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Abstract: Electronic health record (EHR) systems collate patient data, and the integration and
standardization of documents through Health Information Exchange (HIE) play a pivotal role in
refining patient management. Although the clinical implications of AI in EHR systems have been
extensively analyzed, its application in HIE as a crucial source of patient data is less explored.
Addressing this gap, our systematic review delves into utilizing AI models in HIE, gauging their
predictive prowess and potential limitations. Employing databases such as Scopus, CINAHL, Google
Scholar, PubMed/Medline, and Web of Science and adhering to the PRISMA guidelines, we unearthed
1021 publications. Of these, 11 were shortlisted for the final analysis. A noticeable preference for
machine learning models in prognosticating clinical results, notably in oncology and cardiac failures,
was evident. The metrics displayed AUC values ranging between 61% and 99.91%. Sensitivity
metrics spanned from 12% to 96.50%, specificity from 76.30% to 98.80%, positive predictive values
varied from 83.70% to 94.10%, and negative predictive values between 94.10% and 99.10%. Despite
variations in specific metrics, AI models drawing on HIE data unfailingly showcased commendable
predictive proficiency in clinical verdicts, emphasizing the transformative potential of melding AI
with HIE. However, variations in sensitivity highlight underlying challenges. As healthcare’s path
becomes more enmeshed with AI, a well-rounded, enlightened approach is pivotal to guarantee the
delivery of trustworthy and effective AI-augmented healthcare solutions.

Keywords: artificial intelligence; electronic health record; health information exchange; machine learning

1. Introduction
1.1. Background

Thanks to the accessibility of electronic patient data, precision in medicine has seen
rapid advancements. The Electronic Health Record (EHR) systems not only store patient
biographical data but also amass all information gathered from institutions, encompass-
ing radiographic imaging, blood tests, and other diagnostic tests. Consequently, the
sheer volume of data, which originates from diverse patient details across various clinics,
hospitals, and private care, along with modalities such as imaging, prescriptions, and
procedures obtained at disparate times, forms a vast dataset that is notable in its scope and
complexity [1–4].

EHRs are being rapidly adopted by healthcare groups worldwide to improve efficiency
and efficacy and reduce care costs [5,6]—47% of nations now use national EHRs [7,8].
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The Institute of Electrical and Electronics Engineers (IEEE) defines interoperability as
the “ability of two or more systems or components to exchange information and to use
the information that has been exchanged” [9]. However, since EHR data is often captured
in multiple formats, achieving interoperability becomes a significant challenge, given the
multitude of unique EHR formats to contend with. Health Information Exchanges (HIEs)
can be an answer for fragmented healthcare systems by gathering EHR data from different
provider groups and networks into a single, interoperable repository [7,10].

HIE is a valuable tool for disease monitoring due to its extensive regional and demo-
graphic spread [7,11]. However, merging data from various sources into an HIE could
result in possible quality problems, such as dropout, or aggravate the problems present in
each EHR system, such as low data integrity [11–14].

For the interchange, integration, and access of electronic health information, Health
Level 7 (HL7) standards such as HL7 v2, HL7 v3, and Fast Healthcare Interoperability
Resources (FHIR) specify the vocabulary, structure, and data formats necessary for interac-
tion between systems. These guidelines support professional practice and viewpoints on
administering, providing, and assessing healthcare services [5,15,16]. In healthcare, data
analytics is segmented into three tiers: predictive, prescriptive, and descriptive. These
analytics are crucial in guiding decision-making and enhancing patient outcomes [17].

The healthcare industry is transforming, with advances in Artificial Intelligence (AI),
Machine Learning (ML), Natural Language Processing (NLP), and Deep Learning Neural
Networks (DNN) reshaping everything from diagnosis to treatments [15,18]. Using FHIR-
based algorithms for data analytics can improve health outcomes for acute and chronic
conditions while reducing the skill demands within the healthcare system [17,19,20]. How-
ever, adopting AI models could change the landscape by potentially increasing healthcare
productivity, reducing costs, and minimizing energy consumption [21–24].

1.2. Problem Statement and Research Questions

Given the increasing relevance of HIE in the healthcare landscape and the transfor-
mative potential of AI, understanding its current applications and limitations within HIE
is crucial. Although there has been significant research on the application of AI algo-
rithms with EHRs for different levels of data analytics and decision-making [25,26], a
noticeable gap exists in the literature—a comprehensive, systematic review and analysis of
AI models specifically within HIE contexts. Our systematic review aimed to answer the
following questions:

1. What are the implementations of AI models in the HIE?
2. What is the effectiveness of different AI models in improving clinical outcomes based

on HIE data?
3. What are the barriers to the implementation of AI in HIE?
4. What limitations have been identified in current studies, and what potential future

research directions are suggested?

1.3. Objectives

To answer these questions, we will identify and compile the most recent research on
the application of AI in HIE settings. First, we assess the effectiveness of AI applications
in monitoring and predicting various pathologies and determine the obstacles in this way.
Then, we suggest possible solutions and provide topics for additional study in this field.

2. Methods
2.1. Search Strategy

A search strategy was implemented aiming to maximize precision and accuracy
of yield.
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Research Units Keywords/Terms

Health Information Systems/Standards
“Health Information Exchange”, “Health Level
Seven”, “HL7”, “HIE”, “FHIR”, “HIO”, “Fast

Healthcare Interoperability Resource”

Artificial Intelligence & Data Analytics
Methods

“Machine Learning”, “Natural Language
Processing”, “Artificial Intelligence”, “Logistic

Models”

Keywords/terms from each research unit were combined using Boolean operators
(AND, OR).

The final search string used was: (“Health Information Exchange” OR “Health Level
Seven” OR “HL7” OR “HIE” OR “FHIR” OR “HIO” OR “Fast Healthcare Interoperability
Resource”) AND (“Machine Learning” OR “Natural Language Processing” OR “Artificial
Intelligence” OR “Logistic Models”).

This search string was formulated based on similar reviews and was utilized to execute
the literature search.

2.2. Data Sources and Databases Searched

Two independent investigators searched five large digital bibliographic database
sources: Scopus, Cumulative Index of Nursing and Allied Health Literature (CINAHL),
Google Scholar, MEDLINE (PubMed), and Web of Science to cover the relevant studies
adequately. In Scopus, we used the ‘Article Title, Abstract, Keywords’ search field option.
Filters were applied to retrieve peer-reviewed journal articles.

In CINAHL, the search was executed in the ‘TX All Text’ field. Filters for ‘Peer-
Reviewed’ and ‘Journal Article’ were applied. Google Scholar was searched using the basic
search bar. Given the vast number of results from Google Scholar, only the first 100 papers
of the search yield were evaluated. In MEDLINE (PubMed), the search was applied to the
‘Title/Abstract’ fields. We used the ‘Journal Article’ filter to refine our results.

The ‘Topic’ field was used to conduct the search at Web of Science, and the ‘Articles’
filter was applied to refine our results.

Our search commenced on 20 March 2023; notably, we did not restrict the search
period. The specific features or nuances of each database (e.g., using MeSH terms in
PubMed) were considered while formulating the search strings. Any adjustments made to
the search strings for each database due to database-specific functionalities were noted.

2.3. Study Eligibility and Selection Process

Inclusion criteria: original research articles describing the use of any form of AI
in healthcare management situations with clinically based approaches on the HIE or
EHR + HIE dataset. Exclusion criteria: articles that were published in non-peer-reviewed
journals, articles in languages other than English, meta-analyses, systematic reviews, liter-
ature reviews, preprint studies, commentaries, opinion pieces, pilot studies, prototypes,
technical designs, and secondary data analyses, and articles focused solely on data transfer
security, HER data, dental/pharmacological procedures, or articles without full-text access.

We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) 2020 statement as the basis of our organization [27] (Figure 1).

