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Abstract: An aim of the analysis of biomedical signals such as heart rate variability signals, brain
signals, oxygen saturation variability (OSV) signals, etc., is for the design and development of tools to
extract information about the underlying complexity of physiological systems, to detect physiological
states, monitor health conditions over time, or predict pathological conditions. Entropy-based
complexity measures are commonly used to quantify the complexity of biomedical signals; however
novel complexity measures need to be explored in the context of biomedical signal classification.
In this work, we present a novel technique that used Haar wavelets to analyze the complexity of
OSV signals of subjects during COVID-19 infection and after recovery. The data used to evaluate the
performance of the proposed algorithms comprised recordings of OSV signals from 44 COVID-19
patients during illness and after recovery. The performance of the proposed technique was compared
with four, scale-based entropy measures: multiscale entropy (MSE); multiscale permutation entropy
(MPE); multiscale fuzzy entropy (MFE); multiscale amplitude-aware permutation entropy (MAMPE).
Preliminary results of the pilot study revealed that the proposed algorithm outperformed MSE, MPE,
MFE, and MMAPE in terms of better accuracy and time efficiency for separating during and after
recovery the OSV signals of COVID-19 subjects. Further studies are needed to evaluate the potential of
the proposed algorithm for large datasets and in the context of other biomedical signal classifications.

Keywords: biomedical signal processing; COVID-19; Haar wavelet; oxygen saturation variability;
physiological systems

1. Introduction

The human body is comprised of several complex systems composed of the functions
of several organs that work coherently in a healthy human. Different functions or mal-
functions of organs caused by disease affect several vital signs, which are very helpful in
diagnosing the disease [1,2]. Complexity analysis of medical signals involves the quanti-
tative assessment and characterization of the intricate patterns and dynamics present in
physiological signals [3,4]. It aims to unveil hidden information and provide insights into
underlying physiological processes and their changes in various health conditions. Com-
plexity analysis offers a framework to investigate medical signal complexity, irregularity,
and non-linear dynamics by employing mathematical and computational techniques [5,6].
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Complexity analysis of medical signals has found applications in various fields such
as cardiology, neurology, respiratory medicine, and sleep research. It has contributed to
the development of advanced signal processing methods, including nonlinear dynamics,
recurrence analysis, fractal analysis, and complexity-based machine learning algorithms.
By uncovering hidden patterns and changes in medical signals, complexity analysis holds
the potential to enhance disease diagnosis, monitor disease progression, predict patient
outcomes, and guide personalized treatment strategies [7,8].

Overall, complexity analysis of medical signals plays a crucial role in deepening
our understanding of physiological systems, unraveling the complexity of diseases, and
improving healthcare practices by providing valuable quantitative insights into the intricate
dynamics of physiological processes [9].

Entropy-based measures such as approximate entropy [10], sample entropy [11],
permutation entropy [12], and fuzzy entropy [13] have been used in numerous studies for
quantifying the complexity of the underlying controlling mechanism of physiological and
non-physiological systems. The approximate entropy, sample entropy, and fuzzy measures
quantify signal complexity by examining the predictability and pattern regularity within the
data, whilst permutation entropy quantifies the complexity of the signals based on ordinal
patterns. The signals from complex physiological systems are non-linear, non-stationarity,
and time irreversible while exhibiting at multiscale. These traditional single-scale entropy
measures do not take into account multiple temporal scales and thus yield contradictory
results about the dynamical characteristics of the real-world signals of physiological and
pathophysiological systems. Multiscale entropy (MSE) [14] analysis is another important
technique that assesses complexity across different temporal scales, enabling the detection
of scale-dependent patterns and dynamics [15].

Respiratory and cardiovascular systems maintain adequate levels of oxygen for the
healthy working of the body, and measurement of oxygen saturation (SpO2) is often
used as an indication of certain diseases. Analysis of oxygen saturation variability (OSV)
has been used to test the integrity of the cardio–respiratory control system (CRCS). The
studies [16–19] revealed that information exchange between respiratory variables and OSV
signals can provide valuable insights into the dynamical complexity of CRCS with changes
occurring due to aging and pathological conditions. The study [16] reported MSE values
were smaller for elderly subjects at all temporal scales, revealing not only loss of complexity
but also the de-coupling of the controlling mechanism of CRCS. The entropy analysis of
OSV signals was used by researchers to study the effect of normobaric hypoxia and earlier
detection of exacerbations in chronic obstructive pulmonary disease in individuals [17–19].

