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Abstract: In recent years, wearable devices have been increasingly used to monitor people’s health.
This has helped healthcare professionals provide timely interventions to support their patients. In
this study, we investigated how wearables help people manage stress. We conducted a scoping
review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension
for Scoping Reviews (PRISMA-ScR) standard to address this question. We searched studies in Scopus,
IEEE Explore, and Pubmed databases. We included studies reporting user evaluations of wearable-
based strategies, reporting their impact on health or usability outcomes. A total of 6259 studies were
identified, of which 40 met the inclusion criteria. Based on our findings, we identified that 21 studies
report using commercial wearable devices; the most common are smartwatches and smart bands.
Thirty-one studies report significant stress reduction using different interventions and interaction
modalities. Finally, we identified that the interventions are designed with the following aims: (1) to
self-regulate during stress episodes, (2) to support self-regulation therapies for long-term goals, and
(3) to provide stress awareness for prevention, consisting of people’s ability to recall, recognize and
understand their stress.

Keywords: stress managing; interventions; wearables; smart garments

1. Introduction

Stress occurs when a person perceives a stimulus as a threat, activating their au-
tonomic nervous system and releasing hormones like adrenocorticoids, glucocorticoids,
catecholamines, and growth hormone, to mention a few [1]. These hormones have di-
verse effects on the body, including increased heart rate, muscle tension, blood pressure,
and breathing frequency [2]. Due to the above, stress may disrupt homeostasis (the balance
required for the human body to function properly) [3], contributing to several health prob-
lems such as arterial hypertension, heart disease, abnormal sleeping patterns, depression,
and anxiety [4–6]. Furthermore, it alters and distorts social relationships, sometimes leading
to work absenteeism, drug addiction, personality disorders, and even suicide [7,8].

To diagnose stress, mental healthcare specialists have explored individual and com-
bined methods, including measurement of the cortisol hormone from blood or saliva
samples, monitoring of physiological signals (e.g., Heart Rate Variability and galvanic skin
response) [9], and the application of validated questionnaires (e.g., Perceived Stress Scale
(PSS) [10]). Once stress is detected, relaxation techniques are suggested, such as taking deep
breaths, listening to music, meditating, exercising, and eating well [11–13]. However, they
are applied when people are overly stressed and have some overt health problems [14].
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Thus, the main challenge is detecting stress in time to be treated during the early stages
without requiring people to attend a laboratory to use specialized clinical equipment or to
answer validated questionnaires when the stressful events have passed [15]. The research
community has studied how mobile technology can be a suitable alternative to monitoring
early stress manifestations and provide interventions anywhere and anytime [16,17]. Ac-
cording to [18], “an intervention is the manipulation of the subject or subject’s environment
to modify health-related biomedical or behavioral processes”. Examples of interventions
are drugs, devices, and strategies to change health-related behaviors or prevent health
conditions. According to a report by the World Health Organization (WHO), during the
COVID-19 pandemic in 2020, telemedicine and teletherapy, including mobile health tech-
nologies, played a positive role in 80 percent of developing countries that used them to
bridge gaps in mental health [19,20].

Wearable devices (or wearables) are an example of a mobile technology that people
adopt to monitor their health and well-being [21]. These devices are worn on specific body
parts (e.g., wrist, hand, neck), as they have sensors that continuously measure physiological
signals, like heart rate, temperature, and galvanic skin response, to mention a few [22].
The main features of wearables are that they can be connected to the internet to transmit,
log, or analyze data. Also, they can be linked to other electronic devices to extend their
functionalities; for instance, smartwatches have traditionally been designed to monitor
users’ performance during sports activities, which can be viewed from purpose-specific
smartphone applications. Nowadays, wearables are also used to manage health since
they incorporate diverse, smart sensing and communication capabilities, which attract con-
sumers and pave the way for market growth [23]. Statistics show that in 2021, eyewear or
headwear devices occupied about 31.5 percent of the wearables market, while watches held
30.5 percent [23,24]. However, by 2030, is expected that wristwear devices will dominate
the market, followed by eyewear and headwear, footwear, neckwear, and others [23,24].

Furthermore, research has focused on enhancing wearables’ sensing capabilities
through machine learning algorithms to detect stress [25,26] and design interventions,
such as guiding people to take deep breaths [27]. In the state of the art, some reviews aimed
to collect research to analyze how novel wearable devices have been used to detect stress.
For instance, Hickey et al. [17] identified that smart bands, smart watches, and headbands
are the most used to estimate stress by analyzing physiological data such as Heart Rate
Variability (HRV) and Heart Rate (HR). The authors also found that the average HR used
by many commercially available devices is less accurate in detecting stress than HRV,
electrodermal activity, and respiratory rate. Similarly, another review identified that HR
is the most precise biosignal to detect stress, in addition to galvanic skin response, and
that the most preferred sensing platforms for data collection are Empatica (wristwear),
Emotiv (headwear), and Shimmer (bodywear) [16]. It also reports that the most explored
machine learning algorithms for mental stress detection are Fuzzy Logic and K Nearest
Neighbors (KNN). Fuzzy Logic algorithms achieved the highest classification accuracy
(96.16%) with decision trees, followed by Logistic Regression, Linear Discriminant Analysis
(LDA), and multilayer perceptron [16]. Finally, a review of smartphones and wearable
devices reports the combinations of stress signals and machine learning models explored
for predicting stress [28]. They found that using Electro-Dermal Activity (EDA) and HR
combination yields the best results with an accuracy of around 95% by using either LDA,
Support Vector Machine (SVM), kNN, or Fuzzy Logic. Notably, this is the only review that
presents an overview of smartphone apps designed to relieve stress; however, it does not
analyze their efficacy.

