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Abstract: An international reader study was conducted to gauge an average diagnostic accuracy of
radiologists interpreting chest X-ray images, including those from fluorography and mammography,
and establish requirements for stand-alone radiological artificial intelligence (AI) models. The
retrospective studies in the datasets were labelled as containing or not containing target pathological
findings based on a consensus of two experienced radiologists, and the results of a laboratory test
and follow-up examination, where applicable. A total of 204 radiologists from 11 countries with
various experience performed an assessment of the dataset with a 5-point Likert scale via a web
platform. Eight commercial radiological AI models analyzed the same dataset. The AI AUROC was
0.87 (95% CI:0.83–0.9) versus 0.96 (95% CI 0.94–0.97) for radiologists. The sensitivity and specificity
of AI versus radiologists were 0.71 (95% CI 0.64–0.78) versus 0.91 (95% CI 0.86–0.95) and 0.93 (95% CI
0.89–0.96) versus 0.9 (95% CI 0.85–0.94) for AI. The overall diagnostic accuracy of radiologists was
superior to AI for chest X-ray and mammography. However, the accuracy of AI was noninferior to the
least experienced radiologists for mammography and fluorography, and to all radiologists for chest
X-ray. Therefore, an AI-based first reading could be recommended to reduce the workload burden of
radiologists for the most common radiological studies such as chest X-ray and mammography.

Keywords: stand-alone artificial intelligence; radiology; benchmarking; population screening

1. Introduction

A steadily increasing volume of prescribed radiological diagnostic examinations
and the increasing amount of diagnostic equipment has skyrocketed the workload of
radiologists [1]. More than half of all radiology studies are composed of mammography,
chest X-ray and chest fluorography [2,3]. The WHO (World Health Organization) guidelines
evaluated the reduction in mortality due to mammography screening and consider it
to be the most widely used and valuable noninvasive method for early breast cancer
detection [4,5]. Chest X-ray (and fluorography in certain countries) is widely used for
routine, emergency and screening purposes. During the pandemic, it became even more
valuable, as the WHO recommends including chest X-ray into a diagnostic approach for
patients suspected of the 2019 novel coronavirus disease (COVID-19) [6,7].

Due to the rapidly increasing number of radiological examinations, the application
of artificial Intelligence (AI) models for carrying out a first reading becomes valuable in
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order to reduce radiologists’ workload and improve diagnostic accuracy in the absence of
experienced specialists [8,9]. Recent studies have demonstrated that the diagnostic accuracy
of AI models for medical imaging approaches the performance of medical experts and even
outperforms them in several fields [10]. This has led to a rapid explosion of commercially
available and registered AI models for mammography and thoracic radiology (including
chest X-ray and fluorography) analysis [11,12]. Thus, AI models are actively integrated into
the radiology workflow. However, while the accuracy metrics claimed by the developers
are quite high, their real-world performance must be carefully evaluated and compared
with the radiologist’s performance in order to ensure practical value and safety [3,4,13,14].
Therefore, the WHO warns that, despite obvious benefits, the deployment of AI in medicine
is fraught with risks that should be minimized [15].

At the same time, there are controversial opinions on the use of AI models compared
to radiologists with various levels of experience. However, studies have demonstrated
the ability of AI models to reach the levels of radiologists’ performance [13]. On the other
hand, the accuracy of mammography interpretation by experienced radiologists varies
highly [16] and previous-generation CAD systems have not significantly improved the
accuracy of mammography readings [17]. Only several studies [1,7,18] have assessed the
accuracy of AI algorithms in relation to the analysis of chest X-rays; there are almost no data
for fluorography. The expectations of AI implementation for X-ray imaging thus remain
ambiguous. Even promising results of AI models with high accuracy metrics are associated
with limited specificity for the classification of the particular findings. Thus, it can barely
be a substitute for a radiologist [7,19,20].

