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Abstract: Healthy lifestyle is one of the most important factors in the prevention of premature deaths,
chronic diseases, productivity loss, obesity, and other economic and social aspects. The workplace
plays an important role in promoting the physical activity and wellbeing of employees. Previous
studies are mostly focused on individual interviews, various questionnaires that are a conceptual
information about individual health state and might change according to question formulation,
specialist competence, and other aspects. In this paper the work ability was mostly related to the
employee’s physiological state, which consists of three separate systems: cardiovascular, muscular,
and neural. Each state consists of several exercises or tests that need to be performed one after
another. The proposed data transformation uses fuzzy logic and different membership functions with
three or five thresholds, according to the analyzed physiological feature. The transformed datasets
are then classified into three stages that correspond to good, moderate, and poor health condition
using machine learning techniques. A three-part Random Forest method was applied, where each
part corresponds to a separate system. The obtained testing accuracies were 93%, 87%, and 73% for
cardiovascular, muscular, and neural human body systems, respectively. The results indicate that
the proposed work ability evaluation process may become a good tool for the prevention of possible
accidents at work, chronic fatigue, or other health problems.

Keywords: work ability evaluation; physiological activity; expert system; random forest algorithm;
biomedical systems

1. Introduction

The lack of physical activity is increasing, which diminishes individual and organi-
zational health. Healthy lifestyle is one of the most important factors in the prevention
of premature deaths, chronic diseases, productivity loss, obesity, and other economic and
social aspects [1]. Common mental disorders such as depression, anxiety, and stress-related
disorders have high consequences around the world, which may lead to premature death,
cardiovascular diseases, or cancer [2]. In addition, an appropriate working environment
plays an important role in recovery, adaptation, and returning to work after various dis-
eases such as COVID-19 [3] or stroke [4], or with disabilities such as hearing loss [5]. The
workplace is one of the most important factors to promote physical activity [6]. However,
there is a lack of qualitative evidence exploring workability and its connection to nervous,
muscular, and cardiovascular systems of the human body.

In the literature, various studies have focused on a particular job or professions.
Research such as [7,8] analyze job satisfaction and stress among doctors or dentists. Con-
sidering more dangerous industries, such as workers in the construction field, the non-
traditional hazards are analyzed as a large impact on health and injuries [9]. These and
similar papers describe how working conditions affect health and productivity. Meanwhile,
other scientists are more interested in patients with specific pathologies or symptoms.
In [10], the outpatients of a hemodialysis center are considered. The program focuses on
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decreasing dietary sodium and increasing habitual physical activity. Glucose monitoring
at the workplace could also be a good tool for exerting positive effects on compliance as
well as functioning at work [11]. Other scientific fields are related to elderly people and
their work efficiency or retirement plans [12]. These and similar research provide general
information and insights. However, most of them use only survey data that may not be
applicable to other research groups.

In general, workability can be defined as the individual‘s ability to fulfill the demands
of the labor market [13]. The main characteristics that define workability are professional
competence, motivation, work requirements, work environment, health, occupational
virtues, and attitudes [14]. This research focuses on mental and physical health factors and
proposes a new framework in measuring individual work abilities.

The structure of this paper is as follows: Section 2 highlights the recent literature on
work ability and physiological activity in workplaces evaluation techniques. Experimental
design, together with the data description and proposed methods are presented in Section 3.
Section 4 consists of the data analysis and transformation using membership functions,
the Random Forest algorithm, and its implementation to the health feature classification
process. Finally, the discussion and conclusions for this paper are presented in Section 5.

2. Related Work

A World Health Organization Heath and Work Performance Questionnaire (HPQ)
was designed as a self-report instrument to estimate the relationship between workplace
environment and health problems [15]. The main focus was on reduced job performance,
sickness absence, and work-related accidents/injuries. The reported results show that
HPQ generates meaningful measures of work performance and absenteeism. Even though
the HPQ may be used to detect and monitor the overall effects of allergies, migraine, etc.,
it cannot tell what aspects of performance are affected (e.g., motor skills, concentration,
memory, etc.).