We conclude that the effect of wearable-based approaches on alleviating or reduc-
ing stress has not been analyzed. Previous reviews [16,28] have focused on presenting
overviews of wearable devices, including those based on commercial platforms, machine
learning algorithms, and physiological data used to detect stress levels. Therefore, the limi-
tations and open research opportunities for wearable-based interventions have yet to be
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discussed. Further investigations are needed to understand the current research on using
wearables to deal with stress.

A scoping review is a study conducted to examine emerging evidence from a body of
literature on a given topic [29]. It helped us answer the following research question: how
do wearables help people manage stress? To address it, we (i) identified the technological
characteristics used for deploying interventions to manage stress, (ii) extracted data related
to the assessments of the proposed interventions, and (iii) classified the interventions
based on their aim to manage stress. We obtained three types of intervention aim: (1) self-
regulation during a stress episode, (2) self-regulation therapies, and (3) awareness for
prevention. Our work aims to present an overview of studies presenting designs of
wearable-based interventions and evidence of their benefits in managing stress. To this
end, we carried out a scoping review of studies reporting user evaluations of wearable-
based strategies to manage stress. The type of studies included in the review are those
presenting evaluations associated with the development life cycle of interactive health
systems, as explained by Yen and Bakken [30].

2. Materials and Methods

This scoping review was conducted in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-
ScR) [31].

2.1. Search Keywords and Databases

We identified relevant studies in the IEEE Xplore, PubMed, and Scopus databases. We
performed the search on 8 March 2022, and updated on 26 May 2023, using terms related
to (1) wearables: body-worn garments, smart textiles, wearable sensors, wearable systems,
wearable, and garment; and (2) the aim of using wearables: stress, burnout, distress; stress
management and stress monitoring. These terms were used to create generic search strings
using the Boolean AND and OR operators, as the following: (“body-worn garments”)
AND (stress OR “stress management” OR “stress monitoring” OR burnout OR distress).
Seven generic search strings were generated and adapted to the databases following their
guidelines. As explained in the next subsection, the adaptations included setting filters for
retrieving documents that met the inclusion criteria related to language, publication dates,
and document type.

2.2. Inclusion and Exclusion Criteria

The inclusion criteria regarding the publication characteristics were studies written in
English and published in journals or conference proceedings between 1 January 2009 and
31 December 2022.

To define the type of studies to include in this review, we used the usability spec-
ification and evaluation framework for health information technology reported by Yen
and Bakken [30], which specifies that an interactive health system can be incrementally
evaluated through five types of studies: (1) analyses to identify users’ needs and propose
initial system’s requirements; (2) lab sessions to assess system performance; (3) lab sessions
to evaluate user–system interaction performance; (4) user’s assessment of system’s usabil-
ity quality aspects, such as learnability and satisfaction; and (5) user’s evaluation of the
system’s impact on health related-outcomes.

Based on the above, we included studies of types 3, 4, and 5 in this review, requiring
users to interact with the proposed wearable technology. These studies report the impact of
technology on health-related outcomes or usability-related outcomes such as users’ engage-
ment and awarenesss. Therefore, we excluded studies that only focused on: intervention
designs, performance evaluations of a method for detecting stress, such as evaluations of
machine-learning-based methods, and literature reviews.
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2.3. Study Selection

The study selection consisted of three stages: identification, screening, and inclusion
(see Figure 1). The identification stage consisted of searching for relevant studies and
retrieving their metadata in RIS format to be uploaded to the Rayyan software (https:
//rayyan.qcri.org, accessed on 24 June 2023), a collaborative tool to facilitate systematic
reviews. We used it to eliminate duplicates, review titles and abstracts during the screening
phase, tag the studies to differentiate between included and excluded, and describe our
reasons for excluding studies [32]. After the elimination of duplicates, the screening stage
was performed. This consisted of checking that the title and abstract of the selected studies
answered the following questions about the inclusion criteria addressed: (1) Is the study
related to stress? (2) Does the study use a wearable device? If both answers were affirmative,
the study was assessed for eligibility, which consisted of reading the full text to determine
if it met the inclusion criteria. Finally, data from the included studies were extracted for
further analysis.

Figure 1. Study selection process.

Two co-authors (M.L.G.R. and J.P.G.V.) performed the identification and selection stages.
The inclusion stage was performed by three co-authors (M.L.G.R., M.D.R., and J.P.G.V.).
Any disagreements were resolved through discussion among the co-authors. The results of
each stage were presented to the rest of the co-authors for their validation.

2.4. Data Extraction and Analysis

We followed deductive and inductive approaches to identify the data about the studies’
characteristics [33,34]. To this end, we predefined a set of data categories deductively,
i.e., based on existing concepts and knowledge obtained from the literature on the subject of
this review [16,28,29]. Using this approach, we obtained information about the intervention,
such as physiological signals measured to detect stress (e.g., ECG, EEG, HR). The form factor
of wearable devices refers to the physical characteristics of the device or object, such as its
dimensions and shape [35], (e.g., smart watch, smart band, smart glasses), body parts where
devices were worn (e.g., wrist-wear, torso-wear), hardware and software trademark for
commercial devices or if they were custom-made, and the interaction modality supported
to present information to users for managing stress (e.g., visual, auditory, or tactile). We

https://rayyan.qcri.org
https://rayyan.qcri.org
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also obtained data about the context of the study related to where the study took place
(e.g., school, hospital, building); who participated in it (e.g., the type of participants, such
as students, veterans, and older adults); what assessments techniques were used, such as
if experiments were conducted under controlled conditions; stressors used to induce the
stress; and validated instruments to measure participants’ stress levels. Furthermore, we
extracted text reporting the most significant results and conclusions the articles’ authors
reported about stress.