Since variations in radiologists’ performance are widely observed, they can lead to
different results in the comparison between radiologists and AI. This may compromise
the objective assessment of a particular AI model, or lead to a misjudgment of the benefits
and limitations of AI for the whole field of medical imaging. Therefore, multicenter and
international studies with different groups of radiologists are of particular interest for the
benchmarking of AI and human readers. A study carried out among 101 radiologists from
7 countries demonstrated that the precision of the AI model accuracy for identifying breast
cancer with mammography was comparable to that of an average radiologist [13]. Another
major study with more than 1100 participants from 44 countries revealed that none of the
AI models could outperform radiologists, but the combination of a single reader evaluation
with AI results improved the total accuracy of screening mammography [4]. A recent
international study demonstrated that an AI model could exceed the average performance
of mammography specialists, but the comparison was performed for a relatively small
group of six readers [14]. Undoubtedly, larger international studies are needed in order
to establish an unbiased comparison of AI and human readers’ performance. This study
aimed to determine the average diagnostic accuracy of radiologists interpreting chest X-ray
images, including those from fluorography and mammography, on an international scale
for benchmarking with the stand-alone AI model’s performance metrics for the same cases.

2. Materials and Methods

The retrospective study was conducted according to Standards for Reporting Diagnos-
tic Accuracy Studies (STARD) 2015 guidelines. The overall study design scheme is shown
in Figure 1.
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2.1. Reference Dataset

The reference dataset (local test dataset) was collected retrospectively from the ra-
diological exams performed in outpatient Moscow state medical facilities for screening
and diagnostic purposes in 2018–2019. The dataset contained studies marked as ‘without
(target) pathology’ and ‘with (target) pathology’. The target pathology was defined based
on a list of pathological radiological findings compiled based on their clinical significance
and frequency of occurrence in the routine practice of radiologists. All studies were selected
based on electronic medical records and then double-checked by radiology experts who
had at least 5 years of experience in thoracic radiology or breast imaging. Pathomorpholog-
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ical confirmation for malignancies was derived from electronic medical records. Table 1
contains details on the dataset.

Table 1. Details on the datasets and human readers.

Parameter X-ray Fluorography MMG

Number of cases (cases “with pathology”) * 140 (47) 184 (84) 269 (167)

Confirmation of (ab)normality by Two experts (>5 years of experience)

Male/female/unknown 59/77/4 94/113/4 0/269/0

Age (years) ** 49 ± 18 [15, 89] 53 ± 19 [19, 93] 63 ± 6 [34, 80]

Radiological findings

1. Pleural effusion (9)
2. Pneumothorax (7)
3. Atelectasis (9)
4. Nodules or mass (21)
5. Infiltrate or consolidation (13)
6. Miliary pattern, or

dissemination (1)
7. Cavity (1)
8. Pulmonary calcification (7)
9. Fracture (2)

1. Pleural
effusion (26)
2. Pneumothorax (7)
3. Nodules
or mass (28)
4. Infiltrate or consolidation (26)
Pulmonary calcification (14)

BiRADS 0

Number of diagnostic devices 61 69 11

Vendors

(1) GE Medical Systems, LLC
(2) Fujifilm
(3) Toshiba Medical Systems, Inc
(4) RENinMED, LLC

(1) S.P. Gelpik, LLC (1) Fujifilm

Radiologists (number) 185 28 113 (96 breast
imaging specialists)

Years of experience

0–1 36 6 16 (15)

1–5 60 8 32 (28)

5–10 36 5 28 (24)

10+ 53 9 37 (29)

Country ***

AM—1
AZ—1
BY—11
GE—1
KG—2
KZ—6
LV—1
MD—2
RU—141
UA—17
UZ—2

BY—1
GE—1
KZ—1
RU—25

AZ—1
BY—4
GE—1
KG—1
KZ—4
LV—1
MD—1
RU—95
UA—4
UZ—1

* Cases “with pathology” contained at least one of the radiological findings. ** Data are mean ± standard deviation.
Data in parentheses are the range. *** Codes for countries from ISO 3166.

