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Abstract: Patient safety is a paramount concern in the medical field, and advancements in deep
learning and Artificial Intelligence (AI) have opened up new possibilities for improving healthcare
practices. While AI has shown promise in assisting doctors with early symptom detection from
medical images, there is a critical need to prioritize patient safety by enhancing existing processes.
To enhance patient safety, this study focuses on improving the medical operation process during
X-ray examinations. In this study, we utilize EfficientNet for classifying the 49 categories of pre-X-ray
images. To enhance the accuracy even further, we introduce two novel Neural Network architectures.
The classification results are then compared with the doctor’s order to ensure consistency and
minimize discrepancies. To evaluate the effectiveness of the proposed models, a comprehensive
dataset comprising 49 different categories and over 12,000 training and testing sheets was collected
from Taichung Veterans General Hospital. The research demonstrates a significant improvement in
accuracy, surpassing a 4% enhancement compared to previous studies.

Keywords: deep learning; Artificial Intelligence (AI); medical process; Convolutional Neural
Network (CNN); image classification; error detection; early warning; patient safety

1. Introduction

According to the World Health Organization’s (WHO) fact sheet on patient safety [1]
and the latest TPR 2020 Annual Report [2], a significant number of patients are at risk of
experiencing harm due to incorrect medical management [3]. Nevertheless, it is worth
noting that close to 50% of these adverse events are preventable [4]. Misidentification
of the patient’s examination site is a major source of error events in hospital radiology
departments, as shown in various examples such as those in Figures 1 and 2. For instance, a
doctor may order a right (R't) WRIST anterioposterior (AP) image, but the radiographer may
mistakenly take a Rt WRIST lateral (LAT) image, or an order of left (L't) FOOT AP image
may be taken as the L't FOOT AP image, which potentially leads to incorrect diagnosis and
treatment. Studies conducted by Sadigh et al. [5] at two large US academic hospitals showed
that out of 1,717,713 examinations performed during their study period, 67 error reports
were identified, with an estimated event rate of 4 per 100,000 examinations. Although the
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probability of such errors seems low, any errors can have serious consequences, leading to
delayed diagnosis and treatment for patients.

(a) Rt WRIST AP (b) Rt WRISTLAT

Figure 1. Example of Irradiating the Wrong Direction.

(a) L't ANKLE AP (b) L't FOOT AP

Figure 2. Example of Irradiating the Wrong Site.

Patient safety is of utmost importance in medical services, and any measures to prevent
such errors should be taken. For example, the outpatient X-ray room of Taichung Veterans
General Hospital performs nearly 1000 X-ray images daily, and in such a high-pressure
environment, human errors are unavoidable. Therefore, it is crucial to improve medical
procedures to address this issue and ensure patient safety.

Since 2013, there has been a significant rise in research focused on machine learning
within the health and life sciences domain. Among the most widely adopted applications
is the support it provides to doctors in diagnosing and treating patients. Despite the
continued reliance of most hospitals on traditional methods, such as PDCA (Plan-Do-Check-
Act), for enhancing medical procedures, researchers have introduced groundbreaking
solutions [6-10] that utilize image classification to assist in diagnostics. For instance,
Gao [7] employed a deep learning approach to classify Fundus Fluorescein Angiography
(FFA) images, determining the presence or absence of diabetic retinopathy. Gupta [8]
utilized two models, MobileNetV2 and DarkNet19, for classifying patients as either having
or not having COVID-19. In [9], Pan et al. employed a deep learning model to categorize
fundus images into three groups: normal, macular degeneration and tessellated fundus.
The iERM system proposed by Kai et al. [10] is a two-stage Deep Learning system that
enhances the grading performance and interpretability of ERM by incorporating human
segmentation of key features.

Image classification is a vital task in computer vision, where CNNs play a crucial
role [11-24]. They excel at extracting features and enabling accurate classification. CNNs are
widely used and are particularly valuable in medical diagnostics. Transfer learning, using
pre-trained models, such as ImageNet, is a common technique to enhance performance
on new tasks with smaller datasets. Feature Extraction and Fine Tuning are the two main
approaches to transfer learning. For this study, the PyTorch Image Models (timm) library
by Ross Wightman [25] is used for feature extraction and the fine-tuning of medical images.

The outpatient X-ray room at Taichung Veterans General Hospital handles an average
monthly workload of approximately 30,000 X-ray images, which translates to almost
1000 X-ray images generated daily. This workload is managed by only 3—4 radiologists and
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1 support personnel, leading to a high-pressure work environment where human errors
are likely to occur. After analyzing the causes of errors, including subjective and objective
factors such as physical discomfort, unfamiliar inspection sites, long working hours, and
high pressure, it was determined that corrections and assistance in the medical process
could reduce such errors.