On the other hand, some data types emerged during the extraction while reading the
articles, i.e., they were identified inductively. One of them was the aim of the intervention.
We analyzed which interventions had the same purpose based on the definition of stress
management interventions, which refers to activities the affected person performs, com-
monly accompanied by a health care specialist, to improve their well-being and reduce
stress, address the causes of stress, or reduce the impact of stress [36]. As a result, we
identified three main types of intervention supported through wearables. We discussed
them with the co-authors of this review, experts in Psychology, resulting in two categories
related to self-regulation and one to prevention. Self-regulation refers to a person’s ability
to control their emotional and behavioral responses to stressful situations [37]. Related to
this, we identified studies that aim to help a person self-regulate during a stress episode.
These study types provide interventions when a stress episode is detected. The second
category was self-regulation therapies, which aim at a person’s ability to regulate emotional,
cognitive, and behavioral responses based on long-term goals [38]. The third category was
stress awareness for prevention, consisting of people’s ability to recall, recognize and un-
derstand their stress [14]. Similarly, we analyzed the results and conclusions texts extracted
from each article to identify if the authors found a positive effect of the intervention on
primary health outcomes and which secondary outcomes related to the wearables’ usability
were assessed, such as satisfaction and user experience.

Finally, we extracted publications’ characteristics of the studies, such as the year of publi-
cation and type of document, i.e., an article published in a journal or conference proceedings.

Two co-authors, M.L.G.R. and J.P.G.V., participated in the extraction stage. We gen-
erated an online spreadsheet using Google Sheets [39] to make it easier to independently
extract information from the studies and collaborate to resolve disagreements. The Google
spreadsheet was extended when data types were identified inductively. This required an
iterative review of the set of studies. The results were discussed with M.D.R. for their
validation and to generate the final discussion.

3. Results
3.1. Search Result

As illustrated in Figure 1, the search yielded 6259 studies, of which 1613 were dupli-
cated. After screening the titles and abstracts, 103 studies were selected for full-text reading.
A total of 40 articles met the inclusion criteria from which we extracted data.

3.2. Publication Characteristics

Figure 2 illustrates a stacked bar chart that depicts the number of conference and
journal articles identified per year. The graph reveals an upward trend in the number of
studies over the last four years of the analyzed period (2019–2022), during which more than
half of the studies (N = 25, 62.5%) were published. Furthermore, there were more studies
published in journals (N = 22, 55%) than in conference proceedings (N = 18, 45%). Notably,
journal publications dominated in the last two years compared to previous years (N = 11).
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Figure 2. Type of documents published between 2012 and 2022.

3.3. Characteristics of the Intervention
3.3.1. Wearable Devices

Smart wearables are electronic devices equipped with wireless sensors that are inte-
grated into clothing or accessories [40]. Figure 3 displays different types of wearables that
have been identified in the studies selected for this scoping review. These wearables are
depicted using icons aligned with specific parts of the human body (i.e., the smartband on
the wrist). Each icon is accompanied by a number to the right, within parentheses, repre-
senting the frequency with which the device has been identified in the studies. In Figure 3,
it can be seen that wrist-worn devices (N = 35, 87.50%) are the most commonly used
among users [26,41–60], followed by devices worn on the torso (N = 19, 47%) [25,42,59–68],
which include nine smart chest bands, five smart pins, and five patches; the head (N = 3,
7.5%) [62,69,70]; and the eyes (N = 2, 5%) [46,47], i.e., smart glasses; the neck (N = 2,
5%) [71,72], including a scarf and necklace, and the arm (N = 2, 5%) [73,74]; and the fingers
(N = 3, 7.5%) [49,68,75]. We found nine studies (22%) that used a data acquisition system
with more than one sensor worn on several body parts; these systems do not comply with
the definition of wearable [41,45–49,59,70,76].

Figure 3. Form-factor of wearables devices used to measure physiological signals.
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We identified 21 studies (52.5%) that report the use of commercial devices, such as Em-
patica E4, Spire Stone, Stila and Apple Watch, and Doppel [25,26,42,46,47,50,51,53–56,58–61,
63–65,69,70,77]. Only 11 of them used custom-made software [14,46–48,50,56,58,63,64,70,78],
4 used commercial software (e.g., Breathe, Lief app, Stila, Wahoo) [25,51,61,77], and 5 do
not report whether using commercial or custom-made software [65,69,72,74,76]. Moreover,
11 studies (37.9%) reported using a custom-made wearable device [41,43–45,52,62,67,71–73,76].
For instance, Wu et al. [76] used ECG and respiration sensors to build an HRV biofeedback
system for stress reduction and autonomic nervous system modulation through resonance
frequency respiration training.

3.3.2. Stress Monitoring

The studies used opportunistic and participatory sensing paradigms for collecting
data from users [79]. In opportunistic sensing, data are collected automatically from
sources associated with specific stress symptoms, such as difficulty breathing detected
through physiological signals or user behaviors inferred from inertial data. The physio-
logical signals have been the most used, depicted in Figure 4. It shows that 24 studies
(60%) reported using Heart Rate (HR) and Heart Rate Variability (HRV) measured from
ECG or PPG sensors [26,41–43,45,46,48,51,52,55,56,59–64,67,68,70,72,76,78]. Other physio-
logical signals reported are respiration rate (N = 5, 12.5%) [25,63,74,76,77], brain activity
monitored with EEG sensors (N = 4, 10%) [62,65,69,70], galvanic skin response (N = 13,
32.5%) [14,26,42,44,48,49,56–59,68,73,75], temperature (N = 6, 15%) [43,49,53,59,63,73], oxy-
gen saturation (SpO2) (N = 2, 6.8%) [43,44], and stress (N = 1, 2%). Furthermore, some
studies propose other types of information such as inertial data (N = 8, 20%), for instance,
monitoring users’ walking behaviors [45,66], arousal [53], outburst patterns from their
movement [64], sleep [52] and posture [63].

Figure 4. Wearable devices used to gather physiological signals.