The following target pathologies (terminology proposed by the Fleischner society [21])
for digital chest radiography and fluorography were included in this study:

• Pneumothorax;
• Atelectasis;
• Nodules or mass;
• Infiltrate or consolidation;
• Miliary pattern, or dissemination;
• Cavity;
• Pulmonary calcification;
• Pleural effusion;
• Fracture, or rupture of the bone cortical layer.
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For digital mammography, a target pathology was defined based on the corresponding
malignancy probability classifications of BI-RADS3-5 on the diagnostic scale or BI-RADS0
on the screening scale [22], with the confirmed diagnosis based on biopsy results or a follow-
up negative MMG study for BI-RADS1-2. The right and the left breasts were assessed
separately; however, the study was marked as pathological if the signs of the pathology
were detected in at least one breast.

Inclusion criteria for the study: (1) all studies in the dataset were presented in Digital
Imaging and Communications in Medicine (DICOM) format and anonymized; (2) suffi-
cient number and appropriate diagnostic quality of the images was required for every
study: a chest X-ray and a digital fluorography study included an anterior–posterior view;
mammography studies contained the breasts images in two views (craniocaudal and medi-
olateral); and (3) for the target pathological findings, the truthing included: (a) histological
confirmation of the malignancy presence and a follow-up study without the pathological
findings for the absence of the malignancy or (b) a double consensus between two expert
radiologists for all other findings.

Exclusion criteria included: (1) lung or breast surgery; (2) additional opacifications
from medical devices, clothing or extracorporeal objects; (3) technical defects of the image
and/or the positioning; (4) absence of histological or expert confirmation of the pathology;
and (5) age < 18 years.

2.2. AI Models

The study included eight AI models that participated in the experiment with the use
of innovative computer vision technologies for medical image analysis and subsequent
applicability in the healthcare system of Moscow (https://mosmed.ai/en/, accessed on
1 June 2023). This research was registered in ClinicalTrials (NCT04489992). The study
included commercial AI models to identify pathological signs on digital chest radiography
(4 AI models [23–26]), fluorography (2 AI models [24,27]) and mammography (2 AI mod-
els [28,29]). The criterion for inclusion of these models was full compliance with the use
cases, i.e., each AI provider declared detection of all radiological findings included in the
use case: a list of the lung pathologies for chest X-ray and fluorography, and breast cancer
signs corresponding to BI-RADS0 for mammography. As was reported by the AI models’
developers, diagnostic accuracy metrics corresponded to those of current state-of-art AI for
the use cases [7,13,30–35]. All of the AI models provided responses per study as a general
abnormality score (range 0–1) without providing details on the findings. Consequently, this
did not allow us to assess the performance per finding. The AI models were deployed as
stand-alone systems. The details of AI models are provided in the Supplementary Materials
(Table S1).

In the present study, we did not conduct any refinement of the AI models. Instead,
we exclusively utilized off-the-shelf commercial solutions as they were provided by the
developers. It is important to note that no modifications or alterations were made to the AI
models during the course of this study.

2.3. Web Platform for Conducting the Reader Study

For the human reader study, we developed a web-based platform in order to let
participants evaluate cases online. A participant could determine a start date for every use
case; however, the duration of interpretation was fixed to 3 days from the start date. The
participants also chose the number of studies for interpretation—20, 50 or 80 studies. In
order to ensure the representativeness of the real practice performance of radiologists, they
started the reader study after completing training using the web-based platform for five
cases that were not included in the final evaluation.

This study aimed to determine the average accuracy of radiologists to benchmark
AI-performed radiological evaluation as a stand-alone service. Therefore, in this study, we
compared the diagnostic accuracy metrics of a radiologist without AI, and AI on its own
as a first or second independent reading. To create equal conditions for AI models and

https://mosmed.ai/en/
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radiologists, there was no additional information provided, such as complaints or medical
history (Figure 2). Patients’ age and sex were available to radiologists, but no radiological
report or clinical information was provided. Radiologists did not write a detailed clinical
report. They only identified findings and rated their confidence in the presence of each case
for the presence of any pathological findings using a five-point scale (from 1—definitely
without pathology to 5—definitely with pathology) similar to that used in other reader
studies [35]. Age and sex were also provided to the AI models as DICOM tags. Whether
these data were used by AI models is not known. Providing similar data to radiologists and
AI models ensured an objective comparison of their performance in the clinical scenario
when AI performed an independent reading.
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Figure 2. Radiology examination view window of the developed Web platform for the reader study.