The entropy-based complexity measures along with their multiscale version are com-
monly used metrics for analyzing the dynamics of physiological systems and can have the
potential to assess the complexity of OSV signals of COVID-19 subjects. Multiscale entropy
measures differ in computational details and are more robust and accurate in capturing the
dynamical characteristics of physiological signals. However, the multi-scale analysis adds
to the computational burden and slows the process of analyzing the complexity of OSV
signals [20]. The aim of this study was to develop a sophisticated, reliable, and efficient
entropy measure for quantifying the complexity of OSV signals acquired from COVID-19
subjects. This research work proposed a novel technique using Haar wavelets to analyze the
complexity of OSV signals of COVID-19 patients during and after recovery. Haar wavelet
is a sequence of rescaled “square-shaped” functions forming a wavelet family or basis. It is
the simplest, and least regular type of Daubechies wavelets, reproducing constant func-
tions only. The Haar scaling function is represented with a simple formula, whilst scaling
functions for other Daubechies wavelets are developed from the dilation equation using the
cascade algorithm. Haar wavelets are discrete and can be used for analyzing signals with
transitions [21]. In this study Haar Transform was used to convert OSV time series into two
trend and fluctuation sub-signals. We iteratively applied this function five times to obtain
the sub-signals up to stage 5. The fluctuation signals were discarded and we considered
only fluctuation signals for analyzing OSV time series because the variations in the trend
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signal represent well the complexity of the signal. All five sub-signals were normalized to
zero-mean for eliminating the bias and the method of counting zero-crossings was used
for measuring the variability in each of the zero-mean trend sub-signals. The mean value
was taken as the overall score of the structural fidelity of the signal. The accuracy and time
efficiency of the proposed technique was compared with well-known complexity measures
MSE [14], MPE [22], MFE [23], and MAAPE [24] during COVID-19 and after two months
of recovery.

2. Literature Review

Complexity analysis of physiological signals in the understanding of the functioning of
various human body systems has been a popular research area. PhysioBank, PhysioToolkit,
and PhysioNet are interconnected resources that provide open-access physiological data,
software tools, and educational materials in the field of biomedical engineering [25]. These
are very valuable resources of complex physiologic signals which can be analyzed to gain
insights into the function of human body systems.

Several works have focused on the analysis of physiological signals in understanding
their complex dynamics and their relevance in characterizing physiological processes by
considering chaos as an underlying model [26–29]. Peng et al. [26] examined the mosaic
organization of DNA nucleotides, revealing complex patterns within DNA sequences and
hidden relationships and complex characteristics in genetic information. Ivanov et al. [27]
explored the scaling behavior of heartbeat intervals using wavelet-based time-series analy-
sis, revealing the multifractal nature of heart rate variability. Ivanov et al. [28] investigated
the scaling and universality in heart rate variability distributions, uncovering the presence
of scaling behavior and universal patterns. Goldberger [29] discussed the application of
non-linear dynamics, chaos theory, fractals, and complexity analysis in clinical settings,
emphasizing their potential impact on clinical understanding and decision-making.

Entropy is a measure used to quantify the randomness or uncertainty in a time
series [10,11]. It provides information about the distribution and predictability of data
patterns and gives a measure of the complexity of the data [10–12]. In 1991 Pincus [10]
proposed approximate entropy to determine the complexity of deterministic chaos and
stochastic processes comprising at least 1000 data points. The capability of approximate
entropy to discern the complexity of a small number of data points has been explored in
numerous fields, especially in medical sciences. Sample entropy [11], a modified version
of approximate entropy is used to quantify the complexity and irregularity of a time
series by assessing the likelihood of occurring similar patterns, which holds promise for
analyzing biomedical signals and physiological data. Fuzzy entropy is a measure used
to assess the complexity and irregularity of a time series based on the fuzzy membership
function approach [13]. It examines the likelihood that two vectors, which exhibit similarity
over a certain number of points (m), will continue to remain similar for the subsequent
(m + 1) points.