In the participatory sensing paradigm, the interventions include apps that ask users to
provide their stress self-perception by presenting questionnaires. In this sense, four studies
(10%) report apps presenting questions to assess users’ stress [41,45,52]. For example,
Edirisooriya et al. [45] present a system that combines opportunistic and participatory
paradigms. It recognizes a person’s stress level by monitoring heart rate, counting steps
taken, and using a simple questionnaire. Based on these data, it provides the user with a
virtual environment suitable for mindfulness-based activities [45]. Zhang et al. [41] present
a stress detection algorithm to obtain data from a PPG sensor and the subject’s physical
activity to detect users’ stress levels. Afterward, the system launches a questionnaire that
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users should complete to determine their stress self-perception. This information is used to
provide the intervention. Finally, Ponzo et al. [52] present a system that estimates stress
levels by monitoring physical activity, sleep quality, heart rate, and self-perception via
an ecological momentary assessment, EMA. The system provides exercises (e.g., deep
breathing and relaxation techniques) according to their self-perception.

3.3.3. Interaction Modality

Four modalities were used to present information to the users that would make
it easier for them to follow the stress management technique supported by the inter-
vention: V (Visual), A (Auditory), T (Tactile), and O (Olfactory). Table 1 presents four
columns. The first column contains the study references. The second column specifies
the interaction modality used to inform individuals about their stress levels. The third
column displays the interaction modality employed to provide stress management inter-
ventions. Finally, the fourth column describes the intervention supported by wearable
devices. In Table 1, we can identify the following findings: visual modality is the most
used to provide stress feedback level (N = 26, 65%) [25,26,41,44,45,47,52,54–58,62–64,66,
69,70,74,76–78], followed by the auditory modality (N = 11, 27.7%) [43–47,52,54,69–71],
tactile (N = 10, 27.58%) [42,44,54,55,61,65,71,72,74] and olfactory (N = 3, 3.44%) [52,67,78].
For instance, BreatheWell Wear is an app running on mobile phones of users wearing
smartwatches [54]. The app guides users to pace breathing by displaying (V) their heart
rate in real-time. Thus, users should pace their breathing by matching it to the movement
of the blue bar. The wearable vibrates (T) at the end of each inhalation and exhalation
when the visual pace bar reverses the direction of movement for the current breathing cycle
segment. The app also offers several auditory (A) guidance options, listening to calming
sounds and music.

Only two studies do not report an intervention encouraging users to follow relax-
ation activities like the ones above. Instead, they describe interventions designed to give
feedback about users’ stress levels [51,73]. In this sense, 20 (50%) studies, including the
two mentioned previously, describe interventions designed to provide stress level feed-
back [25,26,41,51,54,56–58,61–64,70,72–77]. As shown in Table 1, they all used the visual
(V) modality. For instance, Chen et al. [63] represent the stress level and how it changes
over time through a 2D color visualization graph, and 2 of the 16 studies combined visual
feedback with auditory (A) feedback [72] or tactile (T) feedback [74].

Table 1. Interaction modalities used in the intervention.

Paper Id
Stress Level
Feedback

Interaction
Modality Intervention Description

[44] VA V A T Applies stimuli based on heat, cold, vibration, ambient light, and sound

[63] V V YOGA breathing exercise: inhale, hold, exhale

[61] V T T Breathing exercise, vibration and visual cues

[73] V NA Meditation

[74] A T V Deep breathing

[26] V V Mindfulness and Yoga

[41] V V Guided breaths

[76] V V Guided breaths

[54] V V A T Breathing

[55] NA V T Breathing
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Table 1. Cont.

Paper Id
Stress Level
Feedback

Interaction
Modality Intervention Description

[42] NA T Vibrations similar to heart rate

[65] NA T Head vibrations

[69] NA V A Virtual reality and an essence through a necklace

[43] NA A Music

[45] NA V A deep muscle relaxation and Imaginary visual activities using virtual reality

[72] V A T Arm vibrations

[77] V V Guided breaths

[46] NA A Guided breaths

[51] V NA Recognition of stress related to their activities

[70] V A V A Breathing

[47] NA V A Meditation and mindfulness

[64] V V Breathe, eat, jump rope, close your eyes, dance, play music, paint, take photos

[52] V V Diaphragmatic breaths

[67] NA O Breathing

[53] V V Shows graphs with stress and arousal levels, it is configurable by the user

[25] V V Breathing

[71] NA A T V Music and respiration

[62] V V Relaxation

[56] V V Virtual Reality

[57] V V A long list of interventions are presented in this study

[66] NA V Walking

[78] NA V O Horticultural Therapy

[75] V NA Vibrations similar to heart rate

[55] NA V Nature Break

[47] NA V A Guides to breathe, listen to music and positive messages and memories good times

[42] NA T Vibrations

[58] V V Persuasive message

[52] NA V A O Virtual Reality and scent

[74] NA T vibration

[76] V NA Visualize the stress levels of the subject and their group

Note: V—visual, A—auditory and T—tactile, O—Olfactory, NA—Not Available.

3.3.4. Intervention Time Length

In the studies, it was identified that the interventions are evaluated with different time
periods. It was identified that most of the studies report interventions performed daily
during weekly (N = 13, 32.5%) [45–47,51,52,54,61,62,66,68,70,74,76].

3.4. Study Method
3.4.1. Study Context

We identified the studies reporting experiments carried out under controlled condi-
tions. These experiments are characterized by being conducted within a laboratory or
through field observations, in which participants are requested to perform specific evalua-
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tion tasks to interact with an intervention [80]. In some of these studies, the participants’
stress was generated through external stimuli known as stressors tests. Experiments carried
out under controlled conditions were the most reported evaluation techniques of wearables
(N = 22, 55%) [42–48,50,54,56,58,59,63–65,67–70,72,75,76].