In the upper part of the control panel of the Web platform, there were always two
buttons that opened dialog boxes containing: (1) the platform user guide and (2) diagnostic
criteria, according to which the participant should classify a study as normal (‘without
pathology‘) or abnormal (‘with pathology‘)—these corresponded to the AI-based triage.
The following options were given for scoring a study on the panel by a human reader:

1. Definitely without pathology (probability of pathology = 0.0);
2. Probably without pathology (probability of pathology = 0.25);
3. Undefined (questionable/unreadable) (probability of pathology = 0.5)
4. Probably with pathology (probability of pathology = 0.75);
5. Definitely with pathology (probability of pathology = 1.0);

2.4. Participating Radiologists

A total of 204 radiologists from 11 countries participated in the study. Some of these
participants (n = 96) specialized in breast imaging. Table 1 presents the distribution of radi-
ologists by the use cases with an indication of their experience and country. Each radiologist
had access to the reader study datasets of three modalities—chest X-ray, chest fluorography,
mammography. The evaluation of studies was conducted by every radiologist indepen-
dently from 27 November to 13 December 2020. Every radiologist was provided with a set
of 20/50/80 cases of the same modality (i.e., chest X-ray, fluorography or mammography)
according to his/her choice. Each case and set of cases could be evaluated only once to
ensure the uniqueness of responses. A user could complete the interpretation for several
modalities. The exclusion criteria for radiologists were as follows: (1) the registration
form was not completed (no information regarding experience, employment, preferred
modality); and (2) absence of responses.
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2.5. Score Analysis: Determination of the Consensus Score for Radiologists and AI Models

Studies in which most scores (>50%) were “undefined” were excluded from further
analysis [36]. For the remaining studies, a consensus score was defined based on the
median score of the readers. In the case of a tie of frequencies, the higher score was selected.
If the case had less than 5 responses it was also excluded from further evaluation with
an exception for breast imaging specialists. A consensus score between AI models for
each case was reached in the following way: First, the responses for each AI model were
calibrated individually in order to combine the probability values of each AI model. Second,
an average probability score of all AI models was set as a consensus score for each case.

2.6. Statistical Analysis

The performance of AI and the radiologists was assessed by generating a receiver
operating characteristic (ROC) curve. The area under the ROC curve (AUROC) was
reported with 95% confidence intervals (95% CI). The Delong method was used to calculate
the confidence interval for the AUROC [37]. A smoothing was used to build the ROC curve.

To conduct the ROC analysis, we required a binary estimation (true value) as well as
the output from the “classifier”. When evaluating AI algorithms, we utilized the pathology
probability value as the input, which ranged from 0 to 1, with a precision of 0.01. Similarly,
when evaluating a radiologist’s performance, we also employed the probability values
assigned by the radiologist. However, it is challenging for a radiologist to precisely as-
sign a digital probability value for the presence of pathology. Therefore, we employed a
more comprehensible gradient scale that could be easily converted into absolute values:
“definitely without pathology” = 0, and “definitely with pathology” = 1. Subsequently, a
standard ROC analysis was conducted to determine the diagnostic accuracy indicators.

A p-value for the AUROC was calculated using a permutation test [38]. A p-value
less than 0.05 was considered to represent a significant difference. The null hypothesis
was that the AUROC of AI and an average human reader were the same. The analysis
did not account for the variability between the individual radiologists. A maximum of
the Youden Index was used to determine an optimal cut-off value for the radiologists and
AI metrics [39,40]. ROC analysis was used to select the cut-off in order to minimize the
subjective perception of the probability scales by radiologists.