Miao [6] introduced a solution to tackle the mentioned problem, with the goal of
classifying 49 categories of X-ray images. These categories encompass 25 sites, 40 categories
with direction, and 9 categories without direction. The best result obtained was a testing
accuracy of 94.10% trained with Xception [26]. However, Miao identified two issues
that led to low accuracy: the feature gap between positive and lateral positions was too
small and left and right images were difficult to classify. To enhance the accuracy of
Miao [6], we used EfficientNet as our CNN model. We also propose two enhanced model
architectures: T40P3x4 and T40P2x4A2P2 and implement three optimization strategies
to address the issues of low accuracy: using a more robust model, data purification, and
data augmentation. By implementing these improvements, the overall system accuracy
increased by more than 4.0%, reaching 98.16%. This significant improvement has not only
enhanced the quality of medical services but also improved patient safety.

The main contribution of this paper includes:

According to TPR 2020 [2], it is evident that there is a higher likelihood of radiologists
causing delays in patient diagnoses. However, the effective utilization of EfficientNet
has significantly reduced human errors among radiologists. Compared to previous
studies [6], our model demonstrates improved accuracy, and in addition to that, we
offer Fl-score, Recall, and Precision measurements;

e  The 49-category classifier exhibits some misclassifications in certain body parts. To
enhance the accuracy of these specific body parts, we propose the two-level classifier
T40P3x4. This new approach promises to further improve the overall accuracy to 98%;

e  Despite achieving 98% accuracy, the two-level architecture does encounter misclas-
sifications in three body parts of RGB pictures. In order to address this limitation,
we present a novel three-level architecture: T40P2x4A2P2. The latest methodology
not only boosts the overall accuracy significantly but also efficiently classifies body
parts that were previously misclassified using the two-level architecture, leading to a
remarkable 98.16% accuracy.

The rest of the paper is organized as follows: In Section 2, we will introduce the
datasets, materials and methods used in our study. Section 3 presents the results of our
experiments. We will discuss the results, compare them with Miao [6] and talk about future
work in Section 4. Finally, in Section 5, we draw our conclusions.

2. Materials and Methods
2.1. Data Collection
2.1.1. Overview

This study was conducted using the X-ray room located in the outpatient department
of Taichung Veterans General Hospital as the primary source of data. The data collection
period lasted for 8 months, from September 2021 to April 2022. The images obtained in
this study were of the most frequently examined areas, which constituted 80% of the daily
workload for radiologists. The 15 examined areas were divided into 40 categories with
directional indicators and 9 categories with no directional indicators, resulting in a total
of 49 categories. In Figures 3 and 4, the following abbreviations were used: AP and PA
indicate anterioposterior and posterioanterior directions, LAT refers to lateral direction,
OBL refers to an oblique direction, STD indicates standing position, L't represents left, Rt
represents right, C-spine represents cervical spine, T-spine represents thoracic spine and
L-spine represents lumbar spine.
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ABDOMEN SUFPINE

L-SPINE AP T-SPINE AP

L-SPINELAT T-SPINELAT

CHESTPA

Figure 3. Non-Directional sites.

L't ANKLE AP L't ANKLELAT R'tANKLE AP Rt ANKLELAT

L'tELBOW AP L'tELBOW LAT R’'t ELBOW AP

LtFEMUR AP Lt FEMUR LAT RtFEMUR AP

1l I

L'tFOOT AP L't FOOT OBEL R'tFOOT AP R'tFOOT OBL

Figure 4. Directional sites.

2.1.2. Purification

During the data collection process, it was observed that a small number of images
for some sites were different from the majority of images due to special conditions. For
instance, in Figure 5, the patient’s position cannot be discerned from the image because
of factors such as wearing a cast, a brace, or clothing covering the body. Additionally, in
Figure 6, the radiation of the same site can vary significantly between children and adults or
due to certain actions that the patient may be required to perform by the physician. Both of
these scenarios can affect the accuracy of the data set and confuse the model’s recognition
of categories during training. As a result, these special cases were removed in this study to
avoid negatively impacting the model’s training.
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(a) L't LEG AP

i
(d) In a cast (e) Wear abrace (f) Covered by clothes

Figure 5. Changes in the appearance of the irradiated site. The upper row is the most common way
to irradiate that site, and the lower row is the special situation.

(a) Normal (b) View of children (c) Certain action

Figure 6. Changes in the placement of the irradiated site. (a) is the most common way to irradiate R’t
ELBOW LAT, and the other two images (b,c) are the special situation.

This strategy is also expected to enhance the model’s ability to extract precise features
for each site on the left and right, thereby improving the challenge of classifying left and
right, as mentioned in Miao’s paper [6]. Since the number of X-ray types taken by the
radiology department varied daily, this study selected 100-300 images for each category
after data purification, resulting in a total of 12,152 images. Table 1 shows the number of
RGB pictures for each body category. In these 20 body categories, we have highlighted
the 11 directional body categories. We further break down the directional body categories
into 40 additional categories in addition to the original 9 non-directional body categories.
Figure 7 illustrates the data distribution across all these 49 categories. We observe that
FEMUR LEG and ELBOW have a relatively lower number of RGB pictures, which could
potentially lead to misclassification by the classifier. To tackle this issue of limited dataset
size, we will employ a data augmentation scheme, as detailed in Section 2.2.2.

Table 1. The number of images in each category.

L't R't
Category Non-Direc Sum
AP/PA LAT OBL AP/PA LAT OBL
ABDOMENSUPINE X X X X X X 295 295
CHESTPA X X X X X X 233 233
C-SPINEAP X X X X X X 287 287
C-SPINELAT X X X X X X 285 285
C-SPINEOBL X X X X X X 283 283
L-SPINEAP X X X X X X 289 289
L-SPINELAT X X X X X X 300 300
T-SPINEAP X X X X X X 233 233
T-SPINELAT X X X X X X 263 263
ANKLE 287 298 X 290 289 X X 1164
ELBOW 167 163 X 155 188 X X 673
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Table 1. Cont.

L't Rt
Category Non-Direc Sum
AP/PA LAT OBL AP/PA LAT OBL
FEMUR 125 114 X 144 109 X X 492
FOOT 278 X 285 226 X 239 X 1028
HAND 298 X 298 289 X 296 X 1181
KNEE 296 282 X 300 291 X X 1169
KNEESTD 286 283 X 299 283 X X 1151
LEG 149 134 X 124 105 X X 512
PATELLATANG 281 X X 283 X X X 564
SHOULDER 290 X X 288 X X X 578
WRIST 298 287 X 287 300 X X 1172
Total 2755 1561 583 2685 1565 2468 2468 12,152
“x” means no case.
300
250
200
150
100

50 ‘

0 < < <
pEiofi8s33%:5.0882pofsfobbyazs555.2288255835355¢232
57550533338 s iy 38232338;32¢8zZuspze;3883%3
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Figure 7. The distribution of the number of images in each category.

2.2. Methods
2.2.1. System Workflow
The system workflow, as illustrated in Figure 8, begins with the system capturing an RGB
picture prior to the radiologist performing an X-ray. This picture serves as the input to the
classifier introduced in this paper, which aims to identify the specific body part being imaged.

|::> E> Taken X-ray

Taken RGB

BE

Site to be X-rayed

~ ABDOMEN SUPINE

I Rt HAND AP

Classifier

- T-SPINE LAT

49 categories

Adjust placement of the site

Figure 8. System Workflow.
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The classifier analyzes the image and produces its classification results, indicating
the identified body part. These results are then compared with the doctor’s order, which
specifies the expected body part for the X-ray.

In the case where the classifier’s results align with the doctor’s order, indicating a
correct identification of the body part, the system generates a notification to inform the
radiologist that the process is complete. This notification serves as confirmation that the
X-ray is ready to be taken.

However, if there is a mismatch between the classifier’s results and the doctor’s order,
suggesting a potential incorrect identification of the body part, the system generates a
warning notification. This notification is sent to alert the radiologist of the discrepancy,
prompting further investigation and ensuring the correct body part is imaged before
proceeding with the X-ray.

By implementing this workflow, the system enhances the accuracy and reliability of
body part identification during X-ray procedures, providing valuable support to radiolo-
gists and reducing the risk of misdiagnosis or procedural errors.

2.2.2. Data Augmentation

In order to overcome the issue of insufficient data diversity resulting from the scarcity
of medical images, this study has implemented data augmentation in addition to transfer
learning. Figure 9 demonstrates four general image augmentation techniques [27]. Given
that the relationship between human body sites and their surrounding environment, such as
light shades, hospital beds, and medical appliances, plays a crucial role in classification for
our task, we have opted to use Flip and Rotation for data augmentation. These techniques
are effective in preserving the relationship between different objects in the image, as
opposed to Scale and Crop, which may only retain a portion of the image.

Original
Horizontal 90° Clockwise Outward by 10% Bottom Left

180° Clockwise Outward by 30%

(a) Flip (b) Rotation (¢) Scale (d) Crop

Figure 9. General Augmentation Techniques. This image is from Pexels https:/ /www.pexels.com/
photo/close-up-shot-of-a-golden-retriever-10096129/).

In summary, we have utilized rotation as a means of enhancing data generalization
during the training process. Prior to importing images for model training, we randomly
rotated them by plus or minus 30 degrees and used bicubic interpolation to complement
the rotated image. This is to simulate the potential displacement of the patient’s site during
an X-ray and enables the model to better learn the nuanced features of each site. As a result,
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this approach helps to improve the issue of the small feature gap between the positive and
lateral positions, as pointed out by Miao [6].