Bandt and Pompe proposed permutation entropy [12], to analyze the patterns ob-
tained by permuting the order of values and to provide insights into the irregularity and
unpredictability of the data. Permutation entropy does not consider the average amplitude
values and equal amplitude values in the symbolized time series. Azami and Escudero [30]
proposed amplitude-aware permutation entropy to address the issue of amplitude infor-
mation in the formulation of permutation entropy. Threshold-dependent symbolic entropy
was proposed by investigators to estimate the complexity of stride interval time series [31].
Porta et al. [32] furthered understanding by employing entropy and pattern classification
techniques to characterize complexity in short heart period variability series, aiding in
the classification of cardiac states. Lake and Moorman [33] addressed the challenge of
accurately estimating entropy in a very short physiological time series, with a specific focus
on the detection of atrial fibrillation in implanted ventricular devices.

The traditional single-scale entropy measures fail to account for multiscale variability
inherent in the physiological signals and can yield contradictory results [14,22]. Multiscale
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entropy (MSE) extends the concept of entropy by considering different time scales. By
analyzing the entropy values across different time scales, multiscale entropy provides a
more comprehensive understanding of the dynamics and complexity of the time series at
various levels of detail [14]. The different versions of scale-based entropy metrics have
demonstrated successful applications across various domains. However, it faces a challenge
when estimating the statistical reliability of sample entropy for coarse-grained series as
the time scale factor increases. Investigators proposed other scale-based entropy measures
such as MPE [22], MFE [23], and MAAPE [21] to account for shortcomings of MSE and
applied them in numerous fields.

In several recent studies, researchers quantitatively described oxygen saturation dy-
namics and patterns in COVID-19 patients [34–36]. In [34] researchers performed retrospec-
tive observational analysis of the clinical information and high-resolution oxygen saturation
recordings of 367 hospitalized critical and non-critical COVID-19 patients. The findings
revealed that the oximetry-derived digital biomarkers were informative for assessing the
disease severity and response to respiratory support of hospitalized COVID-19 patients.
Zhang et al. [35] proposed a method to assesses the subject’s degree of illness considering
the supply chain and Industry 5.0 requirement and calculated the apnea-hypopnea index
(AHI) and the subject’s disease level. They used oxygen saturation signals to extract features
based on the time domain, central tendency measure, approximate entropy, and Lempel–
Ziv complexity. Using a random forest classifier, 92% accuracy was obtained in assessing
the prevalence of obstructive sleep apnea–hypopnea syndrome. In [36], authors used a
mathematical approach to describe the exercise ventilatory responses in patients with dys-
pnoea and breathing pattern disorder following COVID-19. Aliani et al. [37] conducted a
study to investigate heart rate variability (HRV) of healthy subjects and COVID-19 patients
and reported significant differences between the groups in several HRV parameters.

3. Methodology
3.1. Dataset

The data used in the study comprises 44 recordings (26 male and 18 female) of oxygen
saturation SpO2 acquired from confirmed COVID-19-infected patients and 44 recordings
two months after recovery. Eleven subjects (25%) were diabetic and 18 (40.91%) were
hypertensive. Five subjects (11.36%) were non-smokers and 37 (86.36%) were vaccinated.
About 93 (40.91%) subjects suffered from COVID-19 infection once and about 7.0% twice.
A Beurer PO-80 oximeter, which is a noninvasive device was used for recording SpO2 [38].
The integrated recording function of Beurer PO-80 provides continuous recording of up to
24 h [38]. The Beurer View and Evaluate SpO2 Assistant free software enables the device
to synchronize with personal computers via USB. The necessary protocols were followed
before acquiring data from patients during COVID-19 infections. The patients were briefed
about the purpose of the study, and informed consent was taken for data collection. The
University of Azad Jammu & Kashmir Ethical Committee approved the research. All
methods were carried out in accordance with relevant guidelines and regulations. The
patients were instructed to wash and dry their hands, put a pulse oximeter on the index
finger, and bend the fingers so that their fingernails were pointing towards them. The
recordings were initially completed over a 2 h period and patients remained in rest state.
The same subjects were approached two months after their recovery, and the same data
collection process was repeated. The recordings fulfilled the inclusion criteria such as no
previous history of pulmonary or cardiovascular problem, recordings > 2 h, containing
recordings of both during and of recovery were included in the study. The recordings
were scanned for artifacts and replaced with mean values using a zero-line interpolation,
which is the most stable method compared to other methods of artifact removal [16]. The
smallest number of data points in a file was 7421, which were chosen for each recording
to perform pattern analysis of OSV signals using Haar wavelet and different scale-based
entropy metrics. Boghal and Mani [16] used 1 h recordings of OSV signals to test the
integrity of CRCS in young and elderly healthy individuals. Long duration recordings
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improve the statistical reliability of evaluated metrics. As the subjects had to remain at rest
during the data collection, we were able to record data of more than two hours, which is
sufficient for performing pattern analysis of OSV signals.