The literature studies related to workability may be divided into two main categories
that focus on Mental Health Problems (MHP) and Physical Health (PH) or disabilities.
In [16] the study had a qualitative design based on a phenomenographic approach. The
study revealed that a structured interview may identify two main categories: experiences
of employees with MHP and strategies to handle the effects of MHP in the workplace.
However, the study included only 12 participants, which made it hard to draw overall
conclusions. Additionally, the interviews could be more time consuming to make them
applicable to a higher number of participants. A higher number of participants were
included in [17], where work ability perception and cognitive performance were considered.
The results showed that work-directed interventions must be applied to work ability
perception to improve mental health conditions.

Previous studies also indicated a relationship between corrective exercises and
neck/shoulder pain, sick leave, posture, muscular activity, and workplace pain in of-
fice workers [18]. The findings revealed significant changes in the eight-week corrective
exercise program and confirmed that the supervised intervention could be more effective
than the un-supervised intervention. Team sport activities in the workplace may also be a
good health promoting method that influences physical activity behavior and cognitive
skills [6].

There have been some exploratory studies on electrocardiographic (ECG) and elec-
troencephalographic (EEG) signals and workload analysis to alert to possible human errors
and accidents [19]. Another study [20] combined questionnaires (general heath and inter-
national physical activity, occupational physical activity), human physical characteristics
(such as body mass index, diastolic and systolic blood pressure, waist circumference), tele-
vision, and other factors to analyze workplace activity. These and similar studies provide
strong evidence that the workplace is a prime area where interventions to reduce sitting
time and increase physical activity should be introduced.
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Various healthcare systems that consist of different sensors, such as electrodes and
location-based and motion sensors, always involve imperfection and uncertainty that may
cause wrong inference on the environment. The uncertainty needs to be minimized for
better representation of the knowledge of the patient. To avoid fluctuation in variable
values, the multi-grade fuzzy approach was selected. Fuzzy logic is a good tool when data
encompass great complexity and takes the inadequate information into consideration to
overcome imprecise inputs [21]. Multi-grade fuzzy logic has been used in different health-
care fields and contexts. For example, in [22] a pilot study of healthcare service quality was
analyzed using a questionnaire of twenty-three criteria. Others use fuzzy-logic techniques
together with neural networks. For example, [23] predicted the deterioration of reaction
state when people have neurological movement disorders and [24] assessed nutrition-
related factors to determine the likelihood of geriatric patient health risks associated with
specific syndromes.

In this paper, a novel framework is presented for the work ability evaluation process,
where fuzzy logic expert system and machine learning techniques are combined. The
presented membership functions are designed for the data transformation, where different
thresholds depend on health conditions. All transformed feature values are classified using
the Random Forest algorithm, and recommendations are proposed. To make sure that all
physiologic features are evaluated, the cardiovascular, muscular, and neural systems were
analyzed.

3. Materials and Methods

In this paper, the proposed technique divides the initial dataset into three main
categories: C1, C2, and C3, which correspond to a good health state (C3), moderate health
condition (C2), or health condition with drawbacks (C1). A novel framework consists of
three main steps:

Data transformation. Expert system evaluation using thresholds of each feature
(membership functions). The data are converted into scores (from 1 to 5). The final grade of
the physiological state for every person is the sum of scores of all features.

Three-class data split. The final grades of each person are divided into three classes
corresponding to the first and third quartiles. The C1 class contains 25% of the data that
is below the middle number between the minimum value and the median (also known
as the lower quartile, Q1). The C3 class corresponds to the third quartile (also known as
the upper quartile, Q3), which is the middle value between the median and the maximum
value [25]. The C1 and C2 classes represent a poor health condition that need to be improved.
Meanwhile, C3 contains the rest of the data and represents the appropriate health state.

Random Forest optimization. Using the RF model, the main features are extracted and
classified according to the initial classes: C1, C2, and C3.

3.1. Data Gathering and Statistics

The designed system consists of a testing environment that includes sensors (Polar
belt V10), smart device (mobile phone or tablet), and a specialist client device. The data
are gathered using Polar belt V10 and a mobile application that could be installed on the
smartphone or tablet. When all tests are finished, the data are sent to the cloud-based system
where specialists can see the results and statistics of all participants and make additional
evaluation if needed. After the evaluation process, each person receives feedback about
their health condition and recommendations on how to improve it. All this information is
visible in their smart device.

For the period 2019–2021, there were five events where 98 recruited workers were
tested: 57 female, 41 male, age 38.02 ± 11.77 years, height 173.94 ± 9.76 cm, weight
75.75 ± 14.72 kg. In addition, they were asked to fill the SF 36, Baecke physical activity and
pain questionnaires and indicate the type of work they did. From all workers, 61 percent
indicated that they did sports, including walking, running, tennis, yoga, etc. In indication
of type of work (scale from 1 to 5), average of sedentary work was 4.41, standing work
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was 2.59, working with weights was 1.49, and a job where it was necessary to walk was
3.01. Finally, workers indicated 2.64 (scale from 1 to 5) that after the working day they were
physically tired.

Tests and measurements were divided into three groups according to the complex sys-
tems [26,27] approach, where the human body consists of three main parts: cardiovascular,
muscular, and nervous systems. By this theory, tests and exercises were split into three
parts, as shown in Figure 1. In the muscular system, muscle endurance, leg strength, and
agility are evaluated. The nervous system evaluation process consists of static balance and
tapping tests. Finally, in the cardiovascular system, the Ruffier test [28] and blood pressure
measurements are considered.
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Figure 1. Three-part human body system and exercises that represent each part.

The statistics of different parameters are presented in Table 1, where average values
and standard deviations are shown. Different features have various metrics that lead to
high differences in scale: some values barely reach value 1 (such as static balance test
with left or right leg while eyes are open), and others gain high values (like in the back
endurance test). To overcome the scaling issue in the health evaluation process, all feature
values were transformed using the membership functions of the proposed expert system

Table 1. Basic statistics of each feature in health evaluation system.

Parameter Mean Parameter Mean Parameter Mean Parameter Mean

Systolic BP,
mmHg 124.40± 12.99 Left Plank, s 63.06 ± 33.02 Stand

up—bend 6.02 ± 0.77 Left eyes
closed 2.99 ± 2.58

Diastolic BP,
mmHg 77.56 ± 8.33 Right plank, s 65.04 ± 32.87 Turn over

(right) 3.57 ± 1.17 Right eyes
close 3.08 ± 2.59

Ruffier index 8.88 ± 4.79 Left leg, norm
% 19.60 ± 4.03 Turn over (left) 3.51 ± 1.03 Poverty, % 6.52 ± 2.43

Back
endurance, s 251.89± 64.72 Right leg, norm

% 20.45 ± 4.57 Left eyes
opened 0.95 ± 0.58 Mistakes, % 3.57 ± 1.28

Abdomen
endurance, s 191.96± 92.34 Sit down-

stand up, s 6.09 ± 0.92 Right eyes
opened 0.89 ± 0.43 Mobility, % 6.37 ± 0.74

3.2. Fuzzy Logic

Fuzzy logic is a class of logic operations where the truth values of variables may be
any real number between 0 and 1 [22]. Triangle or trapezium membership functions are
convenient for the consensus and group-based decisions regarding fuzzy set definition [21].
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In this paper, multi-level trapezium membership functions are defined for both inputs
and outputs. The trapezium membership function is used to compute fuzzy membership
values of the sensor data (1) and consists of five linear functions:

f (x; a1, a2, a3, a4) =



0, x < a1
x−a1
a2−a1

, a1 ≤ x < a2

1, a2 ≤ x < a3
x−a4
a3−a4

, a3 ≤ x < a4

0, x ≥ a4

; (1)