2.2.3. EfficientNet

Mingxing Tan et al. aimed to develop a model scaling method that could optimize both
speed and accuracy. To achieve this, they re-examined several dimensions of model scaling
proposed by their predecessors, including network depth, width, and image resolution.
While previous studies had typically focused on enlarging one of these dimensions to
improve accuracy, the authors recognized that these dimensions are mutually influential
and proposed EfficientNet [28] through experiments. Specifically, they first formulated the
problem definition to explore the relationship between network depth, width, and image
resolution in achieving model accuracy. They assumed that the entire net is N, and the
i-th layer is expressed as: Y; = F;(X;), where F; is the operator, Y; is output tensor and
X; is input tensor. Let N consist of k convolutional layers, then it can be expressed as:
N=F0...0 hoF(X1) = 0j=1.4F(X;). In practice, convolutional layers are usually
divided into same architecture stages, so N can be expressed as follows:

N =01 F" <X<Hi,w,»,ci>) )

where i is the stage index, and FiLi is the convolutional layer of the i-th stage, F; repeats L;
times, and (H;, W;, C;) is the shape of the input image.

To reduce the search space, the authors established certain constraints, including fixing
the basic structure of the network, imposing equal scaling on all layers, and incorporating
memory and computation constraints. As a result, the scaling of the network could only be
optimized by multiplying the baseline network defined by E;, L;, H;, W;, C; in the formula
below with a constant magnification:

maxAccuracy(N(d,w,r))
d,w,r

‘i
S't'N(d/ w, 7’) = ®i:1~~SFi (X(rxﬁi,rxwi,rxé,)) 2
Memory(N) < target_memory
FLOPS(N) < target_flops

where d, w, r are coefficients for scaling network depth, width and resolution.

After conducting experiments that involved adjusting only one dimension at a time, as
well as adjusting all three dimensions simultaneously, the authors proposed a compound
scaling method. This method involves using a compound coefficient ¢ to uniformly scale
the network width, depth, and resolution:

depth :d = a?
width : w = p¢
depth :r = ¢ ®)

s.ta-B2q? =2, where w, B,y > 1

where &, B, 7y are constants that can be determined by a small grid search.

The authors considered that doubling network depth would double FLOPS while
doubling network width or resolution would quadruple FLOPS. The FLOPS of a regular
operation is proportional to d, w2, 12. As a result, scaling a CNN with Equation (3) would
increase the total FLOPS by (a-B2-7?) ? To keep the total FLOPS increase to approximately
2%, they constrained a-p%-7? ~ 2.

EfficientNet-BO was generated based on MnasNet [29], and the authors used the
compound scaling method to obtain EfficientNet-B1 to EfficientNet-B7. In this study, we
chose to use EfficientNet-B3 for our experiments. This is because, compared to B0, B3
increased the accuracy rate by 3.5% with an increase of 6.7 M parameters. In contrast,
B4 increased the number of parameters by 7 M compared to B3 but only improved the
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accuracy rate by 1.3%. Table 2 shows these results. Furthermore, EfficientNet-B3 was found
to be a more robust model than Xception [26], which had the best results in Miao’s [6] paper.
This is because EfficientNet-B3 showed an improvement of more than 2% over Xception on
the ImageNet dataset, as also shown in Table 2.

Table 2. EfficientNet Performance Results on ImageNet. The content is from Table 2 of [28].

Model Top-1 Acc Top-5 Acc #Params Ratio-to-EfficientNet #FLPs Ratio-to-EfficientNet
EfficientNet-B0 77.1% 93.3% 53 M 1x 0.39 B 1x
ResNet-50 [18] 76.0% 93.0% 26 M 4.9x 41B 11x

DenseNet-169 [20] 76.2% 93.2% 14 M 2.6X 35B 8.9%
EfficientNet-B1 79.1% 94.4% 78M 1x 0.70 B 1x
ResNet-152 [18] 77.8% 93.8% 60 M 7.6X 11B 16 %

DenseNet-264 [20] 77.9% 93.9% 34 M 4.3x 6.0 B 8.6 %

Inception-v3 [16] 78.8% 94.4% 24 M 3.0x 5.7B 8.1x
Xception [26] 79.0% 94.5% 23 M 3.0x 84B 12x
EfficientNet-B2 80.1% 94.9% 9.2M 1x 1.0B 1x
Inception-v4 [17] 80.0% 95.0% 48 M 5.2x 13B 13x
Inception-resnet-v2 [17] 80.1% 95.1% 56 M 6.1x 13B 13x
EfficientNet-B3 81.6% 95.7% 12M 1x 1.8B 1x
ResNeXt-101 [30] 80.9% 95.6% 84 M 7.0x 32B 18x
PolyNet [31] 81.3% 95.8% 92 M 7.7X 35B 19x
EfficientNet-B4 82.9% 96.4% 19M 1x 42B 1x
SENet [21] 82.7% 96.2% 146 M 7.7X 42B 10x
NASNet-A [32] 82.7% 96.2% 89M 4.7x% 24 B 5.7x
AmoebaNet-A [33] 82.8% 96.1% 87 M 4.6x 23 B 5.5
PNASNet [34] 82.9% 96.2% 86 M 4.5% 23 B 6.0x
EfficientNet-B5 83.6% 96.7% 30 M 1x 99B 1x

AmoebaNet-C [35] 83.5% 96.5% 155 M 5.2% 41B 4.1x
EfficientNet-B6 84.0% 96.8% 43 M 1x 19B 1x
EfficientNet-B7 84.3% 97.0% 66 M 1x 37B 1x

Gpipe [36] 84.3% 97.0% 557 M 8.4x - -

3. Experiments and Results
3.1. Experiment Setting

In this study, we employ EfficientNet-B3 to perform image classification on 49 cate-
gories of RGB images of the body sites that need to undergo an X-ray examination. We first
introduce the dataset and training strategy, followed by the evaluation metrics we use.

DataSets: We collected a total of 12,152 images from the X-ray room of the outpatient
department at Taichung Veterans General Hospital. We performed data purification to
obtain 49 categories and split the data of each category into Training, Validation, and
Testing sets at a ratio of 7:1:2. During training, we randomly rotated each image by plus or
minus 30 degrees and resized it to 288 x 288. During validation and testing, we resized
each image to 320 x 320.

Training Strategy: The hyperparameters for this training strategy are as follows: a
batch size of 8, Cross-Entropy loss function, Stochastic Gradient Descent (SGD) optimizer
with a learning rate of 0.001 and momentum of 0.9. The pre-trained weights from the
ImageNet training are used as the initial weights for transfer learning. The training process
involves two steps: feature extraction and fine-tuning. In the feature extraction step, we
modify the pre-trained model by replacing the fully connected layer to output predictions
for the 49 classes in the new task. We then freeze all the layers in the pre-trained model
except for the fully connected layer and train only this layer for 10 epochs. This step allows
the model to learn to map the features extracted by the pre-trained layers to the new task.
In the fine-tuning step, we unfreeze all the layers in the pre-trained model and train the
entire model for 30 epochs. This step allows the model to adjust the pre-trained weights
to better fit the new task. During this step, the entire model is updated using the SGD
optimizer with the specified learning rate and momentum.
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Evaluation Metrics: The evaluation of the model includes both global and category-
specific performance measures, along with a usability assessment. To evaluate the overall
performance, we will use the Accuracy metric, which measures the percentage of correctly
classified examples in the dataset across all categories. For category-specific performance,
the Confusion Matrix will provide a visual representation of the model’s performance
in each category. Additionally, Precision, Recall, and F1-score will be calculated for each
category to offer a more detailed assessment of performance. These metrics are commonly
used in multi-class classification tasks to evaluate the precision (accuracy of positive
predictions), recall (sensitivity to true positive examples), and F1-score (harmonic mean of
precision and recall) for each category as in [37]. We assessed the values of true positive
(TP), false positive (FP), true negative (ITN), and false negative (FN) by comparing the
ground truth images with the predicted segmented images. The calculations for Accuracy,
Precision, Recall, and F1-Score are determined using Equation (4):

_ TP + TN
Accuracy = 1p FIN + FP + FN

.« . _ TP
Precision = 1P

)

— TP
Recall = TP + EN

__ 2 x Precision x Recall
F1 — Score = Precision + Recall

3.2. Results
3.2.1. EfficientNet

Figure 10 shows the training accuracy and training loss of EfficientNet-B3 on our
49-categories classification task. The training accuracy and training loss serve as crucial
indicators to observe the learning progress of the models. By monitoring these metrics
during the training process, the programmer can gain insights into how well the model
is learning from the data. A high training accuracy and low training loss typically signify
that the model is effectively capturing patterns and generalizing well to the training data.
In our experiment, after training the model for 30 epochs, we achieved impressive final
training accuracy (red line) of 99.89% and validation accuracy (green line) of 97.71% for the
49 categories classification task. The final training loss was 1%, and the validation loss was
8%, indicating good generalization and effective error minimization during training.

Training Accuracy Training Loss
0.7 4

—— Train
—— Validation

100 4 — Train
—— Validation

0.6 4

95 4
0.5

0.4 4
90

Accuracy(%)

0.31

Cross Entropy Loss

227 02

0.14
804

0.0
0 5 10 15 20 25 30 6 _‘; 1'0 1‘5 Zb 2‘5 Sb
Epochs Epochs

Figure 10. The Training Results of EfficientNet-B3.

3.2.2. Analysis of Results

From Tables 3 and 4, it is evident that L't ELBOW LAT is the site with the lowest
Recall and F1-score and also makes the most mistakes (eight times) in all categories, as
shown in Figure 11. It is also observed that all categories with the lowest F1-score are from
three sites, ELBOW, FEMUR, and LEG. The categories of FEMUR and LEG cover a large
area, making it more challenging for the model to understand the complex relationship
between the site and the surrounding environment to classify the different directions
accurately. On the other hand, ELBOW images did not capture the real difference between
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the categories in different directions, and the categories in different directions look very
similar in appearance, as shown in Figure 12.
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Figure 11. Confusion Matrix of EfficientNet-B3.
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Figure 12. Sites that are difficult to classify.
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Table 3. Categories with Recall lower than 90%.

Category Precision (%) Recall (%) F1-Score (%) Support
L't ELBOW LAT 96.15 75.76 84.75 33
L't FEMUR LAT 100.00 82.61 90.48 23
R’t FEMUR AP 92.31 82.76 87.27 29
L't LEG AP 96.30 86.67 91.23 30

Table 4. Categories with F1-score lower than 95%.

Category Precision (%) Recall (%) F1-Score (%) Support
L't ELBOW LAT 96.15 75.76 84.75 33
L't FEMUR AP 77.42 96.00 85.71 25
R’t FEMUR AP 92.31 82.76 87.27 29
Rt LEG AP 80.00 96.00 87.27 25
R’t ELBOW LAT 82.22 97.37 89.16 38
L't FEMUR LAT 100.00 82.61 90.48 23
L't LEG AP 96.30 86.67 91.23 30
Rt LEG LAT 95.00 90.48 92.68 21
R’t ELBOW AP 100.00 90.32 94.92 31

To address these challenges, the proposed two-stage improvement approach aims to
capture subtle feature differences between individual sites more accurately, particularly for
the difficult-to-classify sites. The proposed hierarchical classification approach is expected
to improve the accuracy by more accurately capturing the feature differences of these
challenging sites.

3.2.3. Two-Stage Improvement
e T40P3x4

In the proposed two-stage improvement approach, T40P3x4, the first stage involves
merging the 12 categories derived from the 3 sites with the lowest F1-score into 3 categories:
ELBOW, FEMUR, and LEG, thereby reducing the total categories to 40. In the second stage,
a 4-categories classifier is trained for each of the three merged categories to classify them
back to the original category.

The proposed architecture, T40P3x4, consists of two stages, and EfficientNet-B3 is
used for the model in any stage. Compared to the previous classifier, 549 (Single stage:
49-categories), this new architecture is expected to improve the accuracy of the model by
capturing subtle feature differences between individual sites more accurately, as shown in
Figure 13.

L't ELBOW AP
L't ELBOW LAT
R't ELBOW AP
R't ELBOW LAT

/O L't FEMUR AP
7o) L't FEMUR LAT
o

Jéov

Rt FEMUR AP
Rt FEMUR LAT

40 categories

L't LEG AP
L't LEG LAT
RtLEG AP
R'tLEG LAT

§é50

4 categories

Figure 13. Architecture of T40P3x4. The red color words means the input image will go through the
path.
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The training strategy of the first stage model of T40P3x4 is similar to that of training
549, with the exception of some modifications in the data set distribution. The 549 data
set is used as the basis for modification, but due to the merging of multiple categories in
the current classification, directly aggregating the data sets of multiple categories into one
new category may cause data imbalance. Therefore, for the three sites merged into one
category, we controlled the total number of data for the new category at 300. We performed
uniform sampling on the Training set, Validation set, and Testing set for the four categories
to be merged into a new category on average. So, the subcategories of these 3 sites will
all contribute 53, 7, and 15 images to their new category in sequence, totaling 75 images.
Please refer to Table 5 for more details.

Table 5. Data distribution of merged categories for the first stage model of T40P3x4. The right number

represents the number of data of that original category in S49.

New Category Original Category Training Set Validation Set Testing Set Sum Total

L't ELBOW AP 53/116 7/17 15/34 75
L't ELBOW LAT 53/114 7/16 15/33 75

ELBOW R't ELBOW AP 53/108 7/16 15/31 75 300
Rt ELBOW LAT 53/131 7/19 15/38 75
L't FEMUR AP 53/87 7/13 15/25 75
L't FEMUR LAT 53/79 7/12 15/23 75

FEMUR R't FEMUR AP 53/100 7/15 15/29 75 300
R’t FEMUR LAT 53/76 7/11 15/22 75
L't LEG AP 53/104 7/15 15/30 75

LEG L't LEG LAT 53/93 7/14 15/27 75 300
Rt LEG AP 53/86 7/13 15/25 75
Rt LEG LAT 53/73 7/11 15/21 75

Figure 14 shows the training accuracy and training loss of the first-stage model of
T40P3x4. Table 6 show the data distribution of the second stage input image. The final
training accuracy was 99.91%, training loss was 1%, validation accuracy was 98.94%,
validation loss was 5%, and the testing accuracy was 98.82%. In terms of the training results
of the classifiers in the second stage, all classifiers had a training accuracy of more than
98.5%, as shown in Table 7. Regarding testing accuracy, ELBOW achieved 94.12%, FEMUR
achieved 94.95%, and LEG achieved 87.38%. Combining these two stages’ classifiers, we
obtained an overall testing accuracy of 97.99% on the original 49 categories. The confusion
matrix is shown in Figure 15. In the following section, we will compare the training results
of T40P3x4 and S49.

Training Accuracy ) Training Loss

— Train
—— Validation

Accuracy(%)
Cross Entropy Loss
o
w

—— Train
82.5 4 —— Validation

0 5 10 15 20 25 30 o H 10 15 50 o5 30
Epochs Epochs

Figure 14. Training Results of the first stage model of T40P3x4.
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Figure 15. Confusion Matrix on 49 categories of T40P3x4.
Table 6. Data distribution of different classifiers in the second stage of T40P3x4.
Classifier Category Training Set Validation Set Testing Set Sum Total
L't ELBOW AP 113 34 34 167
L't ELBOW LAT 130 33 33 163
ELBOW R't ELBOW AP 124 31 31 155 673
R’t ELBOW LAT 150 38 38 188
L't FEMUR AP 100 25 25 125
L't FEMUR LAT 91 23 23 114
FEMUR R’t FEMUR AP 115 29 29 144 492
R’t FEMUR LAT 87 22 22 109
L't LEG AP 119 30 30 149
L't LEG LAT 107 27 27 134
LEG R't LEG AP 99 25 25 124 512

R’t LEG LAT 84 21 21 105
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Table 7. Training results of classifiers in the second stage of T40P3x4.

Classifier Training Accuracy (%) Training Loss (%) Testing Accuracy (%)
ELBOW 99.82 5 94.12
FEMUR 98.75 10 94.95

LEG 99.04 10 87.38

3.2.4. Three-Stage Improvement
o  T40P2x4A2P2
In Table 7, it is evident that T40P3x4 is not suitable for LEG classification. The confusion
matrix in Figure 15 indicates a higher probability of misclassifying R't LEG AP, R't LEG
LAT, and L't LEG AP. As a result, we propose an alternative architecture, T40P2x4A2P2, as
shown in Figure 16. In this architecture, we have divided the LEG parts into two stages.
We first classify the AP and LAT as LEG AP/LAT and then classify the R't and L't as LEG
R't/L't.
r L't ELBOW AP
L't ELBOW LAT
FLECW :{> "*-GI R't ELBOW AP
Rt ELBOW LAT
4 categorles
o [ LtFEMURAP

“," o L't FEMUR LAT
FEMUR ed'e
"-C O R't FEMUR AP
O U RtFEMUR LAT
\"' L't LEG AP
HEree .3#{ R't LEG AP

vo

0 L't LEG LAT

LES Lo :‘l> o I O 7 RYLEG LAT
/,o

2 categorres

4 categones

LEG |:1> ,).I

2 categorie:

40 categories

@

Figure 16. Architecture of T40P2x4A2P2. The red color words means the input image will go through
the path.

In the training strategy we have used the same training strategy as T40P3x4. Figure 17
displays the training accuracy and training loss of the first stage model of T40P2x4A2P2,
and Table 8 shows the final training results. The Training accuracy, Training Loss, and
Testing Accuracy of the LEG AP classifier are 98.32%, 4%, and 98.08%, respectively. The
Training accuracy, Training Loss, and Testing Accuracy of the LEG RL classifier are 97.60%,
4%, and 92.31%, respectively. The testing accuracy for ELBOW, FEMUR, and LEG are
94.12%, 94.95%, and 93.16%, respectively.

Training Accuracy Training Loss

— Train
— \Validation

Accuracy(%)
@
S

0.75
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1 0.25 4
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Figure 17. Training Results of the first stage model of T40P2x4A2P2.
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Table 8. Training results of classifiers in the second stage and third stage of T40P2x4A2P2.

Classifier Training Accuracy (%) Training Loss (%) Testing Accuracy (%)

ELBOW 99.82 5 94.12
FEMUR 98.75 10 94.95
LEG AP/LAT 98.32 4 98.08
LEGR't/L't 97.60 4 92.31

When we replaced the two-stage LEG classifiers with the original T40P3x4 LEG
classifiers, we achieved an overall testing accuracy of 98.16% on the original 49 categories,

as shown in the confusion matrix in Figure 18. In the following section, we will compare
the training results of T40P3x4 and S49.
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Figure 18. Confusion Matrix on 49 categories of T40P2x4A2P2.

4. Discussion

In this section, we will discuss the results and compare them with those of 549, and
also explore possibilities for future work.

o  Results Comparison

Table 9 shows the comparison of 12 categories in terms of Fl-score between S49,
T40P3x4, and T40P2x4A2P2. The lower Fl-score of T40P3x4 in the LEG categories can
be attributed to the fact that the model’s understanding of LEG features may have origi-
nated from the features learned in other body parts. Therefore, when training a classifier
solely related to LEG-derived categories, the model may fail to achieve effective learning
outcomes.
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Table 9. Comparison Fl-score (%) on the ELBOW, FEMUR and LEG in 549, T40P3x4 and
T40P2x4A2P2. The bold represents the Fl-score is lower than 90%.

Category S49 T40P3x4 T40P2x4A2P2
L't ELBOW AP 95.77 96.97 (+1.20) 96.97 (+1.20)
L't ELBOW LAT 84.75 92.06 (+7.31) 92.06 (+7.31)
ELBOW R’t ELBOW AP 94.92 95.39 (+0.47) 95.39 (+0.47)
R’t ELBOW LAT 89.16 94.87 (+5.71) 94.87 (+5.71)
Overall 91.15 94.82 94.82
L't FEMUR AP 85.71 95.83 (+10.12) 95.83 (+10.12)
L't FEMUR LAT 90.48 97.78 (+7.30) 97.78 (+7.30)
FEMUR R’t FEMUR AP 87.27 91.53 (+4.26) 91.53 (+4.26)
R’t FEMUR LAT 100.00 100.00 100.00
Overall 90.86 96.28 96.28
L't LEG AP 91.23 85.25 (—5.98) 93.10 (+1.87)
L't LEG LAT 96.30 94.12 (—2.18) 96.30
LEG R't LEG AP 87.27 84.62 (—2.65) 90.57 (+3.30)
R’tLEG LAT 92.68 95.24 (+2.56) 92.68
Overall 91.87 89.81 93.16
Overall 97.59 98.00 98.16

However, it is important to note that although T40P3x4 enhances the overall accuracy
from 97.59% to 98.00%, the performance of LEG does not improve and instead declines. On
the other hand, T40P2x4A2P2 improves the F1-score of LEG-derived categories and, when
using the same classifier as T40P3x4, can enhance the overall accuracy from 98.00% to 98.16%.

Table 10 displays the results of the comparison between our three proposed model
architectures and the four models used in [6]. The model architecture employed in [6]
directly classifies 49 categories, making it identical to our 549 model. However, our three
model architectures achieved higher testing accuracy compared to the four models used
in [6]. This outcome suggests that our proposed models outperformed the models utilized
in [6] when it comes to the accurate classification of the 49 categories.

Table 10. Comparison of Three Proposed Model Architectures with Four Models Used in [6].

Miao [6] Our Methods
Model
ode Xception Inception V3 ResNet50 VGG16 S49 T40P3x4 T40P2x4A2P2
Testing accuracy (%) 94.10 92.00 92.50 90.50 97.59 98.00 98.16

e  Future Work

Table 9 emphasizes the enhancements in Fl-score achieved by three different model
architectures, while Table 10 showcases the testing accuracy of these models. To further
improve both F1 scores and classification accuracy, it is vital to consider employing diverse
model architectures or even exploring alternative models like DenseNet. As a future
direction, we propose conducting thorough investigations into various model architectures
to identify the most suitable one for augmenting the overall classification performance.
This approach holds the potential to yield more accurate and dependable results, thereby
enhancing the efficiency and effectiveness of the classification system.

5. Conclusions

Patient safety is crucial in medicine, and reducing delayed diagnoses is vital for
achieving this goal. We developed a medical assistance system for X-ray inspections using
deep learning techniques and data from Taichung Veterans General Hospital’s radiology
department. The system effectively minimizes errors and receives positive feedback from
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users. By implementing this system, we enhance medical processes and improve the quality
of services while prioritizing patient safety. The reduction in delayed diagnoses prevents
potential harm and fosters a safer medical environment.

The primary focus of this study was to address the multi-classification task in X-ray
inspections. To achieve this, we employed EfficientNet [26] for training and testing and
introduced data purification and augmentation enhancements customized for the task.
Additionally, we proposed two different architectures to further enhance the classification
accuracy. As a result of directly implementing EfficientNet into the classifier, the system’s
accuracy increased significantly from 94.10% (as in [6]) to 97.59%. Subsequent experiments
involved fine-tuning the system architecture and adopting two-stage and three-stage
classification approaches, resulting in impressive overall accuracies of 98% and 98.16%,
respectively. To further improve classification accuracy, future research should explore new
model architectures or different neural networks. These efforts hold the potential to elevate
the accuracy even further, advancing the effectiveness of the classification system.
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