From the 40 studies, 18 (45%) were conducted in a school environment, e.g., a class-
room or office [14,44–47,50,52,55,56,58,64,67,70,74–77], and the participants were students
from different educational levels, such as elementary [70], university [14,44–47,50,52,55,56,
58,64,67,74–77], and postgraduate [26,67]; three (N = 5, 12.5%) were conducted in a work
environment [25,41,60,73,78]: one (N = 1, 2.5%) with veterans [54], one inside a clinic (N = 1,
2.5%) [68], one in a shelter (N = 1, 2.5%) [57], one in the forest (N = 1, 2.5% ) [49], one (N = 1,
2.5%) with unemployed participants [76], and one (N = 1, 3.44%) with elderly participants
[43]. The rest of the studies do not define where they took place (N = 9, 22.5%) [48,59,66].
On the other hand, most of the studies recruited adult participants in the age range of 18 to
64 years old (N = 34, 85%), followed by children aged 1–12 years old (N = 2, 6.89%) and
other age groups (elderly and teenagers).

Participants were subjected to stressor tests only in experiments with controlled
conditions, which were carried out in a closed area, such as a school or office. The most
used stressors tests were academic-related tasks [42,45,56,58], Stroop Test [47,67], Sing a
Song Stress Test [72] and video games [48,65].

Table 2 exhibits two columns. The first column comprises the names of the instruments
or scales utilized to measure the level of stress or anxiety in the study participants. The sec-
ond column presents the studies in which each instrument has been applied. Based on the
data in Table 2, we have identified the following findings: out of the 25 studies, validated
instruments were employed in assessing the subjects’ self-perceived stress. The State-Trait
Anxiety Inventory (STAI) (N = 8, 20%) emerged as the most frequently used instrument,
followed by the Perceived Stress Scale (PSS) (N = 6, 15%).

Table 2. Validated scales, questionnaires, or indexes used in the studies to measure stress, anxiety,
emotions, depression, and cognitive load.

Questionnaire and Scales Paper ID.

Anxiety subscale of the Teacher Behavior Assessment System (BASC) [70]

Body Uneasiness Test (BUT) [68]

Children Depression Inventory (CDI) [68]

Covi Anxiety [65]

Depression, Anxiety, Stress Scale (DASS) [67]

Generated Anxiety Disorder (GAD) [61]

Patient Health Questionnaire (PHQ) [52,61]

Goal Attainment Scale (GAS) [54]

Post Traumatic Check List 5 (PCL-5) [54]

Beck Anxiety Inventory (BAI) [54]

Beck Depression Inventory (BDI) [47,54,62]

Flourish Scale (FS) [54]

Nasa Task Load Index (NASA—TLX) [26,44,48]

Geneva Emotional Wheel (GEW) [48]

Short Stress State Questionnaire (SSSQ) [48]

Big five—french version (BFI) [48]

Perceived Stress Inventory (PSI) [60]

Perceived Stress Scale (PSS) [45–47,50,62,74]
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Table 2. Cont.

Questionnaire and Scales Paper ID.

Profile of Mood States (POMS) [47,49]

Relaxation Rating Scale (RRS) [59,78]

State-Trait Anxiety Inventory (STAI) [42,47,52,55,62,74,75,78]

Brief Symptom Inventory (BSI) [47]

Brief Fear of Negative Evaluation questionnaire (bFNE) [42]

Depression, Anxiety, Stress Scale (DASS-21) [52]

stress subscale [52]

Warwick-Edinburgh Mental Wellbeing Scales (WEMWBS) [52]

Difficulties in Emotion Regulation Scale (DERS) [74]

Stress Response Index (SRI) [76]

Acculturative Stress Scale (ASS) [66]

3.4.2. Study Outcomes

Most studies (N = 31, 77.5%) present positive outcomes on how their interventions help
people manage stress [25,26,41,42,44,45,47,49–54,56,60–65,69–72,75–77], for which they pro-
vide evidence regarding changes in physiological signals [26,61], stress self-perception [67],
awareness of stress level [53,65,71], and metrics associated with usefulness [54], user
engagement [51] and task efficiency [51]. However, two studies do not report stress reduc-
tion [55,74]. The authors conclude that some limitations of their methodology could cause
this result.

3.5. Wearable-Based Interventions to Manage Stress

The following shows how the studies were classified into three categories according
to the purpose of the intervention supported through wearables. Tables 3–5 present the
studies we have identified within the established categories. Each table provides relevant
information about the wearable devices used, the participants involved, the study context,
the implemented intervention, and the results obtained from said intervention.

3.5.1. Self-Regulation during a Stress Episode

To self-regulate during a stress episode, individuals must be aware of at least one response
of their physiological signals associated with stress (e.g., HR, Temperature, Sp02, GSR) [81]. We
found 24 studies supporting auto-regulation (see Table 3); all of them describe the use of
wearable devices to monitor and compare stress-related physiological signals to determine
whether they meet normality thresholds [25,26,41–50,60–65,69,71–76] To this end, mathe-
matical functions [41–50,60–65,69,71–76] or artificial intelligence algorithms [25,26] were
used. An example of this type of management intervention is presented by Yamane et al.
(2021 [55], in which two wearables are used—a patch-type ECG sensor to measure heart
rate to detect stress episodes, which launches the intervention in the Apple smartwatch. It
consists of the Breath app showing an animation to guide people to take a deep breath.

Several studies highlight the importance of personalizing interventions. One of the studies
argues that auto-regulation can be tailored to the context subject [26]. It proposes a wearable
system in that the people’s location is analyzed to tailor the intervention to their needs, i.e., the
system identifies whether the people are physically active and in a free context, such as a
weekend or holiday, to suggest traditional relaxation methods, such as yoga. This work argues
that technological-based relaxation methods may be appropriate when people are physically
inactive and in a restricted environment, such as at work or in an office.
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Table 3. Self-regulation during stress episodes.

Paper ID. Wearable Type Type of Experiment Stressor Intervention Time Length Participants Study Location Number Age Category Outcome

[61] torso-wear not controlled NA 56 days adults any place 14 adults HRV t(13) =
11.00, p < 0.001 + ]

[26] wrist-wear not controlled NA 2:30 h students any place 15 adults

Decrease in systolic
BP −5.81% ns and
diastolic BP by
−1.93% ns
p < 0.05 + ]

[41] wrist-wear not controlled NA 5 min employees NA 30 adolescents and
adults

+ quantitatively
assessed the user’s
stress level.

[62] torso-wear and
head-wear not controlled NA 4 weeks students University

Laboratory 89 adults Pre-post reduction in
stress p = 0.019 + ] l

[42] wrist-wear and
torso-wear controlled speech preparation NA NA any adult 25 adults

Lower levels of
anxiety t(1,50) = 2.79,
p = 0.0007 + ] l

[63] torso-wear controlled NA NA NA NA NA NA + Reduced stress

[43] wrist-wear controlled NA NA older adults NA NA older adults + Level of anxiety
and depression

[44]

wrist-wear,
shoulder-wear,
hip-wear and
back-wear

controlled
8 tasks challenging
motor and cognitive
and motor skills

90 min students Laboratory 15 adults
Subjective relaxation
F(3,32) = 7.58,
p = 0.0004 + ] l

[45] wrist-wear controlled exams and academic
deadlines 3 weeks students NA 26 adults + reduce stress

[73] arm-wear not controlled NA 6 h any adult work and house 2 NA

Effect of the
alleviation activities
F = 7.72,
p = 0.003 + ]

[46] wrist-wear controlled NA 10 to 20 min every day for four weeks any adult laboratory 35 adults
Reduction of stress
t(28) = −4.925,
p < 0.001 + ] l

[74] arm-wear and
eye-wear not controlled NA 2 weeks students laboratory 39 adults

Perceived Stress
F(1,37) = 25.65,
p = 0.000 - ] l

[64] torso-wear controlled classroom activities 36 h students classroom 2 children + stress balance

[47] wrist-wear controlled Stroop-like task 4 weeks any adult laboratory 55 adults
Perceived stress
t(45) = −3.609,
p = 0.001 + ] l
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Table 3. Cont.

Paper ID. Wearable Type Type of Experiment Stressor Intervention Time Length Participants Study Location Number Age Category Outcome

[76] hand-wear controlled NA 3 weeks unemployed laboratory 62 adults
Regulating function
and coping ability
p < 0.017 + ]

[65] torso-wear controlled video games 10 min any adult NA 10 adults

A + increase
self-awareness, support
social interactions, and
give back

[69] head-wear controlled NA 5 min any adult neutral office space 12 adults

Relax scores increased
significantly
t(11) = −3.609, p = 1.43
+ ]

[71] head-wear not controlled NA 5 days any adult any place 7 adults
+ † A effective in
helping users cope
with anxious states

[72] neck-wear controlled Sing-a-Song Stress Test 15 seg × task students laboratory 8 adults Change in HR + ] l

[48] wrist-wear controlled difficult mode of game,
time pressure action 50 min Social network users any place 29 adults

- ] l physiological
pBon f erroni < 0.01
subjective, there was
no effect of the
biofeedback behavioral
no differences were
found

[50] wrist-wear controlled lost of mobility due
COVID-19 1 h students university 24 adults - ] l stress relieving

F = 28, p < 0.01

[75] torso-wear and
fingers-wear controlled compound remote

associate (CRA) task NA students university 44 adults
efficacy to lowered
their breath rate
p < 0.0001

[49] finger-wear not controlled NA 120 min any adult forest 48 adults
] l decrease negative
mood states, HR and
temperature p < 0.001

[60] torso-wear and
wrist-wear controlled writing emails 7 min workers office 53 adults

] l The VAS value,
decreased from 4.81 to
1.02 (p < 0.001), and the
PSI score also
decreased from 16.75
to 10.60 p < 0.001

Note: + Positive results, - Unsuccessful results ] Statistical analysis, l Control Group, †—user experience, , NA—Not Available.
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Table 4. Self-regulation therapies.

Paper ID. Wearable Type Type of Experiment Stressor Intervention Time Length Participants Study Location Number Age Category Outcome

[70] head-wear controlled NA 2 weeks students school 20 children

Within group,
the intervention group
improve significantly
Calm score
p = 0.010 + ] l

[67] torso-wear controlled Stroop Test 3 min

graduate and
undergraduate
students, researchers,
and employees

university 7 adults Perceived long-term
stress p = 0.005 + ]

[54] wrist-wear controlled and not
controlled NA 2 to 4 weeks veteran clinical and natural

environments 14 adults + 4 o

[55] wrist-wear not controlled NA 10 min students NA 14 adults
No significant decrease
in participants’ HRs
p = 0.0852 - ] l

[56] wrist-wear and
eye-wear controlled academic tasks NA students laboratory 2 adults + reduces stress level

[68] torso-wear and
finger-wear controlled Olfactory identification

test 12 weeks-2 sessions week Adolescents with
Anorexia Nervosa Clinic 6 adolescent

+ Aceptability,
feasibility and use
patterns selfreports
of welbeing p = 0.005

Note: + Positive results, - Unsuccessful results, ] Statistical analysis, l Control Group, NA—Not Available, 4—Helpful, o—Easy of use.
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Table 5. Awareness for prevention.

Paper ID. Wearable Type Type of Experiment Stressor Intervention Time Length Participants Study Location Number Age Category Outcome

[51] wrist-wear not controlled NA 15 days social network users any place 43 adults Stress awareness
p = 0.02 + ] l > U T

[52]

wrist-wear
shoulder-wear,
hip-wear and
back-wear

not controlled NA 4 weeks students university 132 adults Reduce anxiety
p = 0.001 + ] l

[53] wrist-wear not controlled NA 95 min professors school 21 adults
+ A increased their
self-awareness of
arousal-related patterns

[77] waist-wear not controlled NA 3 days autistic students school-based transition
program 5 adults + calm and focused

respiration patterns

[25] torso-wear not controlled NA 35.7 min office workers any place 169 adults Negative instance
of stress p = 0.002 + ] l

[66] torso-wear not controlled NA 24 weeks migrant women workers any place 132 adults

+ ] acculturative stress
significantly decreased
p = 0.018 adherence,
depression and
acculturative stress

[58] wrist-wear controlled Classroom activities 60 min students university 7 adults + positive results
Awareness

[59] wrist-wear and
torso-wear controlled NA 1 min NA NA 16 adults ] Relaxation p < 0.01

[78] torso-wear not controlled Office work 4 h × 5 days office workers Office 24 adults

visualization
information was easy to
perceive, clear to
understand, and was not
interrupting, in general

Note: + Positive results, ] Statistical analysis, l Control Group, >—User motivation, U—User engagement, T—Task Efficiency, NA—Not Available.
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On the other hand, three studies argue that the intervention can be tailored to the
subject’s characteristics, such as health condition [42,54,64]. For example, Torrado et al.
(2017) describe the design of interventions to help subjects with autism spectrum disorders
control their moods and behaviors [64]. Likewise, Morris and Wallace (2018) present
the design of an application for Android Wear smartwatches to assist military service
members with post-traumatic stress disorder and traumatic brain injury to use deep, slow
diaphragmatic breathing to manage stress [54]. Furthermore, in [42], the intervention
consists of heartbeat-like vibration on the wrist to the rhythm of the subject’s heart rate.
Finally, one study reports involving a care network member to personalize the intervention
considering the preferences of the patient using the technology [64].

3.5.2. Self-Regulation Therapies

In this category, we identified seven studies [54–57,67,68,70]. They are characterized
by supporting behavioral therapies such as Cognitive Behavioral Therapy (CBT) [82].
For example, Skulimowski and Badurowicz (2017) use horticulture therapy, which consists
of taking care of a bonsai in a virtual reality game environment [56]. Users must water, dust
the leaves, and prune the virtual bonsai daily. At the same time, some physiological signals
are measured to detect if users are stressed, which impacts the health of their bonsai since it
starts to grow slowly and wither. Another example is presented in [70]. This work presents
several video games that attempt to replace negatively conditioned stimuli with positive
ones to help change negative thought patterns [82]. The video games use metaphors to help
users learn to control the body’s physiological responses to achieve relaxation. For example,
exhaling slowly and calmly and blowing out slowly to ignite a flame. Likewise, Breathewell
is an app that runs on a smartwatch to allow people to set reminders to perform breathing
exercises guided by music and visualizations [54]. Its purpose is for the subject to perform
regular breathing exercises that allow self control when facing stressful episodes [54].

3.5.3. Awareness for Prevention

The objective of the intervention is to provide persons with awareness of the daily
activities that trigger their stress. To this end, daily or historical information regarding
stress is presented to help them to make decisions to change their lifestyle. In this cate-
gory of interventions, nine studies were identified [25,51–53,58,59,66,77,78]. All studies
use dashboards, i.e., a kind of “summary” that collects data from different sources and
presents it in a way that is easy to understand at a glance. The dashboard can be updated
daily or weekly [25,51–53]. For instance, Wang et al. [51] present a Wear OS smartwatch
equipped with the Stila smartwatch application as a pulse rate provider. The compound
Stila Computed Stress graph and activity list were designed to encourage users to compare
their computed and perceived stress levels and relate these to their daily activities, thus
fostering their stress self-regulation. Another example is presented in [53], where galvanic
skin response is collected using a DTI-2 wristband and stored in digital calendars, like
LifelogExplorer, to provide comprehensible interactive visualizations of users’ arousal
information in the context of their weekly life events. This enables users to learn about
their stress behavior patterns and to decide which are relevant and can be changed. Finally,
two studies used numerical data or text to represent the information associated with stress
levels and the relationship with the activities performed [51,77]. For example, Van et al. [77]
present the use of the Spire stone sensor to monitor subjects’ breathing, which is classified
into patterns, such as calm, concentrated, tense, neutral, or active. Then, they are associated
with their cognitive or emotional states during their regularly scheduled activities on school
days. Through a dashboard on the Calm application, subjects can visualize the patterns
they have presented and for how long throughout the day.
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4. Discussion
4.1. How Do Wearables Help People Manage Stress?

The use of wearable-based interventions helps to reduce stress since most studies
report positive outcomes [25,26,41,42,44,45,47,49–54,56,58–66,68–72,75–77]. One of the
main benefits of using these technologies is that people can receive assistance anywhere and
anytime through natural interactions, such as haptic interaction [44,61]. Three strategies for
stress management predominate, where the self-regulation during stress episodes strategy
is the most explored [26,41–47,62,63,65,69,71–74,76], followed by stress prevention and
self-regulation therapies [54–57,67,68,70].

The studies provide promising results regarding stress management through wear-
able devices. However, their results cannot be generalized to the rest of the population
because most were conducted with students under controlled conditions in academic
settings [44,50,55,56,58,64,67,75]. Furthermore, there is a lack of evidence on adopting wear-
able devices for stress management. Therefore, more studies are needed to understand
the barriers to adopting this technological approach to cope with stress, such as privacy
and intrusion issues. The advances in research using body-worn garments and wearables
from recent years have permitted essential findings in different fields. For example, for
managing recovery in sports [83–85]. However, emerging studies share a focus on health-
care, particularly, regarding the relationship between Heart Rate (HR) and stress, which
is the main interest of our study. Wearables offer a great advantage in large periods of
time-monitoring of HR in natural environments, such as work, and signal processing,
which leads to the possibility of understanding the effects of chronic stress on HR during
circadian periods [86]. Dealing with stress is an everyday challenge for most people, and
people face particular conditions and situations which lead to the need for specific features
for different types of support.