After performing the search, papers from each database mentioned above were se-
lected based on the given search string. Next, each report was carefully reviewed chrono-
logically, covering the title, abstract, keywords, introduction, background, methodologies,
findings, discussion, and conclusion to ensure thoroughness. Finally, articles were retrieved
from the databases if the search phrase or a substring met any article components.

Afterward, we eliminated duplicate articles obtained from different databases and
filtered the collected papers using Endnote software (Version 20.4.1.).
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Figure 1. PRISMA flow diagram—study selection process.

2.4. Data Quality and Risk of Bias Assessment

We used a three-step method to assess the quality of the chosen articles. First, we
carefully considered each article’s title and abstract to ascertain its applicability to our
research concerns. Second, we rapidly skimmed the complete piece to ensure it had all the
pertinent information. Finally, we reviewed the full paper from start to finish to ensure it
was valuable and could answer our research questions.

The first two authors independently evaluated each study for bias using the QUADAS-2
tool from the Cochrane Library for the quality assessment of diagnostic accuracy stud-
ies [28]. Subsequently, a summary and a graph were created using RevMan 5.4 (Cochrane
Collaboration), enabling the stratification of bias in diverse areas. Any conflicts among the
first two authors were solved by the decision of the third author independently.

2.5. Data Synthesis and Analysis

We collected various data types from each article, including author names, publication
years, and study design. We also recorded the answers to our research questions from these
articles for further descriptive analysis.
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3. Results
3.1. Characteristics of Included Studies
3.1.1. Number of Included Studies

Our original search yielded 1021 articles for this systematic evaluation. After the
application of eligibility criteria, the result was 11 papers that discussed the application
of artificial intelligence models and algorithms in health information exchange and the
interoperability of electronic health records. Table 1 shows a bias assessment summary, and
a graph of included studies can be seen in Figures 2 and 3.
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Table 1. Characteristics of the included studies.

Author and Year Study Design Subjects Outcome HIE Network FHIR Coding
System

AI
Model/Algorithms

Level of
Implementation Validation Method Metric Score

Grinspan et al.,
2015
[29]

Retrospective
Cohort 8041 Patients Epilepsy NYCLIX,

Manhattan, US ICD-9

ML: LR, Lasso elastic
LR, DT, RF,

AdaBoost, CART,
SVM

Prediction Holdout

AUC: 78–88%
Sensitivity: 12–30%

PPV: 60–81%
Calibration: 5–15%

Wang et al.,
2015
[30]

Cohort 18,295 Patients CHF HealthInfoNet,
Maine, US

ICD-9-CM
SNOMED CT NLP: RF Data Extraction

Case Finding

Prospective Cohort
Manual Review

Mann–Whitney Test
Cross-Validation

RC: Sensitivity: 69%, Specificity: 98.80%,
PPV: 92%, NPV: 94.10%, F1: 78.90%

PC: Sensitivity: 64%, Specificity: 98.80%,
PPV: 91.40%, NPV: 93.20%, F1: 75.30%

Nguyen et al.,
2015
[31]

Development
and Evaluation

500 Pathology
Reports

(201 notifiable
cancer)

Notifiable
Cancer

QCCAT,
Queensland,

Australia

SNOMED CT
ICD-O NLP: Medtex Data Extraction Manual Review

Recall: 78%
Precision: 83%

F-measure: 80%

Nguyen et al.,
2016
[32]

Retrospective
Observational

45.3 M Pathology
Reports

(119,581 histology
and cytology)

Notifiable
Cancer

QCCAT,
Queensland,

Australia
SNOMED CT NLP: Medtex Data Extraction Manual Review

Sensitivity: 96.50%
Specificity: 96.50%

PPV: 83.70%
F1: 89.60%

Zheng et al.,
2016
[33]

Cohort

1.12 M patients
(retrospective)

935,891 patients
(prospective)

DM HealthInfoNet,
Maine, US

ICD-9-CM
SNOMED CT

ML: RF
NLP: DT

Data Extraction
Case Finding

Manual Review
Prospective Cohort

RC: Sensitivity 62%, Specificity 99.40%,
PPV 95.40%, NPV 92.90%

PC: Sensitivity 68%, Specificity 98.50%,
PPV 90.10%, NPV 93.90%

Ye et al.,
2018
[34]

Cohort

823,627 Patients
(retrospective)

680,810 Patients
(prospective)

HTN HealthInfoNet,
Maine, US

ICD-9-CM
ICD-10-CM ML: XGBoost Prediction Prospective Cohort RC: AUC 91.70%

PC: AUC 87%

Vest et al.,
2019
[35]

Retrospective
Observational 279,611 Patients ED Visits INPC, Indiana, US N/A ML: DT Prediction Holdout

Cross-Validation

Travel SDOH: AUC 61%
EHR with current visit data: AUC 69.60%
EHR with Prior visit data: AUC of 70.70%

HIE data: AUC of 71.30%
All data: AUC 73.20%

Kasthurirathne et al.,
2019
[36]

Retrospective
Cohort 84,317 Patients

Depression
Advanced

Care
INPC, Indiana, US ICD-9

ICD-10
ML: RF

NLP
Data Extraction

Prediction Holdout

High-risk patients AUC: 86.31–94.43%
Overall patient AUC: 78.87%

Sensitivity: 68.79–83.91%
Specificity:76.03–92.18%

Dexter et al.,
2020
[37]

Retrospective
Observational

1.7 M Laboratory
Reports

Syphilis
Salmonella

Histoplasmo-
sis

INPC, Indiana, US LOINC ML: RF Data Extraction
Prediction

Holdout
Laboratory-Level

Holdout

Syphilis: AUC: 99.22%, Recall: 91%,
Precision: 89%, F1: 90%

Salmonella: AUC: 99.91%, Recall: 95%,
Precision: 97%, F1: 96%

Histoplasmosis: AUC: 99.18%, Recall:
96%, Precision: 88%, F1: 92%
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Table 1. Cont.

Author and Year Study Design Subjects Outcome HIE Network FHIR Coding
System

AI
Model/Algorithms

Level of
Implementation Validation Method Metric Score

Duong et al.,
2021
[38]

Cohort

497,470 Patients
(retrospective)

521,347 Patients
(prospective)

HF HealthInfoNet,
Maine, US

ICD9
ICD-10-CM ML: XGBoost Prediction Prospective Cohort

Cross-Validation

AUC: 82.40% (81.80–83%)
Sensitivity: 29.20%
Specificity: 97.10%

PPV 10%
NPV 99.20%

Kasturi et al.,
2021
[39]

Retrospective
Cohort 96,026 Patients

Health Care
Resource

Utilization
(COVID-19)

CoRDaCo,
INPC, Indiana, US N/A ML: XGBoost Prediction Holdout

1 Week: AUC: 88.74%, Sensitivity: 52.50%,
Specificity: 95.78%

6 Weeks: AUC: 86.21%, Sensitivity:
52.57%, Specificity: 94.26%

Abbreviations: CART: Classification and Regression Trees, CHF: Congestive Heart Failure, CPT: Current Procedural Terminology, DM: Diabetes Mellitus, DT: Decision Tree, HTN:
Hypertension, ICD: International Classification of Diseases, ICD-9-CM: International Classification of Diseases-9th Revision-Clinical Modification, ICD-10-CM: International Classification
of Diseases-10th Revision-Clinical Modification, IHCA: In-Hospital Cardiac Arrest, INPC: Indiana Network for Patient Care, LR: Logistic Regression, LOINC: Logical Observation
Identifiers Names and Codes, NLP: Natural Language Processing, NYCLIX: New York Clinical Information Exchange, PC: Prospective Cohort, QCCAT: Queensland Cancer Control
Analysis Team, RC: Retrospective Cohort, RF: Random Forest, SDOH: Social Determinants Of Health, SNOMED CT: Systematized Nomenclature of Medicine—Clinical Terms, SVM:
Support Vector Machines, XGBoost: eXtreme Gradient Boosting.
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3.1.2. Type of Studies

Overall, eleven articles were reviewed, encompassing various designs. Specifically, there
were seven cohort studies [29,30,33,34,36,38,39], of which three were retrospective [29,36,39].
In addition, there were three retrospective observational studies [32,35,37] and one study
that focused on developing and evaluating a model [31].

