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Abstract: COVID-19 is the disease that has spread over the world since December 2019. This disease
has a negative impact on individuals, governments, and even the global economy, which has caused
the WHO to declare COVID-19 as a PHEIC (Public Health Emergency of International Concern).
Until now, there has been no medicine that can completely cure COVID-19. Therefore, to prevent
the spread and reduce the negative impact of COVID-19, an accurate and fast test is needed. The
use of chest radiography imaging technology, such as CXR and CT-scan, plays a significant role in
the diagnosis of COVID-19. In this study, CT-scan segmentation will be carried out using the 3D
version of the most recommended segmentation algorithm for bio-medical images, namely 3D UNet,
and three other architectures from the 3D UNet modifications, namely 3D ResUNet, 3D VGGUNet,
and 3D DenseUNet. These four architectures will be used in two cases of segmentation: binary-class
segmentation, where each architecture will segment the lung area from a CT scan; and multi-class
segmentation, where each architecture will segment the lung and infection area from a CT scan.
Before entering the model, the dataset is preprocessed first by applying a minmax scaler to scale the
pixel value to a range of zero to one, and the CLAHE method is also applied to eliminate intensity
in homogeneity and noise from the data. Of the four models tested in this study, surprisingly, the
original 3D UNet produced the most satisfactory results compared to the other three architectures,
although it requires more iterations to obtain the maximum results. For the binary-class segmentation
case, 3D UNet produced IoU scores, Dice scores, and accuracy of 94.32%, 97.05%, and 99.37%,
respectively. For the case of multi-class segmentation, 3D UNet produced IoU scores, Dice scores, and
accuracy of 81.58%, 88.61%, and 98.78%, respectively. The use of 3D segmentation architecture will be
very helpful for medical personnel because, apart from helping the process of diagnosing someone
with COVID-19, they can also find out the severity of the disease through 3D infection projections.

Keywords: COVID-19 CT-scan; 3D image segmentation; 3D UNet; 3D ResUNet; 3D VGGUNet;
3D DenseUNet

1. Introduction

COVID-19 is an infectious respiratory disease caused by SARS-CoV-2 (Severe Acute
Respiratory Syndrome Corona Virus 2). This disease has spread over the world since
December 2019; it started in one of the cities in China, namely Wuhan, and caused a global
pandemic [1,2]. COVID-19 is recognized as a global pandemic because this disease is a
highly contagious disease that has caused the WHO (World Health Organization) to declare
this COVID-19 disease a PHEIC (Public Health Emergency of International Concern).
This is due to the fact that this disease has a significant negative impact on individuals,
governments, and even the global economy [3–6]. COVID-19 patients experience symptoms
ranging from asymptomatic to symptomatic, including illness, lethargy, fever, cough,
loss of smell and taste, and even the potentially fatal ARDS (Acute Respiratory Disease
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Syndrome) [7]. COVID-19 mostly affects the lungs, causing lung infection, but it can also
induce intestinal infections, resulting in digestive symptoms such as nausea, vomiting, and
diarrhea [8].

From 2019 to now, there has still been no medical treatment that has been proven to
cure COVID-19 in its entirety [9]. Therefore, one of the most needed precautions to reduce
the spread of this COVID-19 virus is accurate and fast testing. The most common COVID-19
disease detection technique used worldwide, and considered the gold standard for testing
for COVID-19, is RT-PCR (Reverse Transcription-Polymerase Chain Reaction) [9–11]. In
just 4 to 6 h, RT-PCR is able to identify the presence or absence of SARS-CoV-2 RNA from
respiratory specimens obtained by nasopharyngeal or oropharyngeal swabs [12]. However,
the drawbacks of the RT-PCR test are that this test requires a lot of medical personnel to
perform it manually, and each country has a limited stock of RT-PCR test kits. Furthermore,
The RT-PCR test has a fairly low sensitivity (range 70 to 90) [13], which causes a high
false-negative rate. This is due to many factors, including sample preparation and quality
control that is not very mature due to time pressure and the situations around the world
that are getting worse [14–16]. In addition to diagnosis using the RT-PCR test, there are
also other diagnoses that use chest radiography imaging, namely CXR (Chest X-Ray) and
CT-scan (Computed Tomography Scans). Both of these have proven to be more accurate
than RT-PCR, but it is necessary for a radiologist to identify and look for radiological signs
that show COVID-19 symptoms on the image. Although CXR diagnosis is generally less
expensive, faster, and exposes the patient to less radiation than CT-scan [17,18], CT-scan is
more recommended for more accurate diagnostic results than CXR.

CT-scan is one of examination tools to diagnose the existence of COVID-19 symptoms
trough radiological images [8,19]. The CT-scan is preferable because it can overcome
the RT-PCR test’s low sensitivity, so that when compared to RT-PCR, CT-scans increase
the accuracy and speed of diagnosis [20]. When compared with other chest radiography
imaging techniques, specifically CXR, CT-scans are more recommended in the diagnosis of
COVID-19 or lung disease in general because CT-scans are not affected by chest tissue, and
produce a three-dimensional image output, resulting in better visibility. In addition, one
of the significant advantages of CT-scans is their versatility, where CT-scans can diagnose
COVID-19 as well as non-covid diseases [16,21,22]. Although CT-scans have proven to be
more accurate in diagnosing COVID-19 or lung disease in general, in the diagnostic stage,
a radiologist is needed to diagnose and look for radiological signs that show symptoms of
COVID-19 on the images. Therefore, it is very necessary to automate the diagnosis of lung
disease using CT-scans. In addition to saving time and effort, it is also necessary to avoid
errors that occur when performed manually by a radiologist, since the diagnosis depends
on the accuracy and experience of the radiologist. Image segmentation is one of the keys in
the stage of COVID-19 disease diagnosis automation. With image segmentation, in addition
to being useful for knowing the required object segmentation area, it can also be useful
for knowing more about the characteristics of a disease from the segmented object area
used. Therefore, it is very important to know and find an image segmentation algorithm for
medical images, especially CT-Scans, that is effective in helping medical experts diagnose
COVID-19 diseases accurately and quickly [23].

With the rapid developments in the field of machine learning, many machine learn-
ing algorithms are used for medical image processing needs. One of the deep learning
algorithms that is currently the most widely used for medical image processing, or even
image processing in general, is the CNN (Convolutional Neural Network) algorithm. CNN
has been widely used to diagnose other diseases such as tumors, malaria, cancer, and
so on [24–27]. These studies confirm that CNN can also be used to detect the COVID-19
disease. In this study, the 3D UNet architecture and other three 3D UNet modification
architectures will be used to segment the lung (binary-class segmentation), and the lung
and infection (multi-class segmentation), on CT-scans. Seven models will be compared for
each segmentation case (binary and multi-class). The seven models are: pure 3D UNet,
3D ResUNet (ResNet152) without transfer learning, 3D ResUNet (ResNet152) with trans-
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fer learning, 3D VGGUNet (VGG19) without transfer learning, 3D VGGUNet (VGG19)
without transfer learning, 3D DenseUNet (DenseNet201) with transfer learning, and 3D
DenseUNet without transfer learning. The reason for using the 3D UNet architecture and
its modification, apart from the fact that the CT-scan data is already in 3D form, is that
3D UNet was chosen so that the image preprocessing and postprocessing processes are
simpler. That is different from when we use UNet (2D), with which it is necessary to first
separate each slice in the 3D image into one 2D image. Even though the use of the 3D UNet
architecture requires larger and more expensive computational resources than UNet (2D),
by using 3D UNet, we take advantage of the volume in the image and still consider the
image as a single 3D image.

The following are the research’s main contributions:

1. To effectively analyze CT-scan images, which are three-dimensional (3D), we have
employed 3D deep learning architectures that are capable of analyzing data in a single
3D unit. This approach is distinct from previous research on this problem, where
most studies have utilized two-dimensional (2D) architectures that require slicing
the 3D image into individual 2D slices. The implementation of 3D architectures can
improve the efficiency of CT-scan analysis by eliminating the need for preprocessing
before model input and streamlining the post-processing stage through the ability to
seamlessly project 3D images.

2. In this research, we have modified the 3D UNet architecture by replacing the encoder
with three classification architectures: 3D VGG19, 3D ResNet152, and 3D DenseNet201.
This resulted in three distinct image segmentation architectures: 3D VGGUNet, 3D
ResUNet, and 3D DenseUNet. To determine which architecture is the most effective,
we will compare the performance of these architectures using five evaluation metrics:
IoU score, Dice score, accuracy, and F1-score.

3. By using a 3D segmentation architecture on a CT-scan, in addition to being able to help
the COVID-19 disease diagnosis process, the 3D output generated from the model can
help medical personnel determine the severity of the disease, such as mild, moderate,
or severe, through a 3D infection projection that can be easily seen from the output
model that generates a file in 3D shape.

The remainder of this paper is structured as follows: In Section 2, several research
papers related to the diagnosis of COVID-19 using chest radiography imaging in general
and the use of semantic segmentation in CT-scan for COVID-19 diagnosis in particular are
discussed. The dataset, data preprocessing, proposed architecture in this study, metrics
evaluation, and model setting that were used in this study are explained in Section 3. In
Section 4, the result of each proposed architecture is explained and discussed. Finally,
Section 5 concludes the paper.

2. Related Works

This section contains works related to our research, including general works on
the diagnosis of COVID-19 using chest radiography imaging and the use of semantic
segmentation in a specific CT-scan dataset. These works serve as the foundation for our
investigation into efficient and effective methods for analyzing CT-scans for COVID-19
diagnosis using image segmentation techniques.

Because of the rapid advancement of technology, several researchers are contributing
to the creation of a COVID-19 diagnosis system that uses artificial intelligence with chest
radiography imaging media, including CXR and CT-scan. For the use of CXR media, many
researchers diagnose COVID-19 using classification methods. In [28], various deep learning
architectures, namely ResNet18, ResNet50, SqueezeNet, and DenseNet121, are used for
CXR classification, and most of these networks achieve a specificity rate of around 90%
and a sensitivity rate of 98%. In [29], COVID-Net was used to classify CXR images into
COVID-19, non-COVID, bacterial infection, and normal. Moreover, in [30], high-level
features were extracted using various ImageNet pre-trained models, and then all those
features were fed into SVM to classify the COVID-19 cases. In addition to using the
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classification method on CXR, some researchers also use the image segmentation method.
For example, in [31], researchers achieve state-of-the-art performance and can provide
clinically interpretable saliency maps, which are very useful for COVID-19 diagnosis. In
addition, in [32], researchers also applied the image segmentation method on CXR to
extend it to cases with extreme abnormalities. CT-scans, in addition to CXR, have been
shown in previous studies to be an extremely useful tool for diagnosing COVID-19 [33–35].
Practitioners and doctors use CT abnormalities that correspond to COVID-19. It has been
discovered that CT scans show discrete patterns that can be used to identify infected
individuals even in the early stages, making automatic CT medical imaging analysis an
attractive topic of research among researchers [35]. It has also been discovered that CT
diagnosis for COVID-19 anomaly detection can be performed prior to the onset of clinical
symptoms [36]. As a result, several research papers have been proposed for the automatic
early detection of COVID-19 using the classification and segmentation method infection
on CT images [37,38]. Table 1 presents a summary of the method we will use and various
previous studies regarding segmentation on CT-scan with the same dataset, namely the
COVID-19 CT Lung and Infection Segmentation Dataset [39].

Table 1. A summary of the recently published studies on image segmentation using the same dataset.

Method Summary

DMDF-Net [40]

DMDF-Net (Dual Multiscale Dilated Fusion Network) is proposed to produce robust segmentation of
small lesions in CT images. To achieve superior segmentation performance, this architecture utilizes the

power of multiscale deep feature fusion within the encoder and decoder modules in a mutually
beneficial manner.

UNet [9]
The UNet architecture is used for precise and fast segmentation of lung and infection areas from CT-scan.

CLAHE and cropping were also used in the preprocessing to remove the noise and only use the lung
area (region of interest) from each slice.

SSA-Net [41]

SSA-Net (Spatial Self-Attention Network) was created with the aim of automatically identifying areas of
infection on CT scans of the lungs. SSA-Net utilizes a self-attention mechanism to broaden the receptive
field and improve representation learning by extracting useful contextual information from deeper layers

without additional training. In addition, this architecture introduces a spatial convolution layer to
accelerate training convergence and strengthen the network.

CHS-Net [42]

CHS-Net (COVID-19 hierarchical segmentation network) is proposed to identify the COVID-19 infected
area from CT-scan. In this architecture, two models of RAIU-Net (Residual Attention Inception U-Net)
are connected in series, where in the first model a contour map of the lung will be generated and the

second model will identify the infected area.

SD-UNet [10]

SD-UNet, this architecture is the modified UNet architecture that combines the SA (Squeeze and
Attention) with the Dense ASPP (Dense Atrous Spatial Pyramid Pooling) module. In this architecture,
the SA module is used to fully exploit the global context information and strengthen the attention of

pixel grouping. The Dense ASPP is used to capture the multi-scale of COVID-19 lessons.

UNet-EfficientB0 [43] Using EfficientNetB0 as the backbone (encoder) on the UNet architecture

Various 3D UNet
(Proposed)

We used the 3D UNet architecture in this study, as well as various types of backbone (encoder) on the 3D
UNet architecture using no transfer learning and transfer learning. The backbones being tested in this

study are 3D ResNet152, 3D VGG19, and 3D DenseNet201.

Owais et al. [40] introduced DMDF-Net (Dual Multiscale Dilated Fusion Network);
this architecture is tailored for precise and fast segmentation of lung and infection areas
from CT-scans, and it achieved an IoU score of 67.22%, a Dice similarity coefficient of
75.7%, an average precision of 69.92%, a specificity of 99.79%, a sensitivity of 72.78%, an
enhance-alignment of 91.11%, and an MAE of 0.026. The use of CLAHE preprocessing and
only cropping the area of interest was carried out by Mahmoudi et al. [9] to improve the
image segmentation results when using the UNet architecture, resulting in a Dice score of
98% and 91% for the lung and infection segmentation tasks, respectively. Wang et al. [41]
developed a new segmentation architecture, called SSA-Net, with the aim of automatically
identifying areas of infection on CT-scans of the lungs. This architecture’s main idea is to
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utilize a self-attention mechanism to broaden the receptive field and improve representation
learning by extracting useful contextual information from deeper layers without additional
training. Wang et al. [41] conducted experiments using SSA-Net on various datasets, and
on dataset [39] obtained an average Dice similarity coefficient of 75.4%. Punn et al. [42]
introduced the CHS-Net (COVID-19 hierarchical segmentation network); two RAIU-Net
are connected in series in this architecture, and this architecture achieved an accuracy of
96.5%, a precision of 75.6%, a specificity of 96.9%, a recall of 88.5%, a Dice coefficient of
81.6%, and Jaccard similarity of 79.1%. Yin et al. [10] modified the UNet architecture by
combining the SA module and the Dense SAPP module so as to create a new architecture
called SD-UNet. This architecture achieved the metrics of Jaccard similarity, specificity,
accuracy, Dice similarity coefficient, and sensitivity of 77.02% (47.88%), 99.32% (99.07%),
99.06% (98.21%), 86.96% (59.36%), and 89.88% (61.69%), respectively, for the binary-class
(multi-class) segmentation. In study conducted by Singh et al. [43], UNet was used again
to segment CT-scans. In this study Singh et al. replaced the UNet backbone (encoder)
to EfficientNetB0, and it achieved a sensitivity of 84.5%, a specificity of 93.9%, and Dice
coefficient of 65%.

Previous research on image segmentation for COVID-19 CT scans has utilized various
approaches, many of which utilize convolutional neural networks (CNNs). However, these
approaches often rely on 2D architectures, which can lengthen the modeling process, due
to the need for data preprocessing to fit the data for 2D architectures and post-processing to
project the predicted results into a 3D shape. To address this issue, we propose a solution
using 3D CNN architectures in our research. Specifically, we use the 3D version of the well-
known UNet architecture for image segmentation, resulting in the 3D UNet architecture.
Additionally, we modify the 3D UNet architecture by using three classification architectures,
namely VGG 19, ResNet 152, and DenseNet 201, resulting in the 3D VGGUNet, 3D ResUNet,
and 3D DenseUNet architectures.

3. Materials and Methods

This section contains our proposed approach and the materials that we will use in
this study. We start by describing the dataset that will be used in this study. After that, we
will explain what pre-processing stages are applied to the data, the proposed method or
architecture that will be used in this study, the metrics evaluation that will be used in the
evaluation of our models, and at the end, the model setting for every architecture will be
explained, too.

3.1. Dataset

In this study, the lung CT-scan dataset of Ma et al. [39] was used for the CT-scan
segmentation modelling (training and testing) process. This dataset consists of 20 CT-
scans of COVID-19 patients collected from radiopaedia [44] and the corona-cases initiative
(RAIOSS) [45]. In addition to providing CT-scan files, ref. [39] also provides three masks
for segmentation purposes, namely ‘lung mask’, ‘infection mask’, and ‘lung and infection
mask’. In the work of Ma et al. [46], it is explained that this dataset was manually annotated
by two radiologists and verified by an experienced radiologist. Table 2 presents an overview
of the CT-scan dataset used.

In this study, segmentation will be carried out on the “lung mask” and the “lung
and infection mask” in each model. Two segmentation cases were carried out to test the
strength of each model in the cases of binary-class segmentation (lung mask) and multi-class
segmentation (lung and infection mask).

Each CT-scan from the [39] dataset has a different width and height, a depth (slice),
and a different level of infection severity. Table 3 shows the more detailed profile of each
patient’s CT scan used.
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Table 2. Three samples (patient 1, patient 2, and patient 20) from the used dataset.
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Patient Source Infection Severity Size
(Width × Height × Depth)

Patient 1 RAIOSS Moderate 512 × 512 × 301
Patient 2 RAIOSS Mild 512 × 512 × 200
Patient 3 RAIOSS Severe 512 × 512 × 200
Patient 4 RAIOSS Mild 512 × 512 × 270
Patient 5 RAIOSS Mild 512 × 512 × 290
Patient 6 RAIOSS Moderate 512 × 512 × 213
Patient 7 RAIOSS Moderate 512 × 512 × 249
Patient 8 RAIOSS Moderate 512 × 512 × 301
Patient 9 RAIOSS Moderate 512 × 512 × 256

Patient 10 RAIOSS Severe 512 × 512 × 301
Patient 11 Radiopaedia Severe 630 × 630 × 39
Patient 12 Radiopaedia Severe 630 × 630 × 45
Patient 13 Radiopaedia Moderate 630 × 630 × 39
Patient 14 Radiopaedia Moderate 630 × 630 × 418
Patient 15 Radiopaedia Severe 630 × 401 × 110
Patient 16 Radiopaedia Moderate 630 × 630 × 66
Patient 17 Radiopaedia Mild 630 × 630 × 42
Patient 18 Radiopaedia Mild 630 × 630 × 42
Patient 19 Radiopaedia Mild 630 × 630 × 45
Patient 20 Radiopaedia Severe 630 × 630 × 93

3.2. Data Preprocessing

Since we want to use 3D image segmentation architecture, we need to adjust the width,
height, and depth of each image to the same size. In this study, we adjusted each CT-scan
data to 128 × 128 × 128. The resizing process for each CT-scan data is assisted by ImageJ
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software, and in the process of resizing the depth of each data, ImageJ applies average
upsampling and average downsampling with bilinear interpolation.

Two preprocessing steps will be carried out on the CT-scan image file: scaling the pixel
value and applying the CLAHE method. The image scaling process is carried out on each
pixel value in the CT-scan into a value with a range of 0 to 1. This scaling stage is carried
out using the minmax scaler method.

Furthermore, the CLAHE (Contrast Limited Adaptive Histogram Equalization) method
is applied to overcome the contrast problems (noise and intensity inhomogeneity). CLAHE
was used to intensify the contrast of the obtained images [47]. This method is a variant of
AHE (Adaptive Histogram Equalization). CLAHE’s main objective is to determine the map-
ping for each pixel based on its neighborhood grayscale distribution using a transformation
function that reduces contrast amplification in densely packed areas. In [48,49], CLAHE
has shown its effectiveness in allocating displayed intensity levels in chest CT-scans. In
Table 4, a comparison of the CT-scan slices before CLAHE was applied and after CLAHE
was applied is shown.

Table 4. Comparison before and after applying CLAHE preprocessing to CT-scan.

Without CLAHE CLAHE
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For the case of binary-class segmentation, the lung mask pixels consisting of 0: back-
ground, 1: left lung, and 2: right lung are changed to 0: background and 1: lung. The
unification of the left lung and right lung masks is not only performed to create a binary-
class segmentation case, but it is also performed to facilitate the learning model process
because there is no significant difference in the image between the left lung and right lung.
The unification of left lung and right lung is also carried out on the lung and infection
mask for multi-class segmentation, where, in this multi-class segmentation, the pixel lung
and infection mask consist of 0: background, 1: left lung, 2: right lung, and 4: infection is
changed to 0: background, 1: warp, and 2: infection.
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3.3. Network Architecture

This work proposes four segmentation network architectures, namely 3D UNet [50],
3D ResUNet, 3D VGGUNet, and 3D DenseUNet. Each architecture will be applied in
both binary-class CT-scan segmentation (lung segmentation) and multi-class CT-scan
segmentation (lung and infection segmentation). For the 3D ResUNet, 3D VGGUNet, and
3D DenseUNet architectures, two experiments will be carried out for each segmentation,
using transfer learning and not using transfer learning. From this, a total of seven models
will be obtained for each segmentation case.

3D UNet has two main parts, namely the encoder and decoder. The encoder part, also
called the contracting part, is in charge of extracting global features from the image. The
encoder consists of convolution blocks (consisting of batch normalization, ReLu) and max
pooling for downsampling. The decoder part, also known as the expanding path, consists
of upconvolution, a concatenation layer with a feature map from the encoder part, and
convolutional blocks. To avoid overfitting, a dropout layer is added to each convolutional
block. The UNet 3D architecture is shown in Figure 1.
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The 3D ResUNet, 3D VGGUNet, and 3D DenseUNet architectures are modifications
of the 3D UNet architecture. These three architectures replace the encoder portion of 3D
UNet with 3D ResNet, 3D VGG, and 3D DenseNet, respectively. 3D ResUNet uses the
3D ResNet152 architecture to replace the encoder part of 3D UNet because the ResNet152
version is the latest version of the 3D ResNet version series available (ResNet18, ResNet34,
ResNet50, ResNet152). As with 3D VGGUNet, the latest version of the 3D VGG architec-
ture, namely 3D VGG19, is used as the backbone or encoder of the 3D UNet architecture.
The same goes for 3D DenseUNet. DenseNet201’s 3D architecture was chosen for the
reason of being the most up-to-date version compared to other 3D DenseNet versions (3D
DenseNet121, 3D DenseNet169, and 3D DenseNet201). The schematic of these 3 architec-
tures is not much different from the 3D UNet shown in Figure 1. Figure 2 shows the general
segmentation process of the 3D VGGUNet, 3D ResUNet, and 3D DenseUNet architectures.

Healthcare 2023, 11, x  9 of 20 
 

 

The 3D ResUNet, 3D VGGUNet, and 3D DenseUNet architectures are modifications 

of the 3D UNet architecture. These three architectures replace the encoder portion of 3D 

UNet with 3D ResNet, 3D VGG, and 3D DenseNet, respectively. 3D ResUNet uses the 3D 

ResNet152 architecture to replace the encoder part of 3D UNet because the ResNet152 

version is the latest version of the 3D ResNet version series available (ResNet18, ResNet34, 

ResNet50, ResNet152). As with 3D VGGUNet, the latest version of the 3D VGG architec-

ture, namely 3D VGG19, is used as the backbone or encoder of the 3D UNet architecture. 

The same goes for 3D DenseUNet. DenseNet201’s 3D architecture was chosen for the rea-

son of being the most up-to-date version compared to other 3D DenseNet versions (3D 

DenseNet121, 3D DenseNet169, and 3D DenseNet201). The schematic of these 3 architec-

tures is not much different from the 3D UNet shown in Figure 1. Figure 2 shows the gen-

eral segmentation process of the 3D VGGUNet, 3D ResUNet, and 3D DenseUNet archi-

tectures. 

 

Figure 2. The general segmentation process with scenario of 3D U-Net modified architectures. 

The 3D versions of the VGG and ResNet classification architectures were chosen to 

modify the encoder part of the 3D UNet architecture because these two architectures are 

some of the most widely used in research, with the ResNet architecture being used in over 

142,000 studies and the VGG architecture being used in over 119,000. Apart from being 

widely used, these two architectures were chosen because both of them have proven to be 

very good at solving classification problems, as evidenced by their wins in the ImageNet 

2014 (VGG) and ImageNet 2015 (ResNet) competitions. The 3D version of the DenseNet 

architecture was chosen in this study because it is one of the architectures that has recently 

begun to be widely used, because it has many advantages, such as reducing the vanishing-

gradient problem, strengthening feature propagation, encouraging feature reuse, and 

having parameters that are not too large. This architecture is the development of the most 

widely used classification architecture, namely ResNet. In the previous study by Alalwan 

et al. [51], 3D DenseUNet was used to segment liver and tumors from CT-scans, but the 

DenseNet version of the 3D DenseUNet architecture used in Alalwan et al.’s [51] study is 

a DenseNet version with a depth of 169. This study will use a deeper version of Densenet, 

namely DenseNet201. Due to the deep structure of each architecture, visualization will 

not be possible. Further details on the modified architectures used in this study can be 

found in Appendix A. 

In this study, each modified architecture will be trained using both traditional train-

ing and transfer learning approaches. Transfer learning is a machine learning technique 

in which patterns learned from a pre-trained model are utilized to improve the perfor-

mance of a model on a new task [52]. This can be particularly useful when working with 

a small training and testing dataset, as it allows us to leverage the knowledge and experi-

ence of the pre-trained model. In this research, we will apply transfer learning to the en-

coder portion of the architecture, including the 3D VGG19, 3D ResNet152, and 3D Dense-

Net201. The weights for the transfer learning process will be obtained from models that 

have been trained on the ImageNet dataset, a large and widely-used dataset for training 

and evaluating deep learning models. By applying transfer learning and utilizing the 

knowledge of these pre-trained models, we hope to improve the performance of our mod-

ified architectures on the CT-scan image segmentation task. 

Figure 2. The general segmentation process with scenario of 3D U-Net modified architectures.



Healthcare 2023, 11, 213 9 of 19

The 3D versions of the VGG and ResNet classification architectures were chosen to
modify the encoder part of the 3D UNet architecture because these two architectures are
some of the most widely used in research, with the ResNet architecture being used in over
142,000 studies and the VGG architecture being used in over 119,000. Apart from being
widely used, these two architectures were chosen because both of them have proven to be
very good at solving classification problems, as evidenced by their wins in the ImageNet
2014 (VGG) and ImageNet 2015 (ResNet) competitions. The 3D version of the DenseNet
architecture was chosen in this study because it is one of the architectures that has recently
begun to be widely used, because it has many advantages, such as reducing the vanishing-
gradient problem, strengthening feature propagation, encouraging feature reuse, and
having parameters that are not too large. This architecture is the development of the most
widely used classification architecture, namely ResNet. In the previous study by Alalwan
et al. [51], 3D DenseUNet was used to segment liver and tumors from CT-scans, but the
DenseNet version of the 3D DenseUNet architecture used in Alalwan et al.’s [51] study is a
DenseNet version with a depth of 169. This study will use a deeper version of Densenet,
namely DenseNet201. Due to the deep structure of each architecture, visualization will not
be possible. Further details on the modified architectures used in this study can be found
in Appendix A.

In this study, each modified architecture will be trained using both traditional training
and transfer learning approaches. Transfer learning is a machine learning technique in
which patterns learned from a pre-trained model are utilized to improve the performance
of a model on a new task [52]. This can be particularly useful when working with a small
training and testing dataset, as it allows us to leverage the knowledge and experience of the
pre-trained model. In this research, we will apply transfer learning to the encoder portion of
the architecture, including the 3D VGG19, 3D ResNet152, and 3D DenseNet201. The weights
for the transfer learning process will be obtained from models that have been trained on
the ImageNet dataset, a large and widely-used dataset for training and evaluating deep
learning models. By applying transfer learning and utilizing the knowledge of these pre-
trained models, we hope to improve the performance of our modified architectures on the
CT-scan image segmentation task.

3.4. Metrics Evaluation

In this study, we use five evaluation metric indices to evaluate the performance of each
network: IoU (Intersection Over Union score, also known as the Jaccard Index), DSc (Dice
Score, or also known as the F1-score and Sørensen–Dice coefficient), Acc (Accuracy), Pre
(Precision), and Rec (Recall). In the case of image segmentation, IoU and Dsc are the most
frequently used metrics and are recommended to evaluate the model [53,54]. In general, the
Dsc and IoU are used to see the similarity of the results of the segmentation area between
the predicted result and the ground truth. The IoU and Dsc formulas are defined as follows:

IoU =
|A1 ∩ A2|
|A1 ∪ A2|

(1)

Dsc =
2|A1 ∩ A2|
|A1|+ |A2|

(2)

From Equations (1) and (2), it should be noted that A1 denotes the ground truth, and
A2 denotes the predicted result by the model.

In addition to using IoU and Dsc, this study also used two classification metrics: accu-
racy, which measures the ratio of correctly identified predicted pixels to all predicted pixels,
and F1 score, which is calculated as the harmonic mean of precision and recall. Precision
measures the accuracy of predictions by calculating the ratio of true positive predicted
pixels to the total number of positive predictions, and recall measures completeness by
calculating the ratio of true positive predicted pixels to the total number of actual positive
pixels. The accuracy and F1 score are defined as follows:
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Acc =
TP + TN

TP + FP + TN + FN
(3)

F1 score =
2TP

2TP + FP + FN
(4)

Here, TP (True Positive) denotes the number of the lung pixel or infected pixel being
correctly identified, TN (True Negative) denotes the number of uninfected pixels or non-lung
pixels being correctly identified, FP (False Positive) represents the number of infected pixels
or lung pixels being wrongly identified as the uninfected or non-lung pixels, and FN (False
Negative) represents the number of the non-lung pixels or the uninfected pixels being
wrongly identified as lung or infected pixels.

3.5. Experimental Setting

All models are trained using the ADAM optimizer with a learning rate of 1× 10−4. To
maximize the learning capabilities of each architecture, we set the maximum epoch to 5000
with an early-stop patience of 250. The loss functions used in the training process are total
Dice loss and focal loss. Mixing between focal loss and Dice loss is performed because, after
several experiments, the segmentation results using total loss from Dice loss and focal loss
are better than using only Dice loss or only using focal loss. The total loss here is obtained
by adding up the Dice loss with the focal loss, where each class weight for the Dice loss is
set equal. Hold-out validation is used for the process of training and testing models. The
data is split by 75% for model training and 25% for model testing. We run all models in this
study using Google Colab Pro, with a GPU as a hardware accelerator and high-RAM usage
for runtime shape. Figure 3 depicts the modeling scheme used in this study.
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4. Results

In this section, the results of the binary-class and multi-class segmentation experi-
ments on the CT-scan will be shown. As described previously, the case of binary-class
segmentation will be applied to segment the lungs from the CT-scan, while the case of
multi-class segmentation will be applied to segment the lungs and infection from the
CT-scan. We will see the results of the evaluation of metrics from 3D UNet, 3D VGGNet
without transfer learning, 3D Res UNet without transfer learning, 3D DenseUNet without
transfer learning, 3D VGGUNet with transfer learning, 3D ResUNet with transfer learning,
and 3D DenseUNet with transfer learning in each CT-scan segmentation case.

4.1. Lung Segmentation (Binary-Class Segmentation)

For the purpose of comparison, the same hyperparameter values have been set, and
the same distribution of training and testing data sets is used for the modeling process in
each architecture. Table 5 shows the results of the evaluation metrics for each architecture
in lung segmentation.

Table 5. The IoU Score, Dice Score, accuracy, F1-score epoch of learning, and time per epoch results
of each architecture for the CT-scan binary-class segmentation.

Architecture IoU DSc Acc F1 Epoch 1 Time

3D UNet 0.9432 0.9705 0.9937 0.9707 1663 ±9 s/epoch

Without Transfer
Learning

3D VGGUNet 0.9287 0.9624 0.9920 0.9630 230 ±24 s/epoch
3D ResUNet 0.8325 0.9072 0.9793 0.9086 357 ±14 s/epoch

3D DenseUNet 0.9204 0.9580 0.9912 0.9585 93 ±13 s/epoch

With Transfer
Learning

3D VGGUNet 0.9395 0.9682 0.9934 0.9688 330 ±40 s/epoch
3D ResUNet 0.9183 0.9569 0.9909 0.9574 405 ±14 s/epoch

3D DenseUNet 0.9260 0.9610 0.9919 0.9616 253 ±13 s/epoch
1 The number of epochs is obtained after reducing the total training epochs with a patience value of early stopping.
The bolded numbers in the table indicate the highest values compared to other architectures.

Based on the results of the evaluation metrics for each architecture in Table 5, surpris-
ingly, 3D UNet is better than the other six methods. Compared with the 3D VGGUNet
architecture with transfer learning, which achieved the second best result on average, 3D
UNet improved by 0.37%, 0.23%, 0.03%, and 0,19% in IoU score, Dice score, accuracy, and
F1-score, respectively. Although 3D UNet has the best evaluation of metrics compared to
other architectures, 3D UNet has the longest maximum learning iteration process of 1663,
in contrast to other architectures, which are modifications of 3D UNet, and which have an
average maximum learning iteration of 278. Of the seven models that have been tried, 3D
DenseUNet obtained first place as the architecture with the fastest learning time, ±4459 s
and ±6539 s without transfer learning and using transfer learning, respectively. The 3D
UNet architecture stays in the second last position with a learning process time of ±17,217
s, and for the position of the architecture that has the longest training process, it is the 3D
VGGUNet, with transfer learning reaching ±23,200 s. The comparison of loss training and
testing on the 3D UNet learning process for the lung segmentation is shown in Figure 4.
Furthermore, in Table 6, the comparison of ground truth and the prediction results of the
3D UNet model in 2D (slice) and 3D projections for this binary-class segmentation case can
be seen.
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Table 6. Comparison between ground truth and prediction results of lung segmentation with 3D
UNet architecture.
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4.2. Lung and Infection Segmentation (Multi-Class Segmentation)

Similar to binary-class segmentation, in the case of multi-class segmentation, the same
hyperparameter values and training testing data distribution have been established, with
the intention of comparing each architecture. Table 7 shows the results of the evaluation
metrics for each architecture in lung and infection segmentation.

Table 7. The IoU Score, Dice Score, accuracy, and F1-score, epoch of learning, and time per epoch
results of each architecture for the CT-scan multi-class segmentation.

Architecture IoU DSc Acc F1 Epoch 1 Time

3D UNet 0.8158 0.8861 0.9878 0.9878 1510 ±7 s/epoch

Without Transfer
Learning

3D VGGUNet 0.7276 0.8049 0.9839 0.9839 146 ±24 s/epoch
3D ResUNet 0.7089 0.7839 0.9833 0.9833 151 ±14 s/epoch

3D DenseUNet 0.7143 0.7916 0.9825 0.9826 104 ±13 s/epoch

With Transfer
Learning

3D VGGUNet 0.7340 0.8122 0.9840 0.9840 600 ±24 s/epoch
3D ResUNet 0.7381 0.8178 0.9832 0.9832 208 ±19 s/epoch

3D DenseUNet 0.7193 0.7960 0.9835 0.9836 189 ±13 s/epoch
1 The number of epochs is obtained after reducing the total training epochs with a patience value of early stopping.
The bolded numbers in the table indicate the highest values compared to other architectures.

Based on the results of the evaluation metrics for each architecture in Table 6, similar
to the lung segmentation case, in the lung and infection segmentation case, 3D UNet is
better than the other six methods. Compared with the 3D VGGUNet architecture with
transfer learning, which achieved the second-best result on average, 3D UNet improved by
8.18%, 7.39%, 0.38% and 0.38% in IoU score, Dice score, accuracy, and F1-score, respectively.
Although 3D Unet has the best evaluation of metrics compared to other architectures, 3D
UNet has the longest maximum learning iteration process of 1510, in contrast to other
architectures, which are modifications of 3D UNet, and which have an average maximum
learning iteration of 233. Of the seven models that have been tried, 3D DenseUNet without
transfer learning obtained first place as the architecture with the fastest learning time,
specifically ±4602 s. The 3D UNet architecture stays in the second to last position with
a learning process time of ±12320 s, and in the position of the architecture that has the
longest training process is the 3D VGGUNet with transfer learning, reaching ±8702 s. The
comparison of loss training and testing on the 3D UNet learning process for the lung and
infection segmentation is shown in Figure 5. Furthermore, in Table 8, the comparison
of ground truth and the prediction results of the 3D UNet model in 2D (slice) and 3D
projections in this multi-class segmentation case can be seen.
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Table 8. Comparison between ground truth and prediction results of lung and infection segmentation
with 3D UNet architecture.

Original CT-Scan Ground Truth Prediction

3D Projection
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4.3. Result Discussion

With the aim of experimenting using the 3D version of the UNet architecture and
comparing it with its three modifications, namely 3D VGGUNet, 3D ResUNet, and 3D
DenseNet, in the case of binary-class (lung) segmentation and multi-class (lung and in-
fection) segmentation. Surprisingly, the original 3D UNet performs much better in both
segmenting the binary-class and the multi-class than the modified 3D UNet. Although,
on average, the modified architecture of 3D UNet does not perform as well as the original
3D UNet, the three modified architectures have much faster maximum learning iterations
than the original 3D UNet, which is on average below 300 epochs, while for the original 3D
UNet it requires more than 1500 epochs to reach the maximum learning iteration. In the
case of the modified architectures of 3D UNet, it is also seen that using transfer learning
on those three architectures increases the model performance compared to without using
transfer learning.

In the case of lung segmentation, which can be seen in Figure 2, the 3D UNet architec-
ture studied the case very well, and there was no indication of overfitting or underfitting in
the model. In the case of binary-class segmentation, 3D UNet produces IoU scores, Dice
scores, accuracy, and F1-score of 94.32%, 97.05%, 99.37%, and 97.07%, respectively. In this
lung segmentation case, if sorted based on the results of the metrics evaluation, it was
found that 3D ResUNet became the architecture with the lowest average evaluation metrics,
followed by 3D DenseUNet, 3D VGGUNet, and the original 3D UNet, with the best average
metrics evaluation from three other architectures.
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In the case of multi-class segmentation, as shown in Figure 3, the 3D UNet architecture
studies lung and infection segmentation cases quite well. Although not as well as when
studying lung segmentation cases, the graph in Figure 3 shows that both lines of training
loss and validation loss are close enough that we can assume that the model does not
indicate under or over fitting. In the case of lung and infection segmentation, 3D UNet
scored 81.58%, 88.61%, 98.78%, and 98.78% for the metrics IoU score, Dice score, accuracy,
and F1-score, respectively. Similar to binary-class segmentation, in this multi-class seg-
mentation, 3D UNet gets the best average metrics evaluation, followed by 3D VGGUNet,
3D DenseUNet, and 3D ResUNet, as the architectures with the lowest average metrics
evaluation of the other three architectures.

In general, these four architectures obtain acceptable evaluation results for predicting
the lung or the lung and infection segmentation because, in addition to preprocessing the
data, these four 3D architectures take advantage of the volume/depth of the CT-scan as
a single data unit when it is entered into the model in the learning process, in contrast to
when using a 2D architecture, which only considers one slice as a single data unit when it
is entered into the model in the learning process. It should be noted that in this study, the
mask/ground truth from the original data was modified by unifying the left and the right
lung. Because of that, the cases used in this study differed from cases used in previous
studies, despite the fact that they used the same dataset or same general goal, which is to
assist in the process of diagnosing COVID-19 by segmenting images that take advantage of
technological advances.

5. Conclusions

In this study, we applied the 3D version as well as three modifications of one of
the most used and most recommended architectures for biomedical images, namely 3D
UNet, 3D VGGUNet, 3D ResUNet, and 3D DenseUNet, for cases of COVID-19 CT-scan
segmentation. All architectures were applied in two cases: binary-class segmentation
to segment the lung from CT-scan, and multi-class segmentation to segment the lung
and infection from CT-scan. To try and find the best results in the COVID-19 CT-scan
segmentation, transfer learning was applied to each of the three modified architectures.
The preprocessing operations were also performed on the dataset, namely resizing the
height, length, and depth to the same size, with the aim that the data could entered into
the 3D architecture, and applying the CLAHE method to the dataset to clarify the data
and make it easier for the network to study each case. The experimental result shows
that although the 3D UNet has a very large maximum iteration, the 3D UNet has better
performance than the other three modified architectures. In the case of lung segmentation,
3D UNet produces very accurate segmentation predictions with an IoU score of 94.32%
and a Dice score of 97.05%, and in the case of lung and infection segmentation, 3D UNet
also produces a fairly accurate prediction with an IoU score of 81.58% and a Dice score of
88.61%. In general, the 3D UNet architecture gets good results, not only because of the
preprocessing that is performed, but also because this architecture utilizes the volume or
depth of 3D data. This study proves that UNet’s 3D architecture can have a major impact
on learning, technological developments, and the diagnosis of COVID-19. However, one
of the shortcomings in this study is the limited dataset of COVID-19 labeled CT-scans.
This causes insufficient training and testing of data for all models. In the future, this
study could be expanded in the following aspects: explore various parameter tunings
for each architecture; modify and/or add other blocks to the architecture; and, of course,
reapply these architectures to more and larger datasets to obtain better COVID-19 diagnosis
performance through CT-scan segmentation.
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Appendix A

Modified Architectures Details

Appendix A gives details structures for each modified architectures used in this study.

Table A1. Details on 3D VGGUNet Architecture.

Block Type Block Info Details on Each Bock/Sub-Block

Encoder part
(DenseNet201)

Convolutional Block
1st and 2nd sub-block Layers: Convolutional 3D + Convolutional 3D + Max

Pooling 3D

3rd–5th sub-block Layers: Convolutional 3D + Convolutional 3D +
Convolutional 3D + Convolutional 3D + Max Pooling 3D

Convolutional Block Contains two sub-block Layers: Convolutional 3D + Batch Normalization + ReLu

Decoder part
Convolutional Block Contains two sub-blocks Layers: Up Sampling 3D, Batch Normalization, ReLu,

Concatenate, Convultional 3D, Batch Normalization, ReLu

Output - Layers: Convolutional 3D + Softmax/Sigmoid

Table A2. Details on 3D ResUNet Architecture.

Block Type Block Info Details on Each Bock/Sub-Block

Encoder part
(DenseNet201)

Input Block - Layers: Batch Normalization + Zero Padding 3D + Batch
Normalization + ReLu + Zero Padding 3D + Max Pooling 3D

Convolutional Block

1st sub-block
Layers: Convolutional 3D + Batch Normalization + ReLu + Zero
Padding 3D + Convolutional 3D + Batch Normalization + ReLu +

Convolutional 3D + Convolutional 3D + Concatenate

2nd and 3rd sub-block
Layers: Convolutional 3D + Batch Normalization + ReLu + Zero
Padding 3D + Convolutional 3D + Batch Normalization + ReLu +

Convolutional 3D + Concatenate

Convolutional Block

1st sub-block
Layers: Convolutional 3D + Batch Normalization + ReLu + Zero
Padding 3D + Convolutional 3D + Batch Normalization + ReLu +

Convolutional 3D + Convolutional 3D + Concatenate

2nd–8th sub-block
Layers: Convolutional 3D + Batch Normalization + ReLu + Zero
Padding 3D + Convolutional 3D + Batch Normalization + ReLu +

Convolutional 3D + Concatenate

Convolutional Block

1st sub-block
Layers: Convolutional 3D + Batch Normalization + ReLu + Zero
Padding 3D + Convolutional 3D + Batch Normalization + ReLu +

Convolutional 3D + Convolutional 3D + Concatenate

2nd–36th sub-block
Layers: Convolutional 3D + Batch Normalization + ReLu + Zero
Padding 3D + Convolutional 3D + Batch Normalization + ReLu +

Convolutional 3D + Concatenate

Convolutional Block

1st sub-block
Layers: Convolutional 3D + Batch Normalization + ReLu + Zero
Padding 3D + Convolutional 3D + Batch Normalization + ReLu +

Convolutional 3D + Convolutional 3D + Concatenate

2nd and 3rd sub-block
Layers: Convolutional 3D + Batch Normalization + ReLu + Zero
Padding 3D + Convolutional 3D + Batch Normalization + ReLu +

Convolutional 3D + Concatenate

Decoder part
Convolutional Block Consists of five sub-blocks Layers: Batch Normalization + Up Sampling 3D + Concatenate +

Convolutional 3D + Batch Normalization + ReLu + Convolutional 3D

Output - Layers: Convolutional 3D + Softmax/Sigmoid

https://doi.org/10.5281/zenodo.3757476
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Table A3. Details on 3D DenseUNet Architecture.

Block Type Block Info Details on Each Bock/Sub-Block

Encoder part
(DenseNet201)

Input Block - Layers: Batch Normalization + Convolutional 3D + Batch
Normalization + Convolutional 3D + ReLu + Concatenate

Convolutional Block Consists of six
sub-blocks

Layers: Batch Normalization + ReLu + Convolutional 3D
+ Batch Normalization + Relu + Convolutional 3D +

Concatenate

Pooling Block - Layers: Batch Normalization + ReLu + Convolutional 3D
+ Average Pooling 3D

Convolutional Block Consists of 12 blocks
Layers: Batch Normalization + ReLu + Convolutional 3D

+ Batch Normalization + Relu + Convolutional 3D +
Concatenate

Pooling Block - Layers: Batch Normalization + ReLu + Convolutional 3D
+ Average Pooling 3D

Convolutional Block Consists of 48 blocks
Layers: Batch Normalization + ReLu + Convolutional 3D

+ Batch Normalization + Relu + Convolutional 3D +
Concatenate

Pooling Block - Layers: Batch Normalization + ReLu + Convolutional 3D
+ Average Pooling 3D

Convolutional Block Consists of 32 blocks
Layers: Batch Normalization + ReLu + Convolutional 3D

+ Batch Normalization + Relu + Convolutional 3D +
Concatenate

Decoder part
Convolutional Block Consists of five blocks Layers: Up Sampling 3D + Concatenate + Convolutional

3D + Batch Normalization + ReLu

Output - Layers: Convolutional 3D + Softmax/Sigmoid
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