3. Results
3.1. Chest X-ray

The ROC analysis results for all readers and the AI models are shown in Figure 3a.
The threshold for AI was 0.23 (Youden index was 0.75); for human readers, the threshold
was 3 (Youden index was 0.84). The AI model achieved an AUROC of 0.92 (0.85–0.98),
while for radiologists, the AUROC was 0.97 (0.94–1.0). In most regions of the ROC curve,
AI performed a little worse than an average human reader or at the same level, but without
a statistically significant difference (Table 2). AI accuracy metrics appeared to be the most
similar when radiologists’ had less than one year of experience (p = 0.76), as shown in
Table 2. Examples of the discrepancy between the ground truth and radiologists’ opinions
and/or AI results are shown in Figure 4a–c.
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Figure 3. Receiver operator characteristic curves for the human reader study and AI performance on
the same datasets: (a) Chest X-ray, (b) Chest digital fluorography, (c) Mammography by all readers,
(d) Mammography by breast imaging specialists, (e) Combined result. Smoothing was used to build
the ROC curves. Red markers indicate an operating point determined as the maximum of the Youden
index for the readers and AI. The legends display AUC values (95% CI).
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Table 2. Human and AI diagnostic performance metrics.

Modality Diagnostic Performance Metrics

AUROC
(CI 95%)

Sensitivity *
(CI 95%)

Specificity *
(CI 95%)

Accuracy *
(CI 95%)

p-Value (for
the AUROC)

X-ray

AI
n = 90

0.92
(0.85–0.98)

0.81
(0.66–0.91)

0.94
(0.83–0.99)

0.88
(0.79–0.94) -

Radiologists
(all) n = 90

0.97
(0.94–1.0)

0.88
(0.74–0.96)

0.96
(0.86–0.99)

0.92
(0.85–0.97) 0.104

Radiologists
(0–1 year) n = 83

0.87
(0.79–0.95)

0.74
(0.57–0.87)

0.96
(0.85–0.99)

0.86
(0.76–0.92) 0.76

Radiologists
(1–5 years) n = 86

0.92
(0.86–0.99)

0.83
(0.69–0.93)

1.00
(0.92–1.00)

0.92
(0.84–0.97) 0.43

Radiologists
(5–10 years) n = 65

0.93
(0.86–1.00)

0.83
(0.65–0.94)

0.97
(0.85–1.00)

0.91
(0.81–0.97) 0.40

Radiologists
(10+ years) n = 84

0.98
(0.96–1.00)

0.92
(0.79–0.98)

0.93
(0.82–0.99)

0.93
(0.85–0.97) 0.08

FLG

AI
n = 162

0.83
(0.76–0.9)

0.71
(0.58–0.81)

0.91
(0.83–0.96)

0.83
(0.76–0.88) -

Radiologists
(all) n = 162

0.98
(0.96–1.00)

0.89
(0.79–0.96)

0.98
(0.93–1.00)

0.94
(0.90–0.97) 0.00 **

Radiologists
(0–1 year) n = 14

0.96
(0.87–1.00)

1.00
(0.63–1.00)

0.83
(0.36–1.00)

0.93
(0.66–1.00) 0.25

Radiologists
(1–5 years) n = 42

0.99
(0.98–1.00)

0.91
(0.72–0.99)

1.00
(0.82–1.00)

0.95
(0.84–0.99) 0.06

Radiologists
(5–10 years) n = 12

1.00
(1.00–1.00)

1.00
(0.48–1.00)

1.00
(0.59–1.00)

1.00
(0.74–1.00) 0.09

Radiologists
(10+ years) n = 27

0.97
(0.90–1.00)

1.00
(0.74–1.00)

0.93
(0.68–1.00)

0.96
(0.81–1.00) 0.04 **

MMG
General
Radiologists

AI
n = 151

0.89
(0.83–0.94)

0.71
(0.59–0.81)

0.95
(0.87–0.99)

0.83
(0.76–0.88) -

Radiologists
(all) n = 151

0.94
(0.91–0.97)

0.85
(0.75–0.92)

0.96
(0.89–0.99)

0.91
(0.85–0.95) 0.01 **

Radiologists
(0–1 year) n = 15

0.91
(0.77–1.00)

0.88
(0.47–1.00)

0.86
(0.42–1.00)

0.87
(0.60–0.98) 0.33

Radiologists
(1–5 years) n = 62

0.92
(0.87–0.98)

0.77
(0.56–0.91)

0.94
(0.81–0.99)