According to this scoping review, the research has gained strong consistency between
the needs for the wearable’s design and the requirements of the users; previous research
addresses how technological skills may be developed to create partnerships that take into
account the person, the situation, and the right kind of support delivered by smart wear-
ables [87]. In general, health disciplines, particularly mental health, require feedback for
assessing the continuous effects of treatments on the mental health of individuals. The
findings from studies suggest that when monitoring therapies with wearable devices, par-
ticipants show 15.8% fewer negative episodes of stress, 13.0% fewer distressing symptoms,
and 28.2% fewer days feeling anxious or stressed after the 4-week intervention period [25].

On the other hand, this scoping review leads to identifying that wearables, when used
with common objectives with mental health disciplines, are capable of providing relevant
insights about the quality of life; it is demonstrated that they strongly help to monitor
daily life activity. According to a systematic review, the upcoming efforts on improving
the efficiency of wearable outcomes for concerning health should focus on elongating
the 24 h physical behavior construct, as well as looking for standard protocols that are
integrated into a validation framework [88]. Artificial intelligence embedded in smart
wearables still requires developing reliability for decision making on physiological-stress-
related information classification. However, studies at the edge of this systematic review
demonstrate good parameters, such as cross-validation accuracy of 99.7%, sensitivity
of 100%, precision of 97% [89], and a scientific background on heart illness prevention
validation protocols [90].

4.2. Opportunities for Future Research

Since we have identified few studies that explored prevention and self-regulation
strategies, there is an opportunity to investigate and develop comprehensive solutions
that support the three strategies reported in this review. In this way, technologies would
accompany people to teach them to manage and prevent stress and help them when
facing a stress episode. To reach this end, designers may consider using the ”technology
as a partner” framework to develop wearable-based interventions [87]. This framework
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proposes designing wearable devices that act as partners, either as (1) a therapist helping
people manage their stress, (2) as a human interpersonal association that would be part of
a care social network of the affected person, and (3) as a partnership with a pet, where pets
provide companionship, care, and comfort.

The evaluations of the interventions have been carried out in laboratory settings
under controlled conditions, so more evidence gathered in a natural context is needed
to conclude about the benefits of these approaches in the long term and their adoption.
Also, many studies were excluded due to not reporting intervention evaluations, which
indicate that the research interest is growing. Among these studies, several were recent
publications presenting designs of wearable devices embedded in clothing, i.e., wearable
garments [91–95]. Similarly, we identified some preliminary research works proposing
novel technologies to detect other stress information sources, such as cortisol and repetitive
body movements in legs and fingers [96]. Therefore, further reviews may be needed in the
near future to map the research on novel developments in this topic.

Finally, from the psychological perspective, three elements must be addressed to man-
age stress: (1) monitoring of physiological signals, (2) self-perception, and (3) assessment
by an expert. However, few studies address all three elements.

4.3. Limitations

This paper presents a literature mapping to understand how wearable devices may
help people manage their stress. Therefore, the results are presented descriptively, and no
statistical analysis or critical evaluation of the findings was conducted.

Our scoping review did not comprise an assessment of the methodological quality of
the studies. Therefore, studies of different quality levels were included.

Finally, although an exhaustive literature search is attempted, ensuring that some
relevant studies have not been overlooked can be difficult. This may be due to time
constraints, limitations in the databases used, language barriers, or difficulties in accessing
certain types of literature, such as unpublished reports or ongoing studies.

5. Conclusions

Wearable devices have been recognized as vital tools for detecting stress episodes
and offering interventions for its management. These interventions based on wearables
have shown promising results in effectively managing stress. Our approach to organizing
the studies has shed light on the fact that these interventions were primarily designed
for self-regulation during stress episodes, self-regulation therapies, and raising awareness
for stress prevention. However, it is essential to acknowledge that the generalizability of
the results might be limited, as the evaluation of wearables was conducted in a specific
context, particularly within an academic environment, and under controlled conditions.
Consequently, it is imperative to conduct more extensive evaluations in real-life and daily
settings to assess the broader applicability and effectiveness of these wearable-based
interventions in diverse populations and various stress-inducing situations.

Further, while the majority of wearable studies have focused on smartwatches and
activity bands, it is worth noting that ongoing research is exploring innovative avenues,
such as smart garments and sensing technologies, to detect stress through cortisol level
analysis. This evolving trend indicates that the future of wearables will likely involve
seamless integration into people’s everyday routines, making stress management more
effortless and user-friendly.

The growing interest in smart garments and cortisol-based stress detection unveils
exciting possibilities for the next generation of wearables. These advancements hold the
potential to provide even more accurate and personalized stress management solutions,
catering to individual needs and preferences. By seamlessly integrating wearable tech-
nology into daily activities, individuals can monitor and respond to stress in real-time,
fostering a proactive approach to maintaining mental well-being.
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Moreover, the development of wearables with advanced stress detection capabilities
could extend beyond individual benefits. Researchers and healthcare professionals might
harness the data collected from these devices to gain deeper insights into stress patterns at
a broader societal level. This information could facilitate the implementation of targeted
stress management programs, fostering healthier communities and workplaces.

In essence, the ongoing shift towards exploring smart garments and cortisol-based
stress detection signifies a promising future for wearables, where they become indispens-
able companions for managing stress in our fast-paced lives. As technology continues to
evolve, these wearables are poised to play an increasingly significant role in supporting
mental health and overall well-being, empowering individuals to lead healthier, more
balanced lives.
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