3.2. Discrete Wavelet Transform

Consider the following discrete time series containing N equally spaced samples of an
analog signal:

F = [ f1, f2, f3, . . . , fN ] (1)

Wavelet transform converts this signal to two signals of half its length. The first
sub-signal is the running average, or approximation of the time series, and shows the trend
of data, whereas the second sub-signal is a running difference that shows fluctuations or
the details of the local variations that occur in the data. There have been different types of
operations proposed for this transformation, but the key function of all of them is to find
one smooth version of the original signal and another version that contains the local details.
We can describe these transformations as follows:

A = Trend(F)
D = Fluctuation(F)

(2)

These sub-signals of a part of a typical OSV time-series signal are shown in Figure 1.
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The trend signal can be transformed again using the same procedure to obtain the
second stagSe of the trend and fluctuation signals. Depending on the application in hand,
this process can be repeated for as many stages as required. We can describe this process of
signal decomposition as below:

F = [A1 | D1] = [A2 | D2 | D1 ] = [A3 | D3 | D2 | D1] = . . . (3)

where the subscripts added to the trend and fluctuation signals indicate their stage. Note
that the sub-signals shown at any stage can be combined to retrieve the original signal F.

3.3. Proposed Method

The Haar wavelet is the simplest of all wavelets, and it simply takes the sum and
difference of adjacent samples to calculate the trend and the fluctuation sub-signals. The
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elements of the trend and fluctuation sub-signals of the input signal F can be represented
respectively as follows:

A(m) = (F(2m− 1) + F(2m))/
√

2,
D(m) = (F(2m− 1)− F(2m))/

√
2, m = 1, 2, 3, . . . , N/2

(4)

Note that the Haar transformation divides the output by the square root of 2 to
preserve the signal’s energy; however, we can carry out our analysis without this division
for simplicity, as we are interested only in the analysis of the structure of signals. This can
improve computational efficiency.

The integrity of the cardio–respiratory control system has been hypothesized that it
can be established by analyzing the trend and fluctuation signals obtained through wavelet
transformation of the OSV time series. Several statistical measures can test the structural
complexity of these signals, including amplitude, mean value, number (frequency) of peaks
over time, etc. We experimented with several of them and found that variation in the trend
signal represents well the complexity of the signal.

We subtract the mean value of the trend sub-signal from its original samples computed
in (4) to eliminate the effect of any bias induced by measurement or a subsequent operation.

The times of the zero-mean signal change signs are counted from negative to positive
or vice versa. This measure is found to reliably distinguish between the signals coming
from the patients of COVID-19 disease and those who have recovered. This step finds the
zero crossings of the trend signal. For this, first, we calculate the sign of each element in the
trend sub-signal A:

S(m) =

{
1, A(m) ∗ A(m− 1) < 0
0, otherwise, m = 1, 2, 3, . . . , N/2

C =
N/2−1

∑
m=1

S(m)

(5)

The value C gives a measure of the structural complexity of signal A.

3.4. Complete Proposed Algorithm

The complete proposed algorithm comprising the operations described above is shown
in Figure 2 and can be summarized as follows:

1. Apply the Haar Transform to the OSV time series and convert it into two sub-signals,
trend, and fluctuations. Apply this function iteratively five times to obtain the sub-
signals up to stage 5.

OSV = [A1 | D1]
= [A2 | D2 | D1]
= [A3 | D3| D2| D1]
= [A4 | D4 |D3| D2| D1]
= [A5 | D5| D4 |D3| D2| D1]

(6)

2. Discard the fluctuation sub-signals and perform analysis on the trend signals only,
i.e., [A 1, A2, A3, A4, A5] computed in the previous step.

3. The mean value of each trend sub-signal is subtracted to eliminate biases and normal-
ize all five sub-signals to zero-mean form, as given below:

Az1 = A1 −mean(A1),
Az2 = A2 −mean(A2),
Az3= A3 −mean(A3),
Az4= A4 −mean(A4),
Az5= A5 −mean(A5)

(7)



Healthcare 2023, 11, 2280 7 of 14

4. The next step is the measurement of variability in each of the zero-mean trend sub-
signals using the method of counting zero-crossings mentioned earlier in Equation (5).

5. Step 4 yields five values of the variability measure C computed using Equation (5).
Their mean value is taken as the overall score of the structural fidelity of the signal.
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4. Results and Discussions

Various complexity analysis techniques have been utilized in the past to evaluate the
structural complexity of time series data. One widely employed approach for assessing the
impact of cardio–respiratory system malfunction is the multi-scale entropy (MSE) analysis
of oxygen saturation variability (OSV) signals [14]. In this section, we present the results of
the proposed Haar wavelet-based technique and compare them with different versions of
scale-based entropy measures, namely MSE [14], moving permutation entropy (MPE) [22],
moving fuzzy entropy (MFE) [23], and moving amplitude-aware permutation entropy
(MAAPE) [21] at temporal scales ranging from 1 to 20.

To begin the multi-scale entropy analysis, the first step involves constructing a coarse-
grained signal by applying a moving average to non-overlapping samples of the OSV
signal, with the scale parameter determining the number of samples used in the averaging
process. Subsequently, the coarse-grained signal is divided into overlapping vectors of
samples, where the vector size is determined by a second parameter known as the order.
Once the coarse-grained time series is obtained, we compute the complexity of the OSV
signals acquired from COVID-19 subjects during the infection and after recovery using
entropy estimation techniques such as sample entropy [11], permutation entropy [12], fuzzy
entropy [13], and amplitude-aware permutation entropy [29].



Healthcare 2023, 11, 2280 8 of 14

In Figure 3, we present the mean values of MSE (top left panel) for the 44 COVID-19
patients during infection and after recovery at different scales within the range of 1 to
20. It can be observed that the mean entropy value after recovery is consistently higher
than that during illness across all scales. The maximum separation between the subjects
during and after recovery was observed at time scale 8. However, at very high values, the
moving average tends to reduce the structural details, leading to a decrease in the observed
differences. The top right panel of Figure 3 displays the results obtained using MFE at time
scales 1 to 20. It is worth noting that the fuzzy entropy values become undefined at scales
greater than 10, and they exhibit abrupt changes with varying scales.
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Moving on to the MPE results shown in the bottom left panel of Figure 3, they aim
to differentiate OSV signals during the infection and after two months of recovery from
COVID-19 at time scales 1 to 20. It can be observed that the MPE values are consistently
smaller during the infection compared to those after two months of recovery. The maximum
separation between the subjects during and after recovery was observed at time scale 8.
Similarly, the bottom right panel of Figure 3 presents the results obtained using MAAPE,
revealing a decrease in complexity during COVID-19 infection and an increase in complexity
after recovery. The maximum difference between the subjects during and after COVID-19
infection was observed at time scale 10. Interestingly, unlike other scale-based entropy
metrics (MSE, MFE, and MPE), the MAAPE values drop for both infected and recovering
classes at higher scales. This behavior can be attributed to the fact that MAAPE considers
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amplitude information, unlike permutation entropy which focuses on the order of patterns
for quantifying signal complexity. In summary, the estimates obtained from all four scale-
based entropy measures indicate a loss of complexity during COVID-19 infection and
an increase after two months of recovery, which aligns with other studies conducted on
various physiological signals [14,21,22], indicating that the loss of complexity is a general
characteristic of the disease.

For a more detailed analysis, Figure 4 presents the individual entropy values of the
44 subjects during infection and after recovery. The optimal scale value was selected for
each entropy measure based on the analysis of the average scores presented in Figure 4,
which exhibited significant differences. For MSE, MFE, MPE, and MAAPE, the entropy
estimates showed an increase in 28, 30, 33, and 31 subjects, respectively. Notably, the
permutation entropy values of 33 subjects (75% of the total) improved after recovery, while
the remaining 11 subjects did not follow this pattern. Although 11 out of 44 may seem like
a significant number, it can be argued that these results are promising given the potential
data capture errors and the inability to repeat the experiment or further investigate the
cases of the minority subjects that did not conform to the observed pattern. Similar trends
were observed using other entropy measures, as depicted in Figure 5.
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Figure 4. MSE, MFE, MPE, and MAAPE estimates for 44 COVID-19-affected subjects during infection
(red points) and two months after recovery (blue points) at optimal time scales.
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Figure 5. Structural fidelity scores assigned by the proposed method to 44 COVID-19-affected subjects
during infection (red points) and after recovery (blue points).

Furthermore, we repeated the experiment using the proposed Haar wavelet-based
technique and plotted the individual scores assigned by this method to the subjects during
infection and after recovery. In this case, 34 subjects (77.3% of all subjects) showed improve-
ment in their scores during COVID-19, while 10 subjects did not exhibit this progress, as
illustrated in Figure 5. These results surpass the best outcomes achieved by any form of
multi-scale entropy analysis. A comparison of the results is presented in Figure 6.
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Figure 6. Number of correct and incorrect detections of increase in complexity of signals after recovery.
The proposed method has the best performance compared to the existing state-of-the-art algorithms.

It is important to note that multi-scale entropies necessitate the specification of sev-
eral parameters, including scale, order of permutation, delay, similarity threshold, etc. In
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contrast, the proposed Haar wavelet-based technique does not require any user-defined pa-
rameters. This aspect contributes to the simplicity and ease of use of the proposed method,
providing additional advantages over the existing multi-scale entropy-based methods.

Finally, Figure 7 showcases a comparison of the execution speeds of the various
methods being evaluated. The proposed technique proves to be the fastest among all, with
an average execution time of only 52.9 milliseconds for one subject’s data. On the other
hand, amplitude-aware permutation entropy is the slowest among the compared methods.
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A few studies [34–36] quantitatively describe oxygen saturation dynamics and patterns
in COVID-19 patients using time domain and nonlinear techniques such as approximate
entropy and Lempel–Ziv complexity measures. These techniques provided value insights
for assessing prevalence of obstructive sleep apnea–hypopnea syndrome, breathing pat-
tern disorder, and assessment of disease severity and response to respiratory support of
hospitalized COVID-19 patients. The traditional entropy measures such as approximate
entropy and Lempel–Ziv complexity are single scale. Like other physiological signals, OSV
signals are the output of numerous interacting sub-components of the cardio–respiratory
control systems (CRCS) operating on multiple time scales. Thus, single-scale, traditional
entropy measures are unable to accurately yield dynamical information about interacting
components of complex biological systems operating on multiple time scales. The scale-
based entropy measures such as MSE [14], MPE [22], MFE [23], and MAAPE [21] can have
the potential to quantify the complexity of CRCS at multiple time scales using OSV signals.
The multi-scaling procedure adds to the computational burden and slows the process of
analyzing the complexity of OSV signals [20]. The main contribution of this study was
to propose innovative techniques for analyzing the dynamical complexity of OSV signals.
The proposed techniques using Haar wavelets not only improved the performance for
distinguishing OSV signals during and after recovery, but also was time efficient.

The study also highlighted that complexity of OSV signals of COVID-19 patients
decreased during COVID-19 compared to those after two months of recovery. The reduced
complexity during COVID-19 reveals the lesser adaptive capability of CRCS to external
stresses. After recovery, the adaptive capability of the CRCS started to increase revealing
an increase in its dynamical complexity. The proposed technique can have applications
in evaluating dynamical models of CRCS and clinical monitoring during disease and
after recovery.
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One of the major limitations of the study is that the cohort size is modest. In the pilot
study data were used for analysis of the dynamical characteristics of OSV signals during
COVID-19 and after two months of recovery. However, further studies with a large data
set can be useful for accurate clinical decision-making.

5. Conclusions

Past research has established that the complexity of the human body’s cardiac–respiratory
signals decreases if the related body organs are not in their best health. Since these signals
can be measured quickly with simple wearable devices available on the market, such anal-
ysis can help take preventive measures and monitor recovery. In this paper, we presented
a simple measure that can determine the structural fidelity of the signals using wavelet
transform. In addition, a dataset of oxygen saturation levels of 44 COVID-19 patients
comprising more than two hours of recording of each subject was collected when they were
infected and being treated and then again after two months of their recovery.

The proposed technique was tested on this dataset to validate its accuracy and time
efficiency. It was found that 34 out of 44 subjects improved their score regarding the
proposed measure. Improvement was not observed for the remaining ten subjects, or their
scores were found to have dropped after recovery. Further investigation could help in
determining the cause. The subjects might still not be fully recovered, or some noise might
have affected the data collection process. Nevertheless, 34 out of 44 is a significant number
which makes the proposed technique a candidate to be seriously considered for further
investigations on larger data and as a tool for observing the recovery of patients.
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