0.87
(0.76–0.94) 0.15

Radiologists
(5–10 years) n = 35

0.90
(0.78–1.00)

0.83
(0.59–0.96)

0.94
(0.71–1.00)

0.89
(0.73–0.97) 0.26

Radiologists
(10+ years) n = 55

0.97
(0.93–1.00)

0.91
(0.72–0.99)

1.00
(0.89–1.00)

0.96
(0.87–1.00) 0.02 **

MMG
Breast Imaging
Radiologists

AI
n = 120

0.89
(0.83–0.94)

0.72
(0.58–0.83)

0.92
(0.82–0.97)

0.82
(0.75–0.89) -

Breast Imaging Radiologists
(all) n = 120

0.96
(0.93–0.99)

0.95
(0.85–0.99)

0.90
(0.80–0.96)

0.93
(0.86–0.97) 0.01 **

Breast Imaging Radiologists
(0–1 year) n = 13

0.85
(0.66–1.00)

1.00
(0.63–1.00)

0.60
(0.15–0.95)

0.85
(0.55–0.98) 0.52

Breast Imaging Radiologists
(1–5 years) n = 36

0.88
(0.76–1.00)

0.93
(0.68–1.00)

0.71
(0.48–0.89)

0.81
(0.64–0.92) 0.55

Breast Imaging Radiologists
(5–10 years) n = 58

0.92
(0.85–0.98)

0.88
(0.68–0.97)

0.74
(0.56–0.87)

0.79
(0.67–0.89) 0.10

Breast Imaging Radiologists
(10+ years) n = 109

0.97
(0.94–1.00)

0.91
(0.80–0.97)

0.96
(0.87–1.00)

0.94
(0.87–0.97) 0.001 **

Overall result
(X-ray + FLG +
MMG)

AI solutions
(All) n = 403

0.87
(0.83–0.9)

0.71
(0.64–0.78)

0.93
(0.89–0.96)

0.83
(0.79–0.87)

Radiologists and Breast
Imaging Radiologists (All)
n = 403

0.96
(0.94–0.97)

0.91
(0.86–0.95)

0.90
(0.85–0.94)

0.91
(0.87–0.93) 0.00 **

Radiologists
(0–1 year) n = 112

0.93
(0.89–0.97)

0.93
(0.8–0.98)

0.80
(0.69–0.89)

0.85
(0.77–0.91) 0.65

Radiologists
(1–5 years) n = 190

0.94
(0.91–0.97)

0.89
(0.81–0.94)

0.87
(0.79–0.92)

0.87
(0.83–0.91) 0.02 **

Radiologists
(5–10 years) n = 112

0.95
(0.92–0.98)

0.90
(0.81–0.96)

0.90
(0.82–0.95)

0.90
(0.85–0.94) 0.23

Radiologists
(10+ years) n = 166

0.97
(0.95–0.99)

0.92
(0.86–0.96)

0.91
(0.86–0.95)

0.92
(0.88–0.95) 0.00 **

n, Number of cases. * At the operating point of maximum Youden index. ** Statistically significant difference in
AUROC values.
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Figure 4. Examples of chest X-rays (a–c) and digital fluorography (d). (a) Radiologists misjudged
this case as pathological. Increased opacity in the right- and left-sided lower lobe can be mistakenly
interpreted as pneumonia without taking into consideration the patient’s suboptimal positioning.
The AI models did not detect pathological changes and correctly marked this case as ‘without target
pathology‘. (b) AI missed a right-sided pneumothorax (red markup). Radiologists correctly marked
this case as pathological. (c) Both radiologists and AI misjudged this case as pathological. The only
confusing findings included calcified lymph nodes in the right hilum and superposition of anatomical
structures. (d) AI missed a right-sided pneumothorax (red markup). Radiologists correctly marked
this case as pathological.

3.2. Chest Digital Fluorography (FLG)

The ROC analysis results for all readers and the AI models are shown in Figure 3b.
The threshold for AI was 0.5 (Youden index was 0.61); for human readers, the threshold
was 4 (Youden index was 0.87). A cutoff of 3 (the median of 5-point scale) would reduce
the specificity of radiologists to 0.82 (0.79–0.90) but would increase their sensitivity to 1.0
(1.0–1.0). The AI models achieved an AUROC value of 0.83 (0.76–0.9), while radiologists
had a higher AUROC of 0.98 (0.96–1.00). The difference between AI and radiologists was
statistically significant. Similar to the X-ray use case, AI results were the most comparable to
those radiologists with minimal experience (p = 0.25) (Table 2). An example of discrepancies
in the opinions of AI and radiologists is shown in Figure 4d.

3.3. Mammography (MMG)

The ROC analysis results for all readers and the AI model are illustrated in Figure 3c.
The threshold for AI was 0.60 (Youden index was 0.65); for human readers, the threshold it
was 3 (Youden index was 0.81). The ROC analysis results for a subgroup of readers, breast
imaging specialists and the AI model are shown in Figure 3d. The threshold for breast
imaging specialist readers was 3 (Youden index was 0.85). The AI models achieved an
AUROC of 0.89 (0.83–0.94) that was lower (p < 0.05) than the AUROCs of both general
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radiologists (0.94 (0.91–0.97)) and breast imaging specialists (0.96 (0.93–0.99)). For both
radiologist subgroups, AI models were comparable to the radiologists with less than 5 years
of experience. It is worth noting that the dataset used in this study contained an atypical
ratio of pathological and normal findings, which could affect the breast imaging specialists’
analysis. Therefore, due to their oncological alertness, there was a slight decrease in the
average value of specificity. This statement is illustrated by the example in Figure 5.
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Figure 5. Examples for mammography (a,b). (a) AI missed a cluster of retroareolar microcalcifications
in the left breast (red markup). Radiologists correctly marked this case as pathological. (b) Areas of
disseminated breast fibroglandular tissue (type C according to ACR) were mistakenly interpreted by
breast imaging specialists as suspicious for malignancy. AI did not detect pathological changes.

3.4. Overall

Comparing the average results of the eight AI models, as well as an average assessment
of radiologists’ performance, the significant differences (p < 0.05) in the AUROC values
of 0.87 (0.83–0.9) for AI algorithms vs. 0.96 (0.94–0.97) for radiologists were obtained
(Figure 3e, Table 2). For the cut-off values calculated by Youden’s method, lower values
of sensitivity and specificity (95% CIs did not intersect) were detected for AI than for
radiologists. Comparison of radiologists’ performance with AI revealed the best match
with the group of least experienced radiologists (p = 0.65) (Table 2). Diagnostic accuracy
metrics per AI model are shown in the Supplementary Materials (Table S2).

4. Discussion

The diagnostic accuracy of any method, including an AI model, is a key parameter
when making a decision regarding the practical applicability of this method in medicine.
Some studies demonstrated an increase in the diagnostic accuracy metrics of a radiologist
using an AI model [4,34]. Our work aimed to benchmark radiologists and AI in interpreting
images independently. Currently, the question concerning the applicability of AI to interpret
screening studies remains open. Several studies have demonstrated the high diagnostic
accuracy of AI algorithms for screening studies such as mammography [13,30–32] and chest
X-ray [7,18,33]. In a double reading setting, such as in Europe, highly accurate AI models
could alleviate the person-power needed for the interpretation, reaching the consensus of
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two radiologists. However, several studies [4,17,34,40] have indicated a lack of accuracy of
AI algorithms. In this study, we compared the average accuracy of AI screening models
with the average accuracy of radiologists. This study is important because it not only
evaluated the diagnostic accuracy of radiologists in various types of examinations, but also
compared the performance of general radiologists with that of mammography specialists.

A collective performance assessment was applied to the groups of radiologists with
different levels of experience to estimate the necessary requirements for AI to be able to
substitute human readers for mass screening and routine examinations. The collective eval-
uation of radiologists’ responses demonstrated the variability of their accuracy depending
on their experience and specialization. A similar calculation was also carried out for all
participating AI models to calibrate and combine their responses. The use of the binary
criteria ‘with pathology’ and ’without pathology‘ allowed the unification of the assessment
criteria for radiologists and AI, and ensured their objