasty, bone remodeling, and orthodontic and orthognathic appliance, paving the way
for its further use in orthognathic surgical patients [46]. Yao et al. utilized a CNN-based
model to identify 37 landmarks in lateral cephalograms, reaching 1.038 ± 0.893 mm of MRE
and 97.30% of SDR within 2 mm [50]. To the best of our knowledge, this model achieved
the best performance in automated landmarking. The existing CNN models do have some
drawbacks, such as down-sampling quantization errors, and requiring preprocessing or
postprocessing to improve accuracy, which may increase computational cost and time. To
address these issues, Lu et al. proposed three-layer graph convolutional networks (GCNs),
obtaining 1.19 mm of MRE and 83.20% of SDR within 2 mm [51].

At the same time, research has reported the use of CNNs for automated landmark-
ing on posteroanterior cephalograms to assess mandibular deviation, which can aid in
evaluating facial symmetry [57,58]. Thanks to the advancement of computational power,
AI has also made progress in three-dimensional (3D) cephalometric landmark detection,
and deep learning and CNNs are the most efficient methods [59,60,71–73]. Blum et al.
utilized a CNN-based model to conduct 3D cephalometric analysis, which yielded a mean
error of 2.73 mm and exhibited a 95% reduction in processing time compared with manual
annotation [65]. Dot et al. proposed a fully CNN, SpatialConfiguration-Net, for the 3D
automated detection of 33 landmarks and 15 measurements, achieving superior outcomes.
Specifically, the MRE for landmarks was only 1.0 ± 1.3 mm, and SDR within 2 mm reached
90.4%. Regarding its measurements, the mean errors were −0.3 ± 1.3◦and −0.1 ± 0.7 mm
for its angular and linear variables [64]. Deep reinforcement learning (DRL), the algo-
rithm that merges the advantages of deep learning (perception ability) and reinforcement
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learning (decision-making ability), has also garnered attention for its performance in 3D
localization [74–76]. Kang et al. utilized multiple-stage DRL for 3D automated landmark
detection. The DRL algorithm achieved a mean detection error of 1.96 ± 0.78 mm for
landmarks, with 58.99% and 95.70% of the detection rate falling within the 2 mm and 4 mm
range [62]. Nevertheless, the current progress in automated 3D cephalometric analysis
is predominantly concentrated on landmark detection, with limited emphasis on linear
and angular measurements. It is anticipated that future advancements will address this
limitation.

2.1.2. Dental Analysis

In orthodontic clinical practice, the utilization of intraoral photographs and orthodon-
tic study models is imperative for dental analysis. These examinations provide clinicians
with comprehensive information regarding various aspects, including molar relationships,
tooth crowding, dental arch width, overjet and overbite, and oral health status. However,
the manual analysis of these examinations is both time-consuming and labor-intensive.
Consequently, there is potential for AI to replace human involvement in this analysis. Talaat
et al. utilized the YOLO algorithm to detect malocclusion (specifically tooth crowding or
spacing, abnormal overjet or overbite, and crossbite) from intraoral photographs. The re-
sults showed an exceptional accuracy rate of 99.99% [77]. Similarly, using intraoral imaging
as training data, Ryu et al. utilized four CNN algorithms to assess tooth crowding; the
results showed that VGG19 had the minimum mean errors in the maxilla (0.84 mm) and
mandible (1.06 mm) [78].

The development of digital technology has significantly facilitated the adoption of 3D
intraoral scanner images and digital dental models in clinical practice. Some companies,
such as Invisalign (Align Technology, Santa Clara, CA, USA), have effectively utilized 3D
oral scan data and digital models for automated measurement and analysis. In addition, Im
et al. proposed a dynamic-graph convolutional neural network (DGCNN) to automate tooth
segmentation in digital models, achieving superior accuracy and reduced computational
time compared to the other two commercially available pieces of software: OrthoAnalyzer
(ver.1.7.1.3) and Autolign (ver.1.6.2.1) [79]. Beyond that, the accurate segmentation of teeth
and the recognition of landmarks on teeth are crucial for automated dental analysis, and
significant advancements have been consistently achieved in this domain, hopefully paving
the way for further clinical applications [80–84].

2.1.3. Facial Analysis

Facial photographs play a pivotal role in evaluating facial asymmetry and proportions.
To our knowledge, so far, there are only three articles which have reported on automated
facial analysis, and all of them used 2D frontal photos as training data.

Rao et al. utilized an active shape model algorithm for automated landmarking and
measuring on facial images, but only just over 50% of the landmark measures had an
error within 3 mm [85]. Yurdakurban et al. compared a machine-learning-based software
with researchers in detecting facial midline and evaluating asymmetry, and the differences
in most measurements between the two methods were not statistically significant [86].
Rousseau et al. employed a CNN to analyze the vertical dimension of patients. The
results showed higher precision and efficiency than manual measurements, with the 95%
confidence interval limit of agreements between the manual and automated methods less
than 10% [87]. Overall, automated facial analysis is still in its early stages and requires
further research to improve its accuracy and applications.

2.1.4. Skeletal Maturation Determination

The determination of patients’ growth spurt is critical for orthodontic treatment, espe-
cially for those that need functional and orthopedics treatment. Hand–wrist X-rays have
been regarded as the most conventional and accurate way to determine skeletal age. In
recent years, several studies have reported combining AI with hand–wrist radiographs to



Healthcare 2023, 11, 2760 8 of 27

predict skeletal age [88–90]. A number of research studies have revealed that the cervical
vertebral maturation (CVM) method is also effective for growth estimation and highly
correlates with the hand–wrist radiograph method [91–96]. Therefore, to minimize unnec-
essary radiation exposure, hand–wrist X-ray is not routinely used in clinical orthodontic
practice [97,98]. Instead, the CVM method, which evaluates the size and shape of the cervi-
cal vertebrae through lateral cephalograms, has become increasingly popular in predicting
skeletal maturation [91–96]. The application of AI in skeletal maturation assessment using
lateral cephalograms was summarized in Table 2 [91,98–107].

Table 2. The application of AI in skeletal maturation assessment using lateral cephalograms.

Author (Year) Data Type Dataset Size
(Training/Test) Algorithm Performance

Kök et al. (2019)
[99]

Lateral
cephalograms 240/60 k-NN, NB, DT, ANN,

SVM, RF, LR

Mean rank of accuracy:
k-NN: 4.67, NB: 4.50, DT: 3.67, ANN:
2.17, SVM: 2.50, RF: 4.33, LR: 5.83.

Makaremi et al.
(2019) [100]

Lateral
cephalograms

Training:
360/600/900/1870
Evaluation: 300
Testing: 300

CNN
Performance varied depending on
image numbers and pre-processing
method.

Amasya et al.
(2020) [101]

Lateral
cephalograms 498/149 LR, SVM, RF, ANN,

DT

Accuracy:
LR: 78.69%, SVM: 81.08%, RF: 82.38%,
ANN: 86.93%, DT: 85.89%.

Amasya et al.
(2020) [102]

Lateral
cephalograms -/72 ANN Average of 58.3% agreement with four

human observers.

Kök et al. (2021)
[91]

Lateral
cephalograms A total of 419 Total of 24 different

ANN models The highest accuracy was 0.9427.

Seo et al.
(2021) [103]

Lateral
cephalograms A total of 600

ResNet-18,
MobileNet-v2,
ResNet-50,
ResNet-101,
Inception-v3,
Inception-ResNet-v2

Accuracy/Precision/Recall/F1 score:
ResNet-18: 0.927 ± 0.025/0.808 ±
0.094/0.808 ± 0.065/0.807 ± 0.074.
MobileNet-v2: 0.912 ± 0.022/0.775 ±
0.111/0.773 ± 0.040/0.772 ± 0.070.
ResNet-50: 0.927 ± 0.025/0.807 ±
0.096/0.808 ± 0.068/0.806 ± 0.075.
ResNet-101: 0.934 ± 0.020/0.823 ±
0.113/0.837 ± 0.096/0.822 ± 0.054.
Inception-v3: 0.933 ± 0.027/0.822 ±
0.119/0.833 ± 0.100/0.821 ± 0.082.
Inception-ResNet-v2: 0.941 ±
0.018/0.840 ± 0.064/0.843 ±
0.061/0.840 ± 0.051.

Zhou et al.
(2021) [104]

Lateral
cephalograms 980/100 CNN Mean labeling error: 0.36 ± 0.09 mm.

Accuracy: 71%.

Kim et al.
(2021) [105]

Lateral
cephalograms 480/120 CNN Three-step model obtained the highest

accuracy at 62.5%.

Rahimi et al.
(2022) [106]

Lateral
cephalograms

692/99
(additional 99 images
than validation set).

ResNet-18, ResNet-50,
ResNet-101,
ResNet-152, VGG19,
DenseNet,
ResNeXt-50,
ResNeXt-101,
MobileNetV2,
InceptionV3.

ResNeXt-101 showed the best test
accuracy:
Six-class: 61.62%, three-class: 82.83%.
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Table 2. Cont.

Author (Year) Data Type Dataset Size
(Training/Test) Algorithm Performance

Radwan et al.
(2023) [107]

lateral
cephalograms

1201/150
(additional
150 images than
validation set).

U-Net, Alex-Net

Segmentation network:
Global accuracy: 0.99.
Average dice score: 0.93.
Classification network:
Accuracy: 0.802.
Sensitivity
(pre-pubertal/pubertal/post-pubertal):
0.78/0.45/0.98. Specificity
(pre-pubertal/pubertal/post-pubertal):
0.94/0.94/0.75.
F1 score
(pre-pubertal/pubertal/post-pubertal):
0.76/0.57/0.90.

Akay et al.
(2023) [98]

lateral
cephalograms

352/141
(additional 94 images
than validation set).

CNN

Classification accuracy: 58.66%.
Precision (stage 1/2/3/4/5/6):
0.82/0.47/0.64/0.52/0.55/0.52.
Recall (stage 1/2/3/4/5/6):
0.70/0.74/0.58/0.54/0.37/0.60.
F1 score (stage 1/2/3/4/5/6):
0.76/0.57/0.61/0.53/0.44/0.56.

k-NN, k-nearest neighbors; NB, Naive Bayes; LR, logistic regression; CNN, convolutional neural network; SVM,
support vector machine; RF, random forest; ANN, artificial neural network; DT, decision tree.

Kök et al. utilized seven different machine-learning algorithms to determine the CVM
stages [99]. The results showed that these algorithms exhibited varying levels of accuracy
in predicting different CVM stages, but the ANN was considered the most stable algorithm,
with an average rank of 2.17 in determining all the CVM stages [99]. Similarly, Amasya
et al. developed and compared the performance of five ML algorithm in CVM analysis,
and the ANN model proved to be better at classification than the other four algorithms
(decision tree, random forest, logistic regression, and support vector machine) [101]. The
same team further compared this ANN model with four independent human observers to
automate the cervical vertebral maturation stages but only reached an average of 58.3%
agreement with the observers [102]. Several studies have employed CNN models for CVM
prediction, and different degrees of accuracy were obtained [98,105,106]. Makaremi et al.
pointed out that an equal distribution of images across all CVM stages is beneficial for
improving CNN accuracy [100]. Zhou et al. increased the sample size to enhance the
reliability of the results [104]. Seo et al. pioneeringly compared six unsupervised CNN
models and utilized a gradient-weighted class activation map (Grad-CAM) to visualize
the models [103]. The results indicated that all the algorithms achieved an accurate rate
of over 90%, with Inception-ResNet-v2 showing the best performance at 0.941 ± 0.018%
accuracy. In addition, the Grad-CAMs showed that Inception-ResNet-v2 focused on several
cervical vertebrae, unlike most of the other algorithms that mainly focused on the third
cervical vertebra. Radwan et al. also used both the CNN model and unsupervised learning
method to predict CVM stages, with a larger sample size and a validation dataset to tune
the algorithm. However, the classification network only obtained an accuracy of 0.802 [107].
In summary, ANNs have received much attention and recognition in the early years, but in
recent years, CNNs have gradually become more prominent in image-related tasks. With
continuous improvements in algorithms, it is expected to achieve more encouraging results
in the future.

2.1.5. Upper-Airway Obstruction Assessment

Skeletal deformity and airway obstruction mutually influence each other. Upper-
airway obstruction can alter breathing, which can affect the normal development of
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craniofacial structures and potentially lead to malocclusion and other craniofacial ab-
normalities. [108]. Screening the presence of upper-airway obstruction, especially adenoid
hypertrophy, is critical for orthodontic diagnosis and treatment planning. The application
of AI in upper-airway obstruction assessment is summarized in Table 3 [109–117].

Table 3. The application of AI in upper-airway obstruction assessment.

Author (Year) Data Type Dataset Size
(Training/Test) Algorithm Purpose Performance

Shen et al.
(2020) [109]

Lateral
cephalograms

488/116
(additional
64 images than
validation set)

CNN
Adenoid
hypertrophy
detection

Classification accuracy: 95.6%.
Average AN ratio error: 0.026.
Macro F1 score: 0.957.

Zhao et al.
(2021) [110]

Lateral
cephalograms 581/160 CNN

Adenoid
hypertrophy
detection

Accuracy: 0.919.
Sensitivity: 0.906.
Specificity: 0.938.
ROC: 0.987.

Liu et al. (2021)
[111]

Lateral
cephalograms 923/100 VGG-Lite

Adenoid
hypertrophy
detection

Sensitivity: 0.898.
Specificity: 0.882.
Positive predictive value: 0.880.
Negative predictive value: 0.900.
F1 score: 0.889.

Sin et al. (2021)
[112] CBCT

214/46
(additional
46 images than
validation set)

CNN
Pharyngeal
airway
segmentation

Dice ratio: 0.919.
Weighted IoU: 0.993.

Leonardi et al.
(2021) [113] CBCT 20/20 CNN

Sinonasal cavity
and pharyngeal
airway
segmentation

Mean matching percentage
(tolerance 0.5 mm/1.0 mm):
85.35 ± 2.59/93.44 ± 2.54

Shujaat et al.
(2021) [114] CBCT

48/25 (additional
30 images than
validation set)

3D U-Net
Pharyngeal
airway
segmentation

Accuracy: 100%.
Dice score:0.97 ± 0.02.
IoU: 0.93 ± 0.03.

Jeong et al.
(2023) [115]

Lateral
cephalograms 1099/120 CNN

Upper-airway
obstruction
evaluation

Sensitivity: 0.86.
Specificity: 0.89.
Positive predictive value: 0.90.
Negative predictive value: 0.85,
F1 score: 0.88.

Dong et al.
(2023) [116] CBCT A total of 87 HMSAU-Net

and 3D-ResNet

Upper-airway
segmentation
and adenoid
hypertrophy
detection

Segmentation: Dice value: 0.96.
Diagnosis: accuracy: 0.912.
Sensitivity: 0.976.
Specificity: 0.867.
Positive predictive value: 0.837.
Negative predictive value: 0.981.
F1 score: 0.901.

Jin et al. (2023)
[117] CBCT A total of 50 Transformer

and U-Net

Nasal and
pharyngeal
airway
segmentation

Precision: 85.88~94.25%.
Recall: 93.74~98.44%.
Dice similarity coefficient:
90.95~96.29%.
IoU: 83.68~92.85%.

ROC, receiver operating characteristic; CBCT, cone-beam computed tomography; CNN, convolutional Neural
Network; AN, adenoid–nasopharynx; IoU, Intersection over Union; HMSAU-Net, hierarchical masks self-attention
U-net; 3D, three-dimensional.

Detecting adenoid hypertrophy based on lateral cephalograms has been proven to be
highly accurate and reliable [118,119]. The adenoid–nasopharyngeal (AN) ratio proposed
by Fujioka is the most notable method [120]. Both Shen et al. and Zhao et al. employed
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a CNN model to locate four key points in Fujioka’s method on lateral cephalograms,
and subsequently calculated the AN ratio [109,110]. The proposed model by Shen et al.
obtained a classification of 95.6% and a mean AN ratio error of 0.026 [68]. The model of
Zhao et al. also showed favorable performance, with high accuracy (0.919), sensitivity
(0.906) and specificity (0.938) [98]. Liu et al. utilized VGG-Lite to directly detect adenoid
hypertrophy on lateral cephalograms without automated landmarking, and the model
achieved a positive predictive value of 0.880 and negative predictive value of 0.900 [111].
Dong et al. proposed two deep learning algorithms, the hierarchical masks self-attention U-
net (HMSAU-Net) and 3D-ResNet, to automatically segment upper airways and diagnose
adenoid hypertrophy, respectively, from CBCT. Of note, a high accuracy of 0.912 was
achieved by the adenoid hypertrophy diagnosis model [116].

In addition to adenoid hypertrophy, the morphology and volume of the upper airway
are also important indicators for assessing upper-airway obstruction. By using a CNN
model, Jeong et al. obtained promising results in automated upper-airway obstruction
evaluation based on lateral cephalograms, with a positive predictive value of 0.90 and
negative predictive value of 0.85 [115]. The segmentation of the airway from CBCT can
provide a 3D view, enabling the more accurate detection of airway obstruction. Recent
studies have shown continuous progress in airway segmentation, with deep learning,
especially CNN algorithms, being the most commonly used. Sin et al. generated a CNN
algorithm to automatically segment and calculate the volume of a pharyngeal airway from
CBCT images, achieving a dice ratio of 0.919 and a weighted Intersection over Union
(IoU) of 0.993 [112]. Shujaat et al. employed the 3D U-Net and obtained an accuracy
of 100% in segmenting a pharyngeal airway [114]. Jin et al. utilized a transformer and
U-Net-based model and segmented the entire upper airway, including the nasal cavity and
hypopharynx [117].

2.2. Treatment Planning

Orthodontic treatment requires cautious decision-making processes that are the corner-
stone of a satisfactory treatment outcome, such as tooth extraction plan and the possibility of
surgical interventions. AI is expected to assist orthodontists especially those inexperienced
in making correct decisions. The application of AI in treatment planning is summarized in
Table 4 [78,121–141].

Table 4. The application of AI in treatment planning.

Author (Year) Data Type Dataset Size
(Training/Test) Algorithms Purpose Performance

Xie et al.
(2010) [121]

Cephalometric
variables, cast
measurement.

180/20 ANN
To predict tooth
extraction
diagnosis.

Accuracy: 80%.

Jung et al.
(2016) [122]

Cephalometric
variables, dental
variable, profile
variables, and chief
complaint for
protrusion.

64/60
(additional
32 samples than
validation set)

ANN

To predict tooth
extraction
diagnosis, and
extraction patterns.

Success rate:
Tooth extraction diagnosis:
93%.
Extraction patterns: 84%.

Li et al. (2019)
[123]

Demographic data,
cephalometric data,
dental data, and
soft tissue data.

A total of
302 samples MLP (ANN)

To predict tooth
extraction
diagnosis,
extraction patterns
and anchorage
patterns.

Accuracy:
For extraction diagnosis: 94%.
For extraction patterns:
84.2%.
For anchorage patterns:
92.8%.
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Table 4. Cont.

Author (Year) Data Type Dataset Size
(Training/Test) Algorithms Purpose Performance

Suhail et al.
(2020) [124]

Diagnosis, feature
identification of
photos, models
and X-rays.

A total of
287 samples ANN, LR, RF

To predict tooth
extraction
diagnosis, and
extraction patterns.

For extraction diagnosis: LR
outperformed the ANN.
For extraction patterns: RF
outperformed ANN.

Etemad et al.
(2021) [125]

Demographic data,
cephalometric data,
dental data, and
soft tissue data.

A total of
838 samples RF, MLP (ANN)

To predict tooth
extraction
diagnosis.

Accuracy of RF with
22/117/all inputs:
0.75/0.76/0.75.
Accuracy of MLP with
22/117/all inputs:
0.79/0.75/0.79.

Shojaei et al.
(2022) [126]

Medical records,
extra and intra oral
photos, dental
model records, and
radiographic
images.

A total of
126 samples

LR, SVM, DT,
RF, Gaussian
NB, KNN
Classifier, ANN

To predict tooth
extraction
diagnosis,
extraction patterns
and anchorage
patterns.

Accuracy for extraction
decision:
ANN: 93%, LR:86%,
SVM:83%, DT: 76%, RF: 83%,
Gaussian NB: 72%, KNN
Classifier: 72%.
Accuracy for extraction
pattern: ANN: 89%, RF:40%.
Accuracy for extraction and
anchorage pattern: ANN:
81%, RF:23%.

Real et al.
(2022) [127]

Sex, model
variables,
cephalometric
variables, outcome
variables.

-/214

Commercially
available
software
(Auto-WEKA)

To predict tooth
extraction
diagnosis.

Accuracy:
93.9%: input model and
cephalometric data.
87.4%: input only model data.
72.7%: input only
cephalometric data.

Leavitt et al.
(2023) [128]

Cephalometric
variables, dental
variables,
demographic
characteristics.

256/110 RF, LR, SVM To predict tooth
extraction patterns.

Overall accuracy:
RF: 54.55%, SVM: 52.73%, LR:
49.09%.

Ryu et al.
(2023) [78]

Intraoral
photographs,
extraction decision.

2736/400

ResNet
(ResNet50,
ResNet101),
VggNet
(VGG16, and
VGG19)

To predict tooth
extraction
diagnosis.

Accuracy:
Maxilla: VGG19 (0.922) >
ResNet101 (0.915) > VGG16
(0.910) > ResNet50 (0.909).
Mandible: VGG19 (0.898) =
VGG16 (0.898) > ResNet50
(0.895) > ResNet101 (0.890).

Prasad et al.
(2022) [129]

Clinical data,
cephalometric
data, cast and
photographic data.

A total of
700 samples

RF, XGB, LR,
DT,
K-Neighbors,
Linear SVM, NB

To predict skeletal
jaw base,
extraction
diagnosis for Class
1 jaw base, and
functional/
camouflage/surgical
strategies for Class
2/3 jaw base.

Different algorithms showed
different accuracies in
different layers. RF
performed best in 3 out of
4 layers.
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Table 4. Cont.

Author (Year) Data Type Dataset Size
(Training/Test) Algorithms Purpose Performance

Knoops et al.
(2019) [130] 3D face scans A total of 4261

SVM for
classification
LR, RR, LARS,
and LASSO for
regression

To predict
surgery/non-
surgery decision
and surgical
outcomes.

For surgery/non-surgery
decision:
Accuracy: 95.4%. Sensitivity:
95.5%. Specificity: 95.2%.
For surgical outcomes
simulation:
Average error: LARS and RR
(1.1 ± 0.3 mm). LASSO
(1.3 ± 0.3 mm). LR
(3.0 ± 1.2 mm).

Choi et al.
(2019) [131]

Lateral
cephalometric
variables, dental
variable, profile
variables, chief
complaint for
protrusion.

136/112
(additional
68 samples than
validation set)

ANN

To predict
surgery/non-
surgery decision,
extraction/non-
extraction for
surgical treatment.

Accuracy for all dataset:
Diagnosis of
surgery/non-surgery: 96%.
Diagnosis of
extraction/non-extraction for
Class II surgery: 97%.
Diagnosis of
extraction/non-extraction for
Class III surgery: 88%.
Diagnosis of
extraction/non-extraction for
surgery: 91%.

Lee et al.
(2020) [132]

Lateral
cephalograms.

220/40
(additional
73 samples than
validation set)

CNN (Modified-
Alexnet,
MobileNet, and
Resnet50)

To predict the need
for orthognathic
surgery.

Average accuracy for all
dataset:
Modified-Alexnet: 96.4%.
MobileNet: 95.4%.
Resnet50: 95.6%.

Jeong et al.
(2020) [133]

Facial photos
(front and right).

A total of
822 samples.
Group 1:
207/204.
Group 2:
205/206

CNN
To predict the need
for orthognathic
surgery.

Accuracy: 0.893.
Precision: 0.912.
Recall: 0.867.
F1 scores:0.889.

Shin et al.
(2021) [134]

Lateral
cephalograms and
posteroanterior
cephalograms.

A total of
840 samples.
Group 1:
273/304
(additional
30 samples than
validation set).
Group 2: 98/109
(additional
11 samples than
validation set)

CNN

To predict the
diagnosis of
orthognathic
surgery.

Accuracy: 0.954.
Sensitivity: 0.844.
Specificity: 0.993.

Kim et al.
(2021) [135]

Lateral
cephalograms. 810/150

CNN
(ResNet-18, 34,
50, 101)

To predict the
diagnosis of
orthognathic
surgery.

Accuracy for test dataset:
ResNet-18/34/50/101:
93.80%/93.60%/91.13%/91.33%.

Lee et al.
(2022) [136]

Cephalometric
measurements,
demographic
characteristics,
dental analysis,
and chief
complaint.

136/60 RF, LR

To predict the
diagnosis of
orthognathic
surgery.

Accuracy (RF/LR): 90%/78%.
Sensitivity (RF/LR):
84%/89%.
Specificity (RF/LR):
93%/73%.
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Table 4. Cont.

Author (Year) Data Type Dataset Size
(Training/Test) Algorithms Purpose Performance

Woo et al.
(2023) [137] Intraoral scan data -/30

Three
commercially
available
software
packages
(Autolign,
Outcome
Simulator Pro,
Ortho
Simulation)

To evaluate the
accuracy of
automated digital
setup accuracy.

Mean error of three pieces of
software:
Linear movement:
0.39~1.40 mm.
Angular movement:
3.25~7.80◦.

Park et al.
(2021) [138]

Lateral
cephalograms

A total of
284 cases CNN (U-Net)

To predict the
cephalometric
changes of Class II
patients after using
modified C-palatal
plates.

Total mean error:
1.79 ± 1.77 mm.

Tanikawa et al.
(2021) [139] 3D facial images

A total of
72 cases in
surgery group
and 65 cases in
extraction group

Deep learning

To predict facial
morphology
change after
orthodontic or
orthognathic
surgical treatment.

Average system errors:
Surgery group:
0.94 ± 0.43 mm; orthodontic
group: 0.69 ± 0.28 mm.
Success rates (<1 mm):
Surgery group: 54%;
orthodontic group: 98%.
Success rates (<2 mm):
Surgery group: 100%;
orthodontic group: 100%.

Park et al.
(2022) [140] CBCT 268/44 cGAN

To predict
post-orthodontic
facial changes.

Mean prediction error:
1.2 ± 1.01 mm.
Accuracy within 2 mm:
80.8%.

Xu et al. (2022)
[141]

Total of 17 clinical
features

A total of
196 cases ANN

To predict patient
experience of
Invisalign
treatment.

Predictive success rate:
Pain: 87.7%. Anxiety: 93.4%.
Quality of life: 92.4%.

ANN, artificial neural network; DT, decision tree; RF, random forest; LR, logistic regression; SVM, support vector
machine; NB, naive bayes; KNN, k-nearest neighbors; MLP, multilayer perceptron; XGB, eXtreme Gradient
Boosting; RR, ridge regression; LARS, least-angle regression; LASSO, least absolute shrinkage and selection
operator regression; CNN, convolutional neural network; CBCT, cone-beam computed tomography; cGAN,
conditional generative adversarial networks.

2.2.1. Decision Making for Extractions

Currently, there is no absolute standardized formula for extraction diagnosis and
patterns, and the decision depends, to some extent, on the orthodontists’ experience [142].
A wrong decision about extraction could cause a series of irreversible problems like an
unfavorable profile, improper occlusion and extraction-space closure difficulties. AI can
contribute to reducing the likelihood of incorrect tooth extraction protocols.

ANNs are the most utilized method to predict extraction diagnosis and patterns [121–126].
Jung et al. built an AI expert system with neural-network machine learning based on
12 cephalometric variables and 6 additional indices, reaching a success rate of 93% and
84% in deciding extraction/non-extraction and detailed extraction patterns, respectively. In
this study, one-third of the learning dataset was chosen as the validation set to prevent over-
fitting [122]. Li et al. adopted a multilayer perceptron ANN and obtained similar results,
with an accuracy of 94% and 84.2% in the determination of extraction diagnosis and patterns.



Healthcare 2023, 11, 2760 15 of 27

In addition, the proposed algorithm achieved an accuracy of 92% in predicting anchorage
patterns [123].

Different machine-learning algorithms have their own strengths and weaknesses.
For example, random forest (RF) and support vector machine (SVM) are often used for
classification and regression tasks, and logistic regression (LR) is more suitable for binary
classification tasks [143–145]. Several studies have used different machine-learning algo-
rithms to determine tooth extraction plans [124–126,128]. The research results of Shojaei
et al. indicated that compared to some traditional machine-learning algorithms, ANNs
demonstrated significant advantages in decision making for extraction and anchorage pat-
terns [126]. Leavitt et al. compared three machine-learning algorithms (RF, LR, and SVM)
for predicting extraction patterns, but their overall accuracies were not very satisfactory,
with SVM achieving the highest accuracy at 54.55% [128]. Although RF can act as an en-
semble method to prevent overfitting and performed well in some studies, more research is
still needed to further substantiate its effectiveness [124,125]. The abovementioned models
used manual measurement values instead of images as the input data. Recently, Ryu et al.
employed intraoral photographs and extraction decisions as the input data and utilized four
CNN algorithms to build a tooth extraction prediction model. The results indicated VGG19
had the highest prediction accuracy in both the maxilla (0.922) and mandible (0.898) [78]. In
summary, there have been several studies which have used AI for decision making during
extractions. Most of these studies have used the extracted measurements of patients as
their input data. However, the varying number of measurements used in different studies
may result in relatively low comparability between the results. Overall, ANNs have shown
the best performance in decision making for extractions. However, with changes in the
input data type, such as radiographic images, other algorithms like CNNs may exhibit
better performances.

2.2.2. Decision Making for Orthognathic Surgery

For adult patients with severe dentofacial deformities, combined orthodontic and
orthognathic surgical treatment is usually required to reposition the jaws. Currently, there
is no absolute criterion for determining surgical cases, especially in borderline situations
where the dilemma between camouflage orthodontic treatment and surgical treatment
often confuses inexperienced orthodontists [146–148].

Lateral cephalograms are the most used method in clinical practice to assess sagit-
tal skeletal deformities. Several studies have used lateral cephalograms as the in-
put data, whether using an ANN or CNN, and all achieved accuracy rates exceeding
90% [131,132,135]. Shin et al. adopted both lateral cephalograms and posteroanterior
cephalograms as their training data to take both the sagittal and lateral relationship of
the jaws into consideration [134]. The proposed CNN model reached an accuracy of
95.4% in predicting orthognathic surgery diagnosis.

Facial appearance is also a crucial factor when making the surgical/non-surgical
decision. Knoops et al. utilized SVM to predict a surgery/non-surgery decision based on
3D facial images, and reached an accuracy of 95.4% [130]. Trained by front and right facial
photos, the CNN model proposed by Jeong et al. only showed an accuracy of 89.3% [133].
Choi utilized a variety of factors as the training data, including lateral cephalometric
variables, dental variables, profile variables, and the chief complaint for protrusion [131].
The proposed ANN model not only predicted the surgery/non-surgery decision but also
anticipated in the tooth extraction plan for the surgical cases, obtaining an accuracy ranging
from 88% to 97%. Nevertheless, it is worth noting that this study did not encompass Class I
surgical cases, which may have influenced the generalizability of the model [131]. Using
similar types of input data, Lee et al. investigated the abilities of RF and LR to predict the
surgery decision of Class III patients, but they only obtained an accuracy of 90% (RF) and
78% (LR) [136]. Overall, AI has made some progress in decision making for orthognathic
surgery. However, there is still a need for further improvement in incorporating a more
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comprehensive type of cases, especially more-borderline cases, which holds the promise of
enhancing AI’s diagnostic capabilities.

2.2.3. Treatment Outcome Prediction

For some cases, orthodontists may develop more than one treatment plan, especially
for borderline cases. However, deciding on the most suitable treatment plan can be chal-
lenging for inexperienced orthodontists. In addition, the treatment outcome for cases
involving extraction and interproximal enamel reduction is often irreversible, and subopti-
mal plans may result in patient dissatisfaction. Predicting treatment outcomes can help
orthodontists analyze and treat malocclusions more scientifically, reducing potential risks
and complications during and after clinical treatment. Currently, AI can aid in predicting
dental, skeletal and facial changes, as well as patients’ experience of clear aligners, thereby
guiding the treatment planning [137–141].

Orthodontic tooth setup, initially proposed by Kesling, enables the visualization of
the treatment progress and final occlusion, but manual tasks like tooth segmentation and
reposition are labor-intensive. With the continuous advancements of digital orthodontics
and artificial intelligence, automated virtual setups have been widely applied, especially
in the field of clear aligners [137]. Woo et al. compared the accuracy of three pieces of
automated digital-setup software with that of a manual setup regarding six directions of
tooth movement [137]. The results indicated that the pieces of automated virtual-setup
software were effective overall, but further manual adjustments may be still required in
clinical practice. Also, it is important to note that the study only included cases where no
extractions were performed.

In addition to dental changes, there have been several studies using AI to predict
skeletal and facial changes after orthodontic treatment. Park et al. applied a CNN model to
predict the cephalometric changes of Class II patients after using modified C-palatal plates,
and obtained an overall accuracy of 1.79 ± 1.77 mm [138]. Tanikawa et al. combined geo-
metric morphometric methods and deep learning to predict 3D facial-morphology change
after orthodontic (with four premolars extracted) or orthognathic surgical treatment [139].
The proposed system showed an average error of 0.94 ± 0.43 mm and 0.69 ± 0.28 mm in
the surgery and orthodontic group, respectively. In another study, a conditional generative
adversarial network (cGAN), a type of deep learning algorithm, was used to predict 3D
facial changes after orthodontic treatment based on patients’ gender, age and incisor move-
ment [140]. Thanks to the conditions applied to the generator and discriminator, cGAN
is supposed to generate high-quality image samples and excels at performing image-to-
image translational tasks [149,150]. As a result, 3D facial images and color distance maps
were generated, and the distances of six perioral landmarks between the real model and
predicted model were calculated, with the cGAN achieving a mean prediction error of
1.2 ± 1.01 mm and an accuracy (within 2 mm) of 80.8% [140].

The selection of the treatment appliance is a crucial aspect of orthodontic treatment
planning. Particularly for patients using clear aligners, a poor wearing experience can
impact patients’ compliance and consequently affect the treatment outcomes. Xu et al.
utilized 17 clinical features as the training data and employed an ANN model to predict
patients’ experiences of Invisalign treatment [141]. The proposed model achieved high
prediction accuracies of 87.7% for pain, 93.4% for anxiety, and 92.4% for quality of life. To
the best of our knowledge, this was the first and currently the only study that utilized AI
to predict patient experience of orthodontic treatment, laying the foundation for further
research in this area. However, a limitation of this study is that it only included patients’
clinical features as input data and did not incorporate other potential influencing factors
such as gender and education level, which could potentially affect the predictive ability of
the model [151].
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2.3. Clinical Practice

During the orthodontic treatment, orthodontists often come across various challenges,
including clinical expertise in orthodontics and patient communication and management.
The application of AI can help facilitate efficient and effective orthodontic treatment regard-
ing practice guidance, remote care and clinical documentation [152–160].

2.3.1. Practice Guidance

A deep overbite is one of the most common and challenging malocclusions to correct
in orthodontic treatment [161]. El-Dawlatly et al. proposed a computer-based decision
support system for deep-overbite treatment guidance, trained by the actual treatment
changes [152]. Instead of answering binary questions, the model can provide a detailed
treatment protocol on deep-overbite correction from seven aspects, such as the intrusion or
proclination of incisors, leveling the curve of Spee. With a high success rate of 94.40%, this
model is expected to aid orthodontics in correcting deep overbites in the future.

The 3D U-Net, a deep learning algorithm, is widely used in 3D image segmentation.
As a modified version of 3D U-Net, 3D U-Net with squeeze-and-excitation modules (3D-
UnetSE) has achieved better performance in capturing high level features [153,162]. The
stability of palatal mini implants is associated with hard and soft tissues [163,164]. Tao et al.
successfully used 3D-UnetSE to accomplish the automated segmentation and thickness
measurement of palate bone and soft tissue through CBCT. Furthermore, ideal sites for
palatal miniscrews were predicted based on the bone and soft tissue thickness [153].

Monitoring the tooth root position throughout the orthodontic treatment is essential to
better prevent adverse outcomes and assess treatment effectiveness. However, conventional
methods, whether CBCT or panoramic films, increase radiation exposure. Hu et al. and
Lee et al. used deep learning to accurately segment teeth in CBCT scans and merged
the segmented teeth with intraoral scanned dental crowns to construct integrated tooth
models [154,155]. In this way, orthodontists can determine the position of tooth roots solely
based on intraoral scans. These two studies showed the promising performance of tooth
position prediction; with continuous improvement in the accuracy of tooth segmentation,
integrated models are expected to be widely applied in clinical practice.

2.3.2. Remote Care

Remote monitoring allows orthodontists to remotely track treatment progress and pro-
vide timely feedback based on photos or oral scans of the dentition, avoiding unnecessary
visits, and bringing flexibility and convenience to patients [156–158].

AI has enhanced the applications and effectiveness of remote monitoring software [156].
Dental monitoring (DM, Paris, France), standing out as one of the leading software in
AI-driven remote monitoring, has gained widespread popularity and research atten-
tion [157,165]. DM is user-friendly, allowing patients to scan their dentitions using a
smartphone. Studies have indicated that DM can not only reduce chairside time, but also
improve patients’ compliance [156,157]. DM can be applied to both conventional fixed
appliances and clear aligners, automatically detecting numerous metrics, such as ill-fitting
clear aligners, losses of attachments, archwire passivity, bracket breakages and relapse
occurring [158,166,167]. In addition, DM’s detections demonstrate a high level of precision.
Homsi et al. claimed that the remotely reconstructed digital models generated by DM
were as highly accurate as intraoral scans [168] Moylan et al. reached similar viewpoints
by measuring intercanine and intermolar width DM-generated models and plaster mod-
els [169]. However, a recent prospective study found that there are still problems with
the consistency of DM instructions, especially for the determination of teeth with tracking
issues. At the same time, the rationale for DM instructions for clear aligner replacement is
difficult to explain [170]. Therefore, orthodontists may adopt a cautious approach towards
the widespread use of AI-driven remote monitoring tools.
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2.3.3. Clinical Documentation

Clinical photos and radiographs are routinely taken for diagnosis and treatment
monitoring. AI can aid in classifying and categorizing these images, thereby enhancing
the efficiency of clinical practice. Ryu et al. applied CNNs to automatically classify facial
and intraoral photographs, including four facial photos and five intraoral photos. The
CNN model obtained an overall valid prediction rate of 98% [159]. Li et al. employed a
Deep hidden IDentity (DeepID)-based deep learning model and expanded the categories
of orthodontic images into a total of 14, comprising 6 facial images, 6 intraoral images,
1 panoramic film and 1 lateral cephalogram. The proposed model used deep convolutional
networks for feature extraction and joint Bayesian for the verification process. As a result,
the DeepID model not only reached a high accuracy of 99.4% but also significantly improved
the computational speed [160].

3. Limitations and Future Perspectives

The continuous evolution of AI has brought significant advancements in its application
in orthodontics. In this review, we comprehensively introduced the recent advances
in the application of AI in orthodontics, including diagnosis, treatment planning, and
clinical practice. These studies suggest that the application of AI in orthodontics has made
promising progress and has great potential for wider clinical applications in the near-future.
However, there are still some limitations that may preclude the envisioned application of
AI in orthodontics.

Firstly, the scarcity and low generalizability of training data render the current research
less reliable. Taking studies incorporated in this review as an example, some AI models
used to assist decision making did not include a diverse range of representative case types
in the training data; although obtaining promising accuracy, their prediction for those
rare deformity types is questionable. Obtaining a significant amount of high-quality data
remains challenging, especially data that require manual annotation by experienced experts.
A series of measures are expected to alleviate the severity of data insufficiency, such as
transfer learning, data augmentation, semi-supervised learning and few-shot learning.
However, the effectiveness of these methods remains limited [171,172]. Transfer learning
refers to applying pre-trained models in a different but related domain, thereby reducing
the dependence on extensive training data. However, this approach may exhibit low gener-
alization capabilities when applied to a new domain [173]. Data augmentation can increase
sample size through altering characteristics of existing data or generating synthetic images,
but it cannot improve the diversity in biologic variability [171,174]. Semi-supervised learn-
ing is suitable when annotated data are limited, but high quality of the annotated data and
enough unannotated data are still required [171]. For few-shot learning, its lack of special-
ized data and standard evaluation frameworks may hinder its further application [172].
Nowadays, due to ethical concerns and data protection issues, data sharing is still chal-
lenging. AI models trained with data of low generalizability would be biased. Federated
learning is a distributed and decentralized machine-learning approach that allows cross-site
collaboration without sharing data directly [175,176]. Blockchain, as a transparent, secure
and immutable distributed shared database, provides a secure platform for data sharing
and storage [177,178]. The combination of blockchain technology and federated learning is
expected to facilitate data sharing through multisite collaboration without compromising
data privacy, thereby providing large and more-diverse datasets [179,180].

Secondly, while a considerable amount of the literature has explored the application
of AI in orthodontics, it remains challenging to directly compare different studies due
to variations in study designs, dataset sizes, and evaluation metrics. To address this
issue, Norgeot et al. proposed minimum-information-about-clinical-artificial-intelligence
modeling (MI-CLAIM) in order to introduce comparable degrees of transparency and
effectiveness to clinical AI modeling [181]. The MI-CLAIM checklist not only facilitates the
assessment of the clinical impact of AI study but also enables researchers to replicate the
technical design process rapidly.
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In addition, despite the impressive performance of AI algorithms, particularly deep
learning, their lack of interpretability has raised concerns. The inherent black-box nature of
AI makes it challenging for human experts to interpret the AI prediction and determine
whether AI made the correct decision based on erroneous reasoning [182]. Explainable AI
(XAI) techniques aim to demystify the underlying logic and make the AI algorithms more
transparent, explainable and trustable [182,183]. Many XAI approaches, such as gradient-
weighted class activation mapping (Grad-CAM) and DeConvNet, have been proposed.
These methods can reveal the features that contribute to the decision-making process. For
example, Grad-CAM and DeConvNet can generate heatmaps to highlight the contributing
regions of the input images [184–186]. Hopefully, these methods can be more extensively
applied to orthodontics-related AI models in the future [182].

Last but not least, overfitting is a common issue in the whole field of AI. This means
the model performs excessively well in the training datasets but shows unsatisfactory per-
formance in the testing dataset [187]. Factors like data insufficiency, low data heterogeneity
and excessive variables could all lead to overfitting [188]. Methods like improving data
samples, data augmentation, regularization, cross-validation and specific algorithms have
all been reported to prevent overfitting [171,189–191]. However, not all the studies reported
in this review have taken measurements to avoid overfitting.

Although AI has been extensively explored in orthodontic treatment, there are still
several other areas where it could be further investigated, for example, the automated
detection of orthodontic treatment needs like the index of orthodontic treatment need
(IOTN) and index of orthognathic functional treatment need (IOFTN) [192,193]. Currently,
AI excels mostly in orthodontics diagnosis, yet it has limited guidance on the treatment
process. Orthodontists may encounter various challenges throughout the entire orthodontic
treatment, including correcting deep overbites and avoiding bone dehiscence or fenestra-
tion. Using AI to aid in preventing or addressing these issues could also be a potential
area for future development. As clinical data continue to grow and AI computing power
improves, there is no doubt that AI will significantly advance the field of orthodontics.

4. Conclusions

AI has shown manifold applications in orthodontics, contributing to diagnosis, treat-
ment planning and clinical practice. At present, AI still cannot fully replace human experts,
but it can serve as a quality-assuring component in clinical routine. With improvement in
data availability, computing power and analytics methods, it is believed that AI can better
assist clinical orthodontic care.
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