3.1.3. Parameters Obtained

Type of parameters obtained from the patient’s records were demographics [29,34–36,39],
risk factors [30,33–35], radiology encounters [29,34], histology and cytology reports [31,32],
laboratory test results [34,37,38], visit history (ED, outpatient and, inpatient) [29,30,35,36,39],
medications [33–35,38,39], comorbidities [29,30,35,39], and social determinants of
health [35,38,39].

3.2. Types of HIE Standard, FHIR Medical Coding Systems, and Application Programming
Interface (API)

The type of HIE used in the studies was Health Level 7 (HL7) [31,32,37,38]. Other
studies used the specific HIE resources without mentioning the standard, such as the
NYCLIX HIE network [29], Indiana Network for Patient Care (INPC) [35,36,39], and Maine
Health Information Exchange (HealthInfoNet, HIN, Mount Lawley, WA, USA) [30,33,34].

The HIE medical coding systems used for data extraction were International Classifica-
tion of Diseases (ICD)-9 codes [29,36,38], ICD-9-CM codes [30,33,34], ICD-10 codes [36], ICD-
10-CM codes [34,38], Systematized Nomenclature of Medicine—Clinical Terms (SNOMED
CT) [30–33], Logical Observation Identifiers Names and Codes (LOINC) codes [37] and
ICD-O. Additionally, two studies did not mention the coding system they used [35,39].

Application Programming Interface (API), such as Java Messaging Service (JMS) API,
was implemented in one of the included studies [31].

3.3. Types of AI Models, Applicability, and Validation

Most of the studies used ML models as the basis of their work (N = 8) [29,33–39], out
of which two studies used both ML and NLP algorithms [33,36]. Three studies used NLP
as their only prediction model [30–32]. At the same time, the most used NLP model was
Medtex [31,32].

Meanwhile, five studies applied the Random Forest algorithm to train their AI
model; however, three studies used different types of decision trees other than random
forest [29,33,35].

The AI models included in this review were applied for different purposes—seven
authors used the models as a prediction tool [29,34–39]; however, five used them to help
with data extraction [30–33,36,39], and two for case finding [30,33]. Of these studies,
cancer [31,32] and heart failure [30,38] were the most studied outcomes.

Several methods were implemented to validate and evaluate the effectiveness of the
AI model applicability, including the holdout validation method (N = 4) [29,36,37,39],
cross-validation method (N = 2) [30,35], prospective cohort (N = 4) [30,33,34,38], manual
chart-review (N = 4) [30–33], and statistical methods (N = 1) [30].

3.4. Models Metric Scores

Overall, the studies were able to predict the frequency of emergency department (ED)
visits. At the same time, some of them focused on people with epilepsy [29] with AUCs
ranging from 0.78 to 0.88, indicating very good predictability, fair to good PPV (60–81%),
and calibration (5–15%). However, sensitivity was uniformly poor (12–30%). Vest et al. [35]
studied revisit rates over set periods and developed ML and NLP models from five distinct
datasets. One model, based on census travel social determinants, had a 61% AUC. Another
using patient-level EHR data from the current visit had 69.6% AUC. A third model, using
historical patient EHR data, achieved 70.7% AUC. They also developed a model from
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HIE data with 71.3% AUC and one combining current and past visits, which reached
73.2% AUC.

Reference [36] utilized random forest and NLP to identify depression patients and
predict their advanced care needs, achieving AUC scores of 86.31–94.43% for high-risk
groups and 78.87% overall. Meanwhile, 8.29% needed advanced care.

An automated system for cancer registry alerts from Medtex showed promising results:
F1 scores ranged from 89.6% to 96.5%, and it categorized cancer traits with a recall of 0.78
and a precision of 0.83 [31,32].

Free-text laboratory data were used to train AI algorithms to identify three notifiable
diseases: salmonella, histoplasmosis, and syphilis [37]. The ROC-AUC was 99.22%, 99.91%,
and 99.18% for syphilis, salmonella, and histoplasmosis, respectively.

Duong et al. [38] evaluated a predictive model to detect heart failure. The model
showed an AUC of 82.4%, while the Wang et al. [30] case-finding algorithm achieved 69%
sensitivity, 98.8% specificity, and 78.9% F-measure. However, [39] utilized an ML model to
predict healthcare resource use among COVID-19 patient subgroups. The AUC-ROC for
the first week was 88.71% and 86.21% for the initial six weeks. Corresponding F1 scores
were 61.81% and 61.36%, respectively.

On the other hand, Zheng et al. [33] looked into creating a decision tree-based model
to detect the presence of diabetes mellitus in patients. In retrospective blind testing using
an NLP-based algorithm, the model obtained 62% sensitivity and 99.4% specificity, while
prospective verification yielded 68% sensitivity and 98.5% specificity.

Using prior-year medical data, Chengyin Ye et al. devised an algorithm predict-
ing hypertension risk for the next year. Their XGBoost model achieved AUCs of 91.7%
retrospectively and 87% prospectively. [34]

4. Discussion
4.1. Implications and Key Findings

According to this systematic review, using AI models in HIE may have potential
benefits. First, it may enhance the precision and effectiveness of patient management
based on HIE. These AI models and algorithms may accomplish various tasks, such
as data extraction, clinical decision assistance, and prognosis prediction. In addition,
AI may forecast multiple health-related results, such as cancer, sepsis, heart failure, in-
hospital cardiac arrest, and COVID-19-related resource utilization [30,32,40–43]. Several
measures, including area under the curve (AUC), precision score, positive predictive
value (PPV), negative predictive value (NPV), sensitivity, specificity, calibration, and F-
measure, were used to evaluate the performance of algorithms. In a clinical context,
a higher AUC indicates better reliability in distinguishing between patients with and
without the condition. The study’s AUC of 90% (ranging from 61% to 99.91% across
studies) demonstrates the model’s strong ability to differentiate between these patient
groups. Sensitivities nearing 96.5% (range: 12% to 96.5%) and a recall of 78% both highlight
effective detection of true positives—critical for accurate diagnosis. Meanwhile, a specificity
of 98.80% (range: 76.30% to 98.80%) limits false positives, reducing unneeded interventions.
The model’s positive and negative predictive values, 83.70% and 94.10%, respectively,
underscore their accuracy in both confirming and ruling out the condition. A precision rate
of up to 88% guarantees most positive detections are correct, refining treatment approaches.
The harmony between the model’s precision and recall is further shown by an F-measure
that reaches 96%, and the limited classification error range (5.17% to 5.67%) supports the
algorithm’s consistent accuracy in clinical applications.

4.1.1. Health Information Exchange, Fast Healthcare Interoperability Resources, and
Application Programming Interface

The “digital health” area is expanding quickly and uses digital tools to enhance
population health, patient outcomes, and healthcare administration [44–48].
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Although access to patient information for clinical treatment is the primary purpose
of HIEs, data gathered by HIEs may also serve a secondary purpose in public health by
helping to track disease and estimate its burden at the community level [7,10,49,50].

Efforts at uniformity in the HIE area include using coding systems and medical
thesauruses. These are employed to categorize medical data and avoid repetition and
misunderstanding in medical terminology [51–54]. FHIR is the most current HL7 system
standard [54]. It was first introduced in March 2014, and multiple technical design studies
conducted between 2018 and 2022 favored FHIR as their preferred standard [40–43]. HL7
messaging systems were used by [31,32,37,38] to gather their input information, and some
authors tried to improve their data collection quality using HL7 version 2. Nevertheless,
adopting the most recent standard, FHIR can increase the study’s reliability due to its
modern design, integrated data exchange, standardized resources, and enhanced support
for current healthcare use cases, such as patient portals [41,55–57]. However, other studies
conducted during different time frames did not specify the standard used [29,30,33–36,39].

Web services are created using a collection of architectural concepts called REST
(Representational State Transfer). Using pre-existing web standards such as RESTful
Application Programming Interfaces (API) and XML or JSON data exchange formats,
which are lightweight and easy for individuals and machines to understand, has helped
FHIR gain preference [5,58]. For HIEs, using Restful API offers many advantages, including
scalability, speed, and adaptability, as demonstrated by Amrollahi et al. [42], Tseng et al. [41],
and Henry et al. [43]. Still, it is also necessary to handle their complexities and security risks.
Java Messaging Service (JMS) API is another reliable and scalable messaging system [59]
interface that was used by Nguyen et al. [31].

The research emphasizes how crucial standardization is to health HIE networks. In
particular, HL7 was widely utilized in the studies examined, which implies that policy-
makers and healthcare organizations should prioritize the adoption and implementation of
this system, specifically FHIR, to ensure effective and efficient data sharing across various
healthcare systems.

4.1.2. FHIR Medical Coding System

Globally, disorders and health conditions are categorized using the International
Classification of Diseases (ICD) for medical documents and mortality certificates [5,60,61].
FHIR also makes use of a variety of system identifiers. For example, the Logical Observation
Identifiers Names and Codes (LOINC) system distinguishes clinical and laboratory data
such as blood tests, vital signs, and medical histories. Henry et al. [43] and Dexter et al. [37]
used LOINC to obtain observation data from the FHIR server and handle their automated
laboratory reports, respectively.

Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT), a spe-
cific and international clinical terminology used to define clinical concepts such as ill-
nesses, treatments, and medications, is a different coding system [5,58,61,62]. Out of
11, 7 studies used various versions of ICD coding systems, such as ICD-9, ICD-10, and
ICD-O [29–31,33,34,36,38]. Based on the population and nature of the research, each of
these versions can be used depending on its unique characteristics.

ICD primarily focuses on categorizing illnesses, accidents, and causes of death. How-
ever, SNOMED CT offers a more thorough representation of clinical concepts that can be
utilized, for instance, to map spans in pathology reports to clinical concepts [31,32] or to
develop a controlled set of medical terms related to CHF [30].

The significance of using a uniform classification system is vital. For example, using
ICD to retrieve information from patient records to guarantee uniformity and precision in
data retrieval for AI algorithms is crucial to healthcare systems and must be implemented.

4.1.3. AI Models in Healthcare Data Exchange

AI describes algorithms that can perform duties corresponding to human cognitive
abilities such as logic [26]. Improved patient outcomes and increased productivity are the
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goals of applying ML to patient care [63–67], with some models even surpassing human
decision-makers in some situations [68].

AI models have demonstrated enhanced capabilities in managing health-related big
datasets. Not only can they process upwards of 250 million images cost-effectively [69],
but they also excel in creating “digital twins” by constructing comprehensive data in-
frastructures that encompass patient treatment histories, outcomes, and physiological
parameters [70,71].

The two most popular ML models in healthcare are explanatory and predictive,
with explanatory frameworks used to evaluate causal theories and predictive models
for predicting new data. Predictive models include decision trees and random forests,
which employ rule or tree-based reasoning. Although logistic and linear regression models
are mainly used for prediction, they can also serve as explanatory models. Conversely,
neural networks can be used for prediction and explanation tasks [15,72–75]—Figure 4 [76].
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Despite the high degree of predictability and performance ratings that all AI models
demonstrated, there are still some significant constraints. For example, to predict the inci-
dence of emergency department visits by individuals who have epilepsy, Grinspan et al. [29]
employed ML modeling, but they did not differentiate between visits for epilepsy and visits
for other causes or between ED discharges and visits leading to inpatient stays. Inversely,
Kasturi et al. addressed this problem by thoroughly examining the patient codes to only
consider patients with COVID-19 diagnosis and not the admissions due to other causes
such as accidents. Additionally, because the research was performed at four institutions in
a single urban region, it may be less accurate to make general predictions using machine
learning [29,31,32,34,37–39].

To overcome this limitation, Nguyen et al. [31] account for deviations frequently found
in health data, such as missing data and skew distributions. They evaluated seven different
predictive modeling methods in this regard. However, since their system has not been
explicitly trained on some hidden categories, it may be more challenging to classify data
correctly in this case. The restricted data categories utilized, especially those influencing
prognostic capabilities such as insurance details and physician profiles, as highlighted
in [29], might also impact the models’ predictive accuracy.

Using a year of EMR data, researchers predicted a patient’s likelihood of a first-time
HF diagnosis using the XGBoost ML model. This model found a group with over nine
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times the HF risk compared to the baseline. However, it is important to mention that
the study’s omission of intervention effects on the predictive model could potentially
misguide decision-makers [38]. Reference [30] also attempted to create a case-finding
algorithm for detecting individuals with CHF employing only NLP analytics. The algorithm
received outstanding results regarding sensitivity, specificity, and F-measure. However, the
availability of CHF markers limited their contributions.

NLP, DNN, and ML models can categorize primary cancer types and forecast cancers
of unclear origin [40]. NLP may be the best option for recognizing clinical notes that are not
coded. Since clinical notes frequently use informal, unstructured language that may not
adhere to a standardized vocabulary or style, it is challenging for conventional rule-based
systems to recognize and retrieve information precisely. One of the possible drawbacks is
the potential for missing diagnostic codes, which could restrict how broadly the NLP-based
approach could be applied [33,77–81]. This is also applicable to [35] even though their
ML-based HIE data model displayed a higher AUC in contrast to EHR patient-level data,
as there is still a chance that the results will not be generalizable due to a potential lack of
data availability in various HIE systems.

Nguyen et al. used the General Architecture For Text Engineering (GATE) platform-
based Medtex medical text analysis system to obtain high levels of predictability with a
sensitivity level of 96.50%. However, the increased frequency of false positives diminished
the study’s PPV [32]. In another study, they used the same Java-based NLP software
(Medtex, version GATE 4.0 build 2752) platform to assess the service’s ability to process
a large volume of HL7 pathology messages. Again, the results were promising, with an
F-measure of 0.80 [31].

As reported by [39], their decision tree-based ML model predicted healthcare resource
utilization for COVID-19 patients but showed notable discrepancies between different
demographic factors such as age, ethnicity, and gender. In addition, each model had lower-
than-ideal recall results, suggesting that many individuals needing medical attention were
neglected. This emphasizes how critical it is to conduct research with strict population
confounding controls to analyze the effects of various factors across models. These discrep-
ancies can have a significant impact, particularly on residents of underserved areas, and
they can also contribute to healthcare disparities related to age [82–84].

The performed studies had the opportunity to work with a vast amount of data, but
the time period for examining their models was generally limited. Most of the studies chose
their patient data for a timeline of a year or two [29,30,32,33,37], while [34,38] extended the
frame to three years, and only two studies chose their data for more than five years [35,36].
This issue may prevent the data from providing models with a full view of long-term risk,
making it challenging to spot trends or forecast results and leading to ineffectual therapy
or intervention.

The analyzed studies revealed confident outcomes in identifying diseases such as
cancer, heart failure, and HTN. Therefore, to improve the accuracy and efficiency of diag-
nostics, healthcare organizations should consider incorporating AI models and algorithms
into their diagnostic processes.

4.2. Strengths and Limitations of the Review

We discussed various AI uses in HIE data, such as data extraction, prediction, and
clinical decision support. Additionally, to increase the validity and trustworthiness of our
results, we used a strict, transparent approach for identifying, selecting, and evaluating
relevant studies. There are some restrictions on the quality and variety of the included
research. As a result, it may be challenging to come to a definitive conclusion about the
utility and generalizability of the applied AI methods.

Studies with favorable or noteworthy findings may be more likely to be published
and included in the review, making them susceptible to bias.

The AUC serves as a pertinent metric for evaluating model performance; however,
its comparison across disparate studies demands caution due to variances in context and
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data intricacies. Notwithstanding the promise that high AUC values indicate in HIE, it
remains imperative to rigorously evaluate each model in its intended context to ascertain
its appropriateness and efficacy.

This study does not thoroughly examine the ethical, legal, and social aspects of using
AI in HIE data, even though they are crucial factors in developing and applying AI systems
in healthcare.

4.3. Future Directions and Recommendations

1. Future research should utilize diverse data sources (e.g., imaging records and lab
findings) and explore alternative machine-learning methods to improve the model’s
ability to identify a broader range of disorders.

2. Include diverse patient populations and real-world settings to assess technical design
effectiveness and conduct longer-term risk evaluations.

3. To ensure inclusivity, future research should implement strict population confounding
controls, critically analyze effects across models, and prioritize addressing healthcare
disparities, with a focus on underserved areas and age-related concerns.

4. To optimize model accuracy and predictive value, studies should account for inter-
vention effects, balance sensitivity with positive predictive value, and try to integrate
all pertinent predictive markers to enrich model contributions.

5. Further exploration of the ethical, legal, and societal implications of AI in HIE data can
enhance our understanding of the significant challenges and issues in healthcare AI.

5. Conclusions

In our comprehensive review of 11 distinct research studies, several significant trends
emerged regarding the integration of AI with HIE. A clear predilection for ML models
was noted in forecasting clinical outcomes, particularly in the domains of cancer and heart
failure, pointing to specific areas where AI can make substantial contributions. Additionally,
while the HL7 standard has become the benchmark for HIE, the frequent adoption of ICD
and SNOMED CT underscores their importance in data retrieval processes. The impressive
predictive capacities of the models, as indicated by the AUC metrics spanning from 61%
to 99.91%, are however juxtaposed with a wide-ranging sensitivity, highlighting both the
potential and challenges of AI in this domain. As we delve into the intricacies of adopting
AI in healthcare documentation, it is evident that a more holistic understanding is crucial.
The findings underscore not just the complexity but the necessity for meticulous planning,
understanding, and continuous exploration to navigate potential pitfalls such as prediction
inaccuracies and biases. Only through rigorous analysis from diverse perspectives can we
pave the way for practical and reliable AI-driven solutions in healthcare’s future.

Author Contributions: Conceptualization, A.J.F. and S.B.; Methodology, M.J.M., C.R.H. and J.J.L.;
Validation, F.R.A., J.D.C. and B.M.D.; Investigation, S.B. and F.R.A.; Writing—Original Draft Prepara-
tion, A.J.F., S.B., R.A.T.-G., K.C.M., J.D.C. and J.J.L.; Writing—Review and Editing, K.C.M., F.R.A.,
B.M.D., R.A.T.-G. and M.J.M.; Supervision, A.J.F. and C.R.H.; Project Administration, A.F, M.J.M.,
C.R.H. and B.M.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.



Healthcare 2023, 11, 2584 14 of 17

References
1. Suraj, V.; Del Vecchio Fitz, C.; Kleiman, L.B.; Bhavnani, S.K.; Jani, C.; Shah, S.; McKay, R.R.; Warner, J.; Alterovitz, G. SMART

COVID Navigator, a Clinical Decision Support Tool for COVID-19 Treatment: Design and Development Study. J. Med. Internet
Res. 2022, 24, e29279. [CrossRef] [PubMed]

2. Ghassemi, M.; Celi, L.A.; Stone, D.J. State of the art review: The data revolution in critical care. Crit. Care 2015, 19, 118. [CrossRef]
[PubMed]

3. Pysmennyi, I. Integrated medical data management systems review. Visnyk Universytetu Ukr. 2019, 23, 166–177. [CrossRef]
4. Wilkerson, M.L.; Henricks, W.H.; Castellani, W.J.; Whitsitt, M.S.; Sinard, J.H. Management of laboratory data and information

exchange in the electronic health record. Arch. Pathol. Lab. Med. 2015, 139, 319–327. [CrossRef]
5. Yılmaz, Ö.; Erdur, R.C.; Türksever, M. SAMS–a systems architecture for developing intelligent health information systems. J. Med.

Syst. 2013, 37, 9989. [CrossRef]
6. Lapointe, L.; Mignerat, M.; Vedel, I. The IT productivity paradox in health: A stakeholder’s perspective. Int. J. Med. Inform. 2011,

80, 102–115. [CrossRef]
7. Horth, R.Z.; Wagstaff, S.; Jeppson, T.; Patel, V.; McClellan, J.; Bissonette, N.; Friedrichs, M.; Dunn, A.C. Use of electronic health

records from a statewide health information exchange to support public health surveillance of diabetes and hypertension. BMC
Public Health 2019, 19, 1106. [CrossRef]

8. World Health Organization. Global Diffusion of eHealth: Making Universal Health Coverage Achievable: Report of the Third Global
Survey on eHealth; World Health Organization: Geneva, Switzerland, 2017.

9. Geraci, A. IEEE Standard Computer Dictionary: Compilation of IEEE Standard Computer Glossaries; IEEE Press: Piscataway, NJ,
USA, 1991.

10. Shapiro, J.S.; Mostashari, F.; Hripcsak, G.; Soulakis, N.; Kuperman, G. Using health information exchange to improve public
health. Am. J. Public Health 2011, 101, 616–623. [CrossRef]

11. Birkhead, G.S. Successes and Continued Challenges of Electronic Health Records for Chronic Disease Surveillance; American Public
Health Association: Washington, DC, USA, 2017; Volume 107, pp. 1365–1367.

12. Garg, N.; Kuperman, G.; Onyile, A.; Lowry, T.; Genes, N.; DiMaggio, C.; Richardson, L.; Husk, G.; Shapiro, J.S. Validating Health
Information Exchange (HIE) Data For Quality Measurement Across Four Hospitals. AMIA Annu. Symp. Proc. 2014, 2014, 573–579.

13. Engel, N.; Wang, H.; Jiang, X.; Lau, C.Y.; Patterson, J.; Acharya, N.; Beaton, M.; Sulieman, L.; Pavinkurve, N.; Natarajan, K. EHR
Data Quality Assessment Tools and Issue Reporting Workflows for the ‘All of Us’ Research Program Clinical Data Research
Network. AMIA Annu. Symp. Proc. 2022, 2022, 186–195.

14. Pitoglou, S.; Filntisi, A.; Anastasiou, A.; Matsopoulos, G.K.; Koutsouris, D. Measuring the impact of anonymization on real-world
consolidated health datasets engineered for secondary research use: Experiments in the context of MODELHealth project. Front.
Digit. Health 2022, 4, 841853. [CrossRef] [PubMed]

15. Eapen, B.R.; Sartipi, K.; Archer, N. Serverless on FHIR: Deploying machine learning models for healthcare on the cloud. arXiv
2020, arXiv:2006.04748.

16. Eapen, B.R.; Archer, N.; Sartipi, K.; Yuan, Y. Drishti: A sense-plan-act extension to open mHealth framework using FHIR. In
Proceedings of the 2019 IEEE/ACM 1st International Workshop on Software Engineering for Healthcare (SEH), Montreal, QC,
Canada, 27 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 49–52.

17. Ayaz, M.; Pasha, M.F.; Alahmadi, T.J.; Abdullah, N.N.B.; Alkahtani, H.K. Transforming Healthcare Analytics with FHIR: A
Framework for Standardizing and Analyzing Clinical Data. Healthcare 2023, 11, 1729. [CrossRef] [PubMed]

18. Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [CrossRef] [PubMed]
19. Holweg, F.; Achenbach, S.; Deppenwiese, N.; Gaede, L.; Prokosch, H.U. Towards a FHIR-Based Data Model for Coronary

Angiography Observations. Stud. Health Technol. Inf. 2022, 292, 96–99. [CrossRef]
20. Wegner, P.; Jose, G.M.; Lage-Rupprecht, V.; Golriz Khatami, S.; Zhang, B.; Springstubbe, S.; Jacobs, M.; Linden, T.; Ku, C.;

Schultz, B.; et al. Common data model for COVID-19 datasets. Bioinformatics 2022, 38, 5466–5468. [CrossRef]
21. Areia, M.; Mori, Y.; Correale, L.; Repici, A.; Bretthauer, M.; Sharma, P.; Taveira, F.; Spadaccini, M.; Antonelli, G.; Ebigbo, A.; et al.

Cost-effectiveness of artificial intelligence for screening colonoscopy: A modelling study. Lancet. Digit. Health 2022, 4, e436–e444.
[CrossRef]

22. Huang, B.; Huang, H.; Zhang, S.; Zhang, D.; Shi, Q.; Liu, J.; Guo, J. Artificial intelligence in pancreatic cancer. Theranostics 2022,
12, 6931–6954. [CrossRef]

23. Pei, Q.; Luo, Y.; Chen, Y.; Li, J.; Xie, D.; Ye, T. Artificial intelligence in clinical applications for lung cancer: Diagnosis, treatment
and prognosis. Clin. Chem. Lab. Med. 2022, 60, 1974–1983. [CrossRef]

24. Oemig, F.; Blobel, B. Natural language processing supporting interoperability in healthcare. In Text Mining: From Ontology
Learning to Automated Text Processing Applications; Springer: Berlin/Heidelberg, Germany, 2014; pp. 137–156.

25. Ohno-Machado, L. Realizing the full potential of electronic health records: The role of natural language processing. J. Am. Med.
Inform. Assoc. 2011, 18, 539. [CrossRef]

26. Siddique, S.; Chow, J.C. Machine learning in healthcare communication. Encyclopedia 2021, 1, 220–239. [CrossRef]
27. Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.

PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021,
372, n160. [CrossRef] [PubMed]

https://doi.org/10.2196/29279
https://www.ncbi.nlm.nih.gov/pubmed/34932493
https://doi.org/10.1186/s13054-015-0801-4
https://www.ncbi.nlm.nih.gov/pubmed/25886756
https://doi.org/10.36994/2707-4110-2019-2-23-16
https://doi.org/10.5858/arpa.2013-0712-SO
https://doi.org/10.1007/s10916-013-9989-5
https://doi.org/10.1016/j.ijmedinf.2010.11.004
https://doi.org/10.1186/s12889-019-7367-z
https://doi.org/10.2105/AJPH.2008.158980
https://doi.org/10.3389/fdgth.2022.841853
https://www.ncbi.nlm.nih.gov/pubmed/36120716
https://doi.org/10.3390/healthcare11121729
https://www.ncbi.nlm.nih.gov/pubmed/37372847
https://doi.org/10.1038/s41551-018-0305-z
https://www.ncbi.nlm.nih.gov/pubmed/31015651
https://doi.org/10.3233/shti220331
https://doi.org/10.1093/bioinformatics/btac651
https://doi.org/10.1016/S2589-7500(22)00042-5
https://doi.org/10.7150/thno.77949
https://doi.org/10.1515/cclm-2022-0291
https://doi.org/10.1136/amiajnl-2011-000501
https://doi.org/10.3390/encyclopedia1010021
https://doi.org/10.1136/bmj.n160
https://www.ncbi.nlm.nih.gov/pubmed/33781993


Healthcare 2023, 11, 2584 15 of 17

28. Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.
QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536.
[CrossRef] [PubMed]

29. Grinspan, Z.M.; Shapiro, J.S.; Abramson, E.L.; Hooker, G.; Kaushal, R.; Kern, L.M. Predicting frequent ED use by people with
epilepsy with health information exchange data. Neurology 2015, 85, 1031–1038. [CrossRef] [PubMed]

30. Wang, Y.; Luo, J.; Hao, S.; Xu, H.; Shin, A.Y.; Jin, B.; Liu, R.; Deng, X.; Wang, L.; Zheng, L.; et al. NLP based congestive heart failure
case finding: A prospective analysis on statewide electronic medical records. Int. J. Med. Inform. 2015, 84, 1039–1047. [CrossRef]

31. Nguyen, A.N.; Moore, J.; O’Dwyer, J.; Philpot, S. Assessing the Utility of Automatic Cancer Registry Notifications Data Extraction
from Free-Text Pathology Reports. AMIA Annu. Symp. Proc. AMIA Symp. 2015, 2015, 953–962.

32. Nguyen, A.N.; Moore, J.; O’Dwyer, J.; Philpot, S. Automated Cancer Registry Notifications: Validation of a Medical Text Analytics
System for Identifying Patients with Cancer from a State-Wide Pathology Repository. AMIA Annu. Symp Proc. 2016, 2016, 964–973.

33. Zheng, L.; Wang, Y.; Hao, S.Y.; Shin, A.Y.; Jin, B.; Ngo, A.D.; Jackson-Browne, M.S.; Feller, D.J.; Fu, T.Y.; Zhang, K.; et al. Web-based
Real-Time Case Finding for the Population Health Management of Patients With Diabetes Mellitus: A Prospective Validation of
the Natural Language Processing-Based Algorithm with Statewide Electronic Medical Records. Jmir. Med. Inform. 2016, 4, 38–50.
[CrossRef]

34. Chengyin, Y.; Tianyun, F.; Shiying, H.; Yan, Z.; Wang, O.; Bo, J.; Minjie, X.; Modi, L.; Xin, Z.; Qian, W.; et al. Prediction of Incident
Hypertension Within the Next Year: Prospective Study Using Statewide Electronic Health Records and Machine Learning. J. Med.
Internet Res. 2018, 20, 22. [CrossRef]

35. Vest, J.R.; Ben-Assuli, O. Prediction of emergency department revisits using area-level social determinants of health measures and
health information exchange information. Int. J. Med. Inform. 2019, 129, 205–210. [CrossRef]

36. Kasthurirathne, S.N.; Biondich, P.G.; Grannis, S.J.; Purkayastha, S.; Vest, J.R.; Jones, J.F. Identification of patients in need of
advanced care for depression using data extracted from a statewide health information exchange: A machine learning approach.
J. Med. Internet Res. 2019, 21, e13809. [CrossRef] [PubMed]

37. Dexter, G.P.; Grannis, S.J.; Dixon, B.E.; Kasthurirathne, S.N. Generalization of machine learning approaches to identify notifiable
conditions from a statewide health information exchange. AMIA Summits Transl. Sci. Proc. 2020, 2020, 152. [PubMed]

38. Duong, S.Q.; Zheng, L.; Xia, M.J.; Jin, B.; Liu, M.D.; Li, Z.; Hao, S.Y.; Alfreds, S.T.; Sylvester, K.G.; Widen, E.; et al. Identification of
patients at risk of new onset heart failure: Utilizing a large statewide health information exchange to train and validate a risk
prediction model. PLoS ONE 2021, 16, e0260885. [CrossRef] [PubMed]

39. Kasturi, S.N.; Park, J.; Wild, D.; Khan, B.; Haggstrom, D.A.; Grannis, S. Predicting COVID-19-related health care resource
utilization across a statewide patient population: Model development study. J. Med. Internet Res. 2021, 23, e31337. [CrossRef]

40. Zong, N.; Ngo, V.; Stone, D.J.; Wen, A.; Zhao, Y.; Yu, Y.; Liu, S.; Huang, M.; Wang, C.; Jiang, G. Leveraging genetic reports and
electronic health records for the prediction of primary cancers: Algorithm development and validation study. JMIR Med. Inform.
2021, 9, e23586. [CrossRef]

41. Tseng, T.W.; Su, C.F.; Lai, F. Fast Healthcare Interoperability Resources for Inpatient Deterioration Detection with Time-Series
Vital Signs: Design and Implementation Study. JMIR Med. Inform. 2022, 10, e42429. [CrossRef]

42. Amrollahi, F.; Shashikumar, S.P.; Kathiravelu, P.; Sharma, A.; Nemati, S. AIDEx—An Open-source Platform for Real-Time
Forecasting Sepsis and A Case Study on Taking ML Algorithms to Production. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020,
2020, 5610–5614. [CrossRef]

43. Henry, J.R.; Lynch, D.; Mals, J.; Shashikumar, S.P.; Holder, A.; Sharma, A.; Nemati, S. A FHIR-enabled streaming sepsis prediction
system for ICUs. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; IEEE: Piscataway, NJ, USA; pp. 4093–4096.

44. Stern, E.; Micoulaud Franchi, J.A.; Dumas, G.; Moreira, J.; Mouchabac, S.; Maruani, J.; Philip, P.; Lejoyeux, M.; Geoffroy, P.A. How
Can Digital Mental Health Enhance Psychiatry? Neuroscientist 2022, Online ahead of print. [CrossRef]

45. Shah, N.; Costello, K.; Mehta, A.; Kumar, D. Applications of Digital Health Technologies in Knee Osteoarthritis: Narrative Review.
JMIR Rehabil. Assist. Technol. 2022, 9, e33489. [CrossRef]

46. Sharma, S.; Mohanty, V.; Balappanavar, A.Y.; Chahar, P.; Rijhwani, K. Role of Digital Media in Promoting Oral Health: A
Systematic Review. Cureus 2022, 14, e28893. [CrossRef]

47. Lareyre, F.; Chaptoukaev, H.; Kiang, S.C.; Chaudhuri, A.; Behrendt, C.A.; Zuluaga, M.A.; Raffort, J. Telemedicine and Digital
Health Applications in Vascular Surgery. J. Clin. Med. 2022, 11, 6047. [CrossRef] [PubMed]

48. Nusir, M.; Rekik, M. Systematic review of co-design in digital health for COVID-19 research. Univers Access Inf. Soc. 2022, 1–15.
[CrossRef] [PubMed]

49. Janett, R.S.; Yeracaris, P.P. Electronic Medical Records in the American Health System: Challenges and lessons learned. Cien.
Saude Colet. 2020, 25, 1293–1304. [CrossRef] [PubMed]

50. Mandel, J.C.; Pollak, J.P.; Mandl, K.D. The Patient Role in a Federal National-Scale Health Information Exchange. J. Med. Internet
Res. 2022, 24, e41750. [CrossRef]

51. Lee, J.; Choi, J.Y. Improved efficiency of coding systems with health information technology. Sci. Rep. 2021, 11, 10294. [CrossRef]
52. Harrison, J.E.; Weber, S.; Jakob, R.; Chute, C.G. ICD-11: An international classification of diseases for the twenty-first century.

BMC Med. Inf. Decis. Mak. 2021, 21, 206. [CrossRef]

https://doi.org/10.7326/0003-4819-155-8-201110180-00009
https://www.ncbi.nlm.nih.gov/pubmed/22007046
https://doi.org/10.1212/WNL.0000000000001944
https://www.ncbi.nlm.nih.gov/pubmed/26311752
https://doi.org/10.1016/j.ijmedinf.2015.06.007
https://doi.org/10.2196/medinform.6328
https://doi.org/10.2196/jmir.9268
https://doi.org/10.1016/j.ijmedinf.2019.06.013
https://doi.org/10.2196/13809
https://www.ncbi.nlm.nih.gov/pubmed/31333196
https://www.ncbi.nlm.nih.gov/pubmed/32477634
https://doi.org/10.1371/journal.pone.0260885
https://www.ncbi.nlm.nih.gov/pubmed/34890438
https://doi.org/10.2196/31337
https://doi.org/10.2196/23586
https://doi.org/10.2196/42429
https://doi.org/10.1109/embc44109.2020.9175947
https://doi.org/10.1177/10738584221098603
https://doi.org/10.2196/33489
https://doi.org/10.7759/cureus.28893
https://doi.org/10.3390/jcm11206047
https://www.ncbi.nlm.nih.gov/pubmed/36294368
https://doi.org/10.1007/s10209-022-00964-x
https://www.ncbi.nlm.nih.gov/pubmed/36618758
https://doi.org/10.1590/1413-81232020254.28922019
https://www.ncbi.nlm.nih.gov/pubmed/32267432
https://doi.org/10.2196/41750
https://doi.org/10.1038/s41598-021-89869-y
https://doi.org/10.1186/s12911-021-01534-6


Healthcare 2023, 11, 2584 16 of 17

53. Lin, H.L.; Cheng, S.M.; Hsu, D.F.; Huang, C.C.; Wu, D.C. Information System Implementation Optimizes Medical Coding. Stud.
Health Technol. Inf. 2019, 264, 1706–1707. [CrossRef]

54. Mandel, J.C.; Kreda, D.A.; Mandl, K.D.; Kohane, I.S.; Ramoni, R.B. SMART on FHIR: A standards-based, interoperable apps
platform for electronic health records. J. Am. Med. Inform. Assoc. 2016, 23, 899–908. [CrossRef]

55. Vorisek, C.N.; Lehne, M.; Klopfenstein, S.A.I.; Mayer, P.J.; Bartschke, A.; Haese, T.; Thun, S. Fast Healthcare Interoperability
Resources (FHIR) for Interoperability in Health Research: Systematic Review. JMIR Med. Inf. 2022, 10, e35724. [CrossRef]

56. Pfaff, E.R.; Champion, J.; Bradford, R.L.; Clark, M.; Xu, H.; Fecho, K.; Krishnamurthy, A.; Cox, S.; Chute, C.G.; Overby
Taylor, C.; et al. Fast Healthcare Interoperability Resources (FHIR) as a Meta Model to Integrate Common Data Models: Develop-
ment of a Tool and Quantitative Validation Study. JMIR Med. Inf. 2019, 7, e15199. [CrossRef]

57. Hylock, R.H.; Zeng, X. A Blockchain Framework for Patient-Centered Health Records and Exchange (HealthChain): Evaluation
and Proof-of-Concept Study. J. Med. Internet Res. 2019, 21, e13592. [CrossRef] [PubMed]

58. Bender, D.; Sartipi, K. HL7 FHIR: An Agile and RESTful approach to healthcare information exchange. In Proceedings of the
26th IEEE International Symposium on Computer-Based Medical Systems, Porto, Portugal, 20–22 June 2013; IEEE: Piscataway,
NJ, USA.

59. Haase, K. Java Message Service API Tutorial; Sun Microsystems, Inc.: Santa Clara, CA, USA, 2002.
60. World Health Organization. International Classification of Diseases (ICD). Available online: https://www.who.int/standards/

classifications/classification-of-diseases (accessed on 20 March 2023).
61. Juarez, J.M.; Riestra, T.; Campos, M.; Morales, A.; Palma, J.; Marin, R. Medical knowledge management for specific hospital

departments. Expert Syst. Appl. 2009, 36, 12214–12224. [CrossRef]
62. SNOMED CT. Systematized Nomenclature of Medicine Clinical Terms. Available online: https://www.snomed.org/ (accessed

on 20 March 2023).
63. Kasparick, M.; Andersen, B.; Franke, S.; Rockstroh, M.; Golatowski, F.; Timmermann, D.; Ingenerf, J.; Neumuth, T. Enabling

artificial intelligence in high acuity medical environments. Minim. Invasive Ther. Allied Technol. 2019, 28, 120–126. [CrossRef]
[PubMed]

64. Robb, L. Potential for Machine Learning in Burn Care. J. Burn. Care Res. 2022, 43, 632–639. [CrossRef] [PubMed]
65. Ashton, J.J.; Young, A.; Johnson, M.J.; Beattie, R.M. Using machine learning to impact on long-term clinical care: Principles,

challenges, and practicalities. Pediatr. Res. 2023, 93, 324–333. [CrossRef]
66. Feretzakis, G.; Karlis, G.; Loupelis, E.; Kalles, D.; Chatzikyriakou, R.; Trakas, N.; Karakou, E.; Sakagianni, A.; Tzelves, L.;

Petropoulou, S.; et al. Using Machine Learning Techniques to Predict Hospital Admission at the Emergency Department. J. Crit.
Care Med. (Targu Mures) 2022, 8, 107–116. [CrossRef]

67. Chang, J.; Liu, Y.; Saey, S.A.; Chang, K.C.; Shrader, H.R.; Steckly, K.L.; Rajput, M.; Sonka, M.; Chan, C.H.F. Machine-learning
based investigation of prognostic indicators for oncological outcome of pancreatic ductal adenocarcinoma. Front. Oncol. 2022,
12, 895515. [CrossRef]

68. Miller, D.D.; Brown, E.W. Artificial Intelligence in Medical Practice: The Question to the Answer? Am. J. Med. 2018, 131, 129–133.
[CrossRef]

69. Beam, A.L.; Kohane, I.S. Translating Artificial Intelligence Into Clinical Care. JAMA 2016, 316, 2368–2369. [CrossRef]
70. Tuegel, E.J.; Ingraffea, A.R.; Eason, T.G.; Spottswood, S.M. Reengineering Aircraft Structural Life Prediction Using a Digital Twin.

Int. J. Aerosp. Eng. 2011, 2011, 154798. [CrossRef]
71. Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56.

[CrossRef] [PubMed]
72. Shmueli, G.; Koppius, O.R. Predictive analytics in information systems research. MIS Q. 2011, 35, 553–572. [CrossRef]
73. Göbel, K.; Niessen, C.; Seufert, S.; Schmid, U. Explanatory machine learning for justified trust in human-AI collaboration:

Experiments on file deletion recommendations. Front. Artif. Intell. 2022, 5, 919534. [CrossRef] [PubMed]
74. Sievering, A.W.; Wohlmuth, P.; Geßler, N.; Gunawardene, M.A.; Herrlinger, K.; Bein, B.; Arnold, D.; Bergmann, M.; Nowak, L.;

Gloeckner, C.; et al. Comparison of machine learning methods with logistic regression analysis in creating predictive models for
risk of critical in-hospital events in COVID-19 patients on hospital admission. BMC Med. Inf. Decis. Mak. 2022, 22, 309. [CrossRef]
[PubMed]

75. Zhu, K.; Lin, H.; Yang, X.; Gong, J.; An, K.; Zheng, Z.; Hou, J. An In-Hospital Mortality Risk Model for Elderly Patients Undergoing
Cardiac Valvular Surgery Based on LASSO-Logistic Regression and Machine Learning. J. Cardiovasc. Dev. Dis. 2023, 10, 87.
[CrossRef] [PubMed]

76. Aoki, S. BioRender. Available online: https://www.biorender.com (accessed on 5 April 2023).
77. Pethani, F.; Dunn, A.G. Natural language processing for clinical notes in dentistry: A systematic review. J. Biomed. Inf. 2023,

138, 104282. [CrossRef]
78. Clapp, M.A.; Kim, E.; James, K.E.; Perlis, R.H.; Kaimal, A.J.; McCoy, T.H., Jr. Natural language processing of admission notes to

predict severe maternal morbidity during the delivery encounter. Am. J. Obs. Gynecol. 2022, 227, 511.e1–511.e18. [CrossRef]
79. Abu-El-Rub, N.; Urbain, J.; Kowalski, G.; Osinski, K.; Spaniol, R.; Liu, M.; Taylor, B.; Waitman, L.R. Natural Language Processing

for Enterprise-scale De-identification of Protected Health Information in Clinical Notes. AMIA Annu. Symp. Proc. 2022,
2022, 92–101.

https://doi.org/10.3233/shti190607
https://doi.org/10.1093/jamia/ocv189
https://doi.org/10.2196/35724
https://doi.org/10.2196/15199
https://doi.org/10.2196/13592
https://www.ncbi.nlm.nih.gov/pubmed/31471959
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
https://doi.org/10.1016/j.eswa.2009.04.064
https://www.snomed.org/
https://doi.org/10.1080/13645706.2019.1599957
https://www.ncbi.nlm.nih.gov/pubmed/30950665
https://doi.org/10.1093/jbcr/irab189
https://www.ncbi.nlm.nih.gov/pubmed/34643694
https://doi.org/10.1038/s41390-022-02194-6
https://doi.org/10.2478/jccm-2022-0003
https://doi.org/10.3389/fonc.2022.895515
https://doi.org/10.1016/j.amjmed.2017.10.035
https://doi.org/10.1001/jama.2016.17217
https://doi.org/10.1155/2011/154798
https://doi.org/10.1038/s41591-018-0300-7
https://www.ncbi.nlm.nih.gov/pubmed/30617339
https://doi.org/10.2307/23042796
https://doi.org/10.3389/frai.2022.919534
https://www.ncbi.nlm.nih.gov/pubmed/36504690
https://doi.org/10.1186/s12911-022-02057-4
https://www.ncbi.nlm.nih.gov/pubmed/36437469
https://doi.org/10.3390/jcdd10020087
https://www.ncbi.nlm.nih.gov/pubmed/36826583
https://www.biorender.com
https://doi.org/10.1016/j.jbi.2023.104282
https://doi.org/10.1016/j.ajog.2022.04.008


Healthcare 2023, 11, 2584 17 of 17

80. Rahman, M.; Nowakowski, S.; Agrawal, R.; Naik, A.; Sharafkhaneh, A.; Razjouyan, J. Validation of a Natural Language Processing
Algorithm for the Extraction of the Sleep Parameters from the Polysomnography Reports. Healthcare 2022, 10, 1837. [CrossRef]

81. Kimia, A.A.; Savova, G.; Landschaft, A.; Harper, M.B. An Introduction to Natural Language Processing: How You Can Get More
From Those Electronic Notes You Are Generating. Pediatr. Emerg. Care 2015, 31, 536–541. [CrossRef]

82. Liaw, W.; Kakadiaris, I. Artificial intelligence and family medicine: Better together. Fam. Med. 2020, 52, 8–10. [CrossRef] [PubMed]
83. Statsenko, Y.; Al Zahmi, F.; Habuza, T.; Almansoori, T.M.; Smetanina, D.; Simiyu, G.L.; Neidl-Van Gorkom, K.; Ljubisavljevic, M.;

Awawdeh, R.; Elshekhali, H.; et al. Impact of Age and Sex on COVID-19 Severity Assessed From Radiologic and Clinical Findings.
Front. Cell Infect. Microbiol. 2021, 11, 777070. [CrossRef] [PubMed]

84. Bhanot, K.; Qi, M.; Erickson, J.S.; Guyon, I.; Bennett, K.P. The Problem of Fairness in Synthetic Healthcare Data. Entropy 2021,
23, 1165. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/healthcare10101837
https://doi.org/10.1097/PEC.0000000000000484
https://doi.org/10.22454/FamMed.2020.881454
https://www.ncbi.nlm.nih.gov/pubmed/31914179
https://doi.org/10.3389/fcimb.2021.777070
https://www.ncbi.nlm.nih.gov/pubmed/35282595
https://doi.org/10.3390/e23091165
https://www.ncbi.nlm.nih.gov/pubmed/34573790

	Introduction 
	Background 
	Problem Statement and Research Questions 
	Objectives 

	Methods 
	Search Strategy 
	Data Sources and Databases Searched 
	Study Eligibility and Selection Process 
	Data Quality and Risk of Bias Assessment 
	Data Synthesis and Analysis 

	Results 
	Characteristics of Included Studies 
	Number of Included Studies 
	Type of Studies 
	Parameters Obtained 

	Types of HIE Standard, FHIR Medical Coding Systems, and Application Programming Interface (API) 
	Types of AI Models, Applicability, and Validation 
	Models Metric Scores 

	Discussion 
	Implications and Key Findings 
	Health Information Exchange, Fast Healthcare Interoperability Resources, and Application Programming Interface 
	FHIR Medical Coding System 
	AI Models in Healthcare Data Exchange 

	Strengths and Limitations of the Review 
	Future Directions and Recommendations 

	Conclusions 
	References