fle f t(x; b1, b2) =


1 x < b1

x−b2
b1−b2

b1 ≤ x < b2;
0 b2 ≥ x

(2)

fright(x; c1, c2) =


0 x < c1

x−c2
c1−c2

c1 ≤ x < c2;
1 c2 ≥ x

(3)

where a1, a2, a3, a4 or b1, b2 or c1, c2 are the membership value for each input, x. The side
membership functions are represented in (2) and (3) formulas as a left and right curve,
respectively. Both curves consist of three linear functions. The graphical representation of
all possible membership functions is shown in Figure 2. It should be noted that each feature
has both side membership functions (left and right) and one or three trapezium functions.
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3.3. Machine Learning Approach Using Random Forest Algorithm

In this paper, the proposed framework consists of the data transformation using
membership functions. All physiological data were scaled from 1 to 5 according to different
thresholds that were defined by the expert system. In the next iteration, the data are divided
into three categories that represent good, moderate, or poor health condition. All scores
were summed, and the final grade was estimated. Total values that are lower Q1 (lower
quartile) or higher than Q3 (upper quartile) are considered as bad or good health conditions
with class names C1 and C3, respectively. Other data that fall between whose two quartiles
are marked as class C2 and represent a moderate health condition that might be easily
improved by following proposed recommendations. Meanwhile, if the score appears in
class C1, most likely a person has several health issues and needs to contact a doctor. This
type of recommendation should also appear in the designed expert system. The formula
for the proposed data transformation technique is shown below:

f (x) =


0, x ∈ [min; Q1]
1, x ∈ [Q1; Q3]

2, x ∈ [Q3; max]
; (4)
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where min and max are the minimum and maximum values of x; Q1 = 1
4 (n + 1);

Q3 = 3
4 (n + 1), and n is the total number of x values. It should be noted that value 0

represents values of the C1 class, 1 represents C2 class values, and 2 indicates the C3 class.
When data transformation is applied, the machine learning model is constructed for the
health evaluation process to classify gathered data.

The Random Forest (RF) algorithm is a machine learning technique that consists of
an ensemble of randomized classification or regression trees. It generates many decision
trees to improve the performance of the final prediction model [29]. Each decision tree
corresponds to a set of limits that are hierarchically organized and randomly applied from
a root node [30]. One of the most important advantages of using RF classifiers is that
this algorithm can model non-linear relationships, and the model may include numerous
random decision trees to improve accuracy.

If only two classes are considered in the classification task, the confusion matrix
consists of four categories: True Positive (TP) (refers to the number of predictions where
the classifier correctly predicts the positive class), True Negative (TN) (refers to the number
of predictions where the classifier correctly predicts the negative class), False Positive (FP)
(refers to the number of predictions where the classifier incorrectly predicts the negative
class as positive), and False Negative (FN) (refers to the number of predictions where the
classifier incorrectly predicts the positive class as negative).

In the multi-class classification problem, there are no positive or negative classes,
and all classes together with their labels are considered to be equal. In this case TP, TN,
FP, and FN should be found for each individual class [31]. In this paper, the three-class
problem is discussed, where the confusion matrix can be described as shown in Table 2,
where TC1, TC2, and TC3 refer to the number of predictions where the classifier correctly
predicts classes C1, C2, and C2 respectively. In addition, FCiCj, where i 6= j and i, j = 1, 2, 3,
corresponds to the faulty predicted i-th class as the class j.

Table 2. Three-class confusion matrix.

Predicted Class
Class 1 (C1) Class 2 (C2) Class 3 (C3)

Actual class
Class 1 (C1) TC1 FC2C1 FC3C1
Class 2 (C2) FC1C2 TC2 FC3C2
Class 3 (C3) FC1C3 FC2C3 TC3

Using metrics that are presented in Table 2, for each class i, the true positive rate (TPi),
the false positive rate (FPi), and the false negative rate (FNi) are defined as follows:

TPi = TCi, (5)

FPi =
r

∑
j=1
j 6=i

FCiCj, (6)

FNi =
r

∑
j=1
j 6=i

FCjCi, (7)

where r is the number of classes. In the multi-class classification task, the precision and
recall values are averaged [32]. The micro-averaged precision (mi P) and micro-averaged
recall (mi R) values are defined below:

mi P =
∑r

i=1 TPi

∑r
i=1(TPi + FPi)

=
r

∑
i=1

TCi; (8)

mi R =
∑r

i=1 TPi

∑r
i=1(TPi + FNi)

=
r

∑
i=1

TCi. (9)
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Furthermore, the micro-averaged F1 score (mi F1) is defined as the harmonic mean of
these quantities:

mi F1 = 2
mi P×mi R
mi P + mi R

=
r

∑
i=1

TCi. (10)

It should be noted that mi P, mi R, and mi F1 are all equal to the sum of the diagonal
elements of the confusion matrix. Because of this, the micro scale metrics are not very
informative. In [33], the alternative multi-class precision and recall definition is proposed.
Macro-averaged precision ma P and macro-averaged recall (ma R) are defined as follows:

ma P =
1
r

r

∑
i=1

TPi
TPi + FPi

, (11)

ma R =
1
r

r

∑
i=1

TPi
TPi + FNi

. (12)

Finally, the macro-F1 score is defined as the harmonic mean of ma P and ma R quanti-
ties:

ma F1 = 2
ma P×ma R
ma P + ma R

. (13)

Overall accuracy in the multi-class classification problem can be defined as follows [31]:

ACC =
∑r

i=1 TPi

∑r
i=1 TPi + ∑r

i=1 FPi + ∑r
i=1 FNi

. (14)

4. Results
4.1. Proposed Fuzzy System

An expert system is part of a computer program that allows the solving of a particular
problem by using the knowledge of experts in a specific domain and computational decision
procedures. In this article, the described expert system for functional state evaluation is
split into three components. In the first part, variables that correspond to cardiovascular
system decision rules are described with three input groups: blood pressure and Ruffier
index. Parameters for the mental fatigue evaluation expert system values are presented
in Table 3. The second component contains parameters of muscular system evaluation. It
consists of thirteen input groups. Parameter values for the muscular system evaluation in
the expert system are presented in Table 4. The third component contains parameters of the
nervous system. It consists of five input groups. Parameter values for the nervous system
evaluation in the expert system are presented in Table 5. All fuzzy logic parts are in the
same expert decision logic base, depending on possible values (3 or 5), which is composed
of logical rules synthesized from the expertise of professionals in work medicine, sports
medicine, and rehabilitation. The expert system was prepared based on recommendation
from researchers of Lithuanian Sports University and Lithuanian Health Sciences. The
components of different systems apply different membership functions with three or five
indicators, which are the outcome of previous research and can be expressed as transparent
and human-readable logic. The decision output is produced by using a first order weighted
average inference engine, which is experimentally validated in Python programming
language. In some cases, such as systolic and diastolic blood pressure (see Table 3), the
upper and lower values gain a lower score than the middle ones due possible health issues
when blood pressure is too high or too low. These threshold values are used to construct
the membership functions (see an example in Figure 3).
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Table 3. Measured parameters and values for the cardiovascular system evaluation in the proposed
expert system.

Input Variable
(Name)

Resulting
Value and

Units

Low Value
Threshold

Low-Average
value

Threshold

Average
Value

Threshold

High-Average
Value

Threshold

High Value
Threshold

Systolic blood
pressure (BPhigh) ABP (mmHg) <112 >130 112–130

Diastolic blood
pressure (BPlow) ABP (mmHg) <77 >87 77–87

Ruffier index
(RFTest) Number >10 6–10 3–6 0–3 <0

Table 4. Measured parameters and values for the muscular system evaluation in the proposed expert
system.

Input Variable
(Name)

Resulting
Value and

Units

Low Value
Threshold

Low-Average
Value

Threshold

Average
Value

Threshold

High-Average
Value

Threshold

High Value
Threshold

Back/Abdomen muscles
endurance (Back and

Abdomen)
s <120 120–180 180–240 240–300 >300

Left/Right side plank
(LeftPlank and

RightPlank)
s <30 30–60 60–90 90–120 >120

Asymmetry of side
muscles (PlankAs) s >90 50–90 <50

Left/right leg strength
(LeftLeg and RightLeg) % of height <15 15–20 >20

Sit down-stand up /bend
(SitDown and Bend)

s (5
movements) >10 8–10 6–8 4–6 <4

Turn over right/left
(TurnToRight and

TurnToLeft)
s >8 6–8 4–6 3–4 <3

Table 5. Measured parameters and values for the nervous system evaluation in the proposed expert
system.

Input Variable
(Name)

Resulting
Value and

Units

Low Value
Threshold

Low-Average
Value

Threshold

Average Value
Threshold

High-Average
Value

Threshold

High Value
Threshold

Static balance 30 s
open/closed

eyes/left/right leg
standing (LeftOpened,

RightOpened,
LeftClosed,

RightClosed)

Number of
mistakes >11 6–10 3–5 1–2 0

CNS mobility
(Mobility)

Max average
times/5 first s <6 6–7.5 >7.5

CNS poverty (Poverty) Absolute value,
% <5 5–25 >25

Mistakes (Mistakes) % >5 3–5 <3
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For the decision-making algorithm, the data are split into categories using five thresh-
olds. Each threshold refers to health evaluation by giving a corresponding score. If the
feature value falls into a low value threshold, the score of this part is 1. Low-average value,
average value, and high-average value thresholds gain scores of 2, 3, and 4, respectively.
Finally, values that fall in the high value threshold are worth 5 points and indicate the
perfect value of each feature. Due to the possible data variability, values that are close
to the threshold are defined using linear curves with positive or negative slopes (see an
example in Figure 3). Gaps between thresholds are not defined in advance and depend on
the standard deviation of the feature in each threshold. For example, if the threshold value
is 25 and data with values above the threshold have standard deviation equal to 8, then a
curve with a negative slope will be drawn between values 21 and 29. An example of data
transformation using membership functions is shown in Figure 4, where the total score
(sum of all transformed values) is 69.
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4.2. Expert System Optimization Using Random Forest Method

At the beginning of this research, the Random Forest model was constructed and
applied to all 21 features at once. The importance of each feature was estimated using
entropy [34], where values below 0.05 are considered as not statistically significant and
could be removed from the model. According to the obtained results, only variables that
belong to the muscular system are considered as important in the RF model (see Figure 5)
and cardiovascular, together with neural systems, are not included. This may lead to
incorrect health evaluation due to lack of features from other human body systems that are
essential in the work ability evaluation process.
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In 50 iterations, the average values of overall accuracy, micro and macro precision,
recall, and F-1 scores were estimated. The data were split into training and testing datasets
by 70% and 30%, respectively. To make sure that the model did not overfit the training
data, 5-fold cross-validation was applied to all of the RF models presented in this paper.
The results from Table 6 show that the testing accuracies of RF models may vary from
60% to 67% if all features are considered. This led to the conclusion that three systems
(cardiovascular, muscular, and nervous) should be evaluated separately, and three new RF
models were constructed. Due to the data split, model testing accuracies increased (see
Table 6), and the RF model of cardiovascular system even reached 93%. However, health
issues of nervous systems are more difficult to detect (reaching only 73% testing accuracy).
This might be caused by the low number of features that represent this system or imprecise
data split into good, moderate, and poor health conditions. According to these results,
three separate models appear to be a better work ability evaluation technique. Examples
of testing data classification results into three classes are presented in Figure 6, where the
confusion matrices of each system are shown. Furthermore, it can be noticed that muscular
and neural systems have a relatively low number of values in class C1, which may also
result in bad classification accuracies of those models.

Table 6. Averaged RF model accuracy, precision, recall, and F1 scores.

Measurement All Features
Separate Systems

Cardiovascular Muscular Nervous

Accuracy, ACC 0.63 0.93 0.87 0.73
Micro precision, mi P 0.63 0.93 0.87 0.73
Micro recall, mi R 0.63 0.93 0.87 0.73
Micro F− 1 score, mi F1 0.63 0.93 0.87 0.73
Macro precision, ma P 0.67 0.95 0.89 0.82
Macro recall, ma R 0.60 0.93 0.85 0.67
Macro F− 1 score, ma F1 0.62 0.94 0.86 0.68
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installed on a smartphone or tablet. All exercises are listed at the top of the program and 
are performed one after another. The time and score of every session are visible for the 
user. After profile information is filled out and all exercises are completed, the data are 
sent to the specialist client device and all the results, together with basic statistics, are 
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Figure 6. Confusion matrixes for separate systems: (a) cardiovascular; (b) muscular; (c) neural.

The proposed work ability evaluation systems were constructed from separate RF
health evaluation models. The final recommendations were generated according to classifi-
cation results of cardiovascular, muscular, and neural systems. The schematic block of the
proposed expert system is shown in Figure 7. The red circles represent the cardiovascular
system, blue represents the muscular system, and yellow the neural system. All summed
feature values were scaled and put into the hexagon web. Red dots indicate the asymmetry
between left and right sides in muscle endurance side plank, static balance, or legs strength
tests.
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4.3. Designed Mobile App Application and Example of Recommendations

The created mobile application consists of the registration form and activity tests
(examples are shown in Figure 8). This application has a user-friendly interface and can be
installed on a smartphone or tablet. All exercises are listed at the top of the program and
are performed one after another. The time and score of every session are visible for the user.
After profile information is filled out and all exercises are completed, the data are sent to
the specialist client device and all the results, together with basic statistics, are visible for
the healthcare specialist (examples are visible in Figure 9). Visual representation is shown
in the hexagon web, where blue color corresponds to normal health condition and red color
depicts individual health evaluation results (see Figure 9b). The same web is visible for the
user in the mobile application.
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Figure 9. An example of the specialist client device results: (a) statistics of the event; (b) evaluation
results presented as a hexagon web.

An example of listed recommendations to improve work ability is presented in
Figure 10. This information is provided in a Portable Document Folder (PDF) format
in the client and specialist devices. The training plan is prepared for the 4 week period, and
the same tests should be repeated in that time. Furthermore, if there are possible serious
health indications, the program suggests contacting the doctor for further investigation to
avoid accidents in the workplace.
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5. Discussion

Previous studies have indicated what affects work ability in general. The research
in Finland revealed that employees at ages 30–64 years are mostly affected by health and
work environment-related causes [35,36]. Thirty-three percent of work ability is affected by
physiological requirements, mental tension, and support. It was noticed that to improve
work ability, employers should focus on employees’ health, and interventions should
occur even at younger ages [37]. Other studies indicated that common health behavior in
recent years was influenced by COVID-19 due to lockdown and social distancing, which
caused changes in physical activity [38]. According to these and similar research it could
be noticed that physical and mental health are the most important factors in work ability
evaluation systems. The same conclusions were obtained in [39], where suggestions were
proposed considering that physical exercises via online channels could help to maintain
people’s physical activity while they either had to or preferred to stay at home. However,
previous studies are mostly focused on individual interviews, various questionnaires
that contained conceptual information about individual health state and might change
according to question formulation, specialist competence, and other aspects [6,15–18]. In
this paper, the work ability was mostly related to the employee’s physiological state, which
consists of three separate systems: cardiovascular, muscular, and neural. Each state consists
of several exercises or tests that need to be performed one after another.

In the literature, work ability is mainly related to muscular, cardiovascular, or mental
disorders [40]. Even though the human body consists of many other systems, such as the
urinary system, endocrine system, etc., studies related to work ability evaluation mainly
focus on muscular, cardiovascular, or mental systems. An investigation of the muscular
system is often performed to evaluate how disorders might negatively affect abilities to
perform daily activities, self-care, and work [41]. Previous research has also shown how
stress may seriously affect the autonomic nervous system as well as impacting cognitive
performance [42]. The causes of stress might be irregular or long working hour shifts,
which are often associated with physiological sleep rhythms alterations [43]. Finally, car-
diovascular diseases are commonly related to long working hours and overworking [44].
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Even though human working abilities might depend on various factors, this paper also
focuses on muscular, cardiovascular, and neural human body systems because they can
be easily evaluated with no invasive procedures, additional devices, or long-lasting exper-
iments. The obtained results indicate that the proposed work ability evaluation process
may become a good tool for the prevention of possible accidents at work, chronic fatigue,
or other health problems.

6. Conclusions

The data of this study were gathered from five separate events in Lithuania from 2019
to 2021, where 98 workers (57 female, 41 male, age 38.02± 11.77 years, high 173.94 ± 9.76 cm,
weight 75.75 ± 14.72 kg) were tested and evaluated. The Baecke physical activity and
pain questionnaires were given to all participants, and 61% indicated that they did sports,
including walking, running, tennis, yoga, etc. In addition, workers indicated 2.64 (scale
from 1 to 5) that after a working day they were physically tired.

In the proposed physiological activity evaluation process, 21 features were selected
and analyzed. The realized data transformation technique uses fuzzy logic and different
membership functions with three or five thresholds, according to the analyzed physiological
feature. The transformed datasets were then classified into three stages that corresponded
to good, moderate, and poor health condition using machine learning techniques. Each part
was considered as a separate cardiovascular, muscular, or neural system where features
were classified using Random Forest algorithms.

It was noticed that the physiological state evaluation process does not necessarily
require a huge number of exercises or tests to make sure that necessary recommendations
are provided. In the proposed expert system for the cardiovascular system classifier, only
three features were included, and 93% accuracy was reached. The results indicate that the
proposed work ability evaluation process may become a good tool for the prevention of
possible accidents at work, chronic fatigue, or other health problems. Furthermore, the
proposed classifiers may help to create a semi-automated recommendation for employees
and reduce workload for the medical specialists.

7. Limitations

Even though 98 workers were recruited in this study, the number of participants should
be expanded to reach higher classification accuracies. In addition, in some studies [38,39]
gender, age, and type of work (physical or mental) differences were considered, and
statistically significant differences were obtained. Further analysis should also consider
these factors, and separate data subsets could be compared.

Furthermore, the proposed framework consists of data transformation and data split
into three categories (classes C1, C2, and C3) that are based on the first and third quartiles.
However, these metrics may not be the most efficient ones, especially when the data are
not distributed equally. Other metrics and data split proportions should be considered in
future research.

Finally, the RF model constructed for the neural system is not accurate enough, and
only 73% testing accuracy was reached. According to these results, the expert system
should be modified by including additional exercises or replacing existing ones. However,
this requires further investigation and higher datasets. It is also worth mentioning that
working abilities might be affected by other factors that are not evaluated in this research
because these do not belong to cardiovascular, muscular, or neural human body systems.
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Abbreviations

Abbreviation Definition
ACC Overall accuracy in the multi-class classification problem
BP Blood pressure
CNS Central nervous system
ECG Electrocardiogram
EEG Electroencephalogram
FN False Negative
FP False Positive
HPQ Work Performance Questionnaire
ma F1 macro-F1 score
ma P Macro-averaged precision
ma R Macro-averaged recall
MHP Mental Health Problems
mi F1 Micro-averaged F1 score
mi P Micro-averaged precision
mi R Micro-averaged recall
PH Physical Health
Q1 Lower quartile
Q3 Upper quartile
RF Random Forest
TN True Negative
TP True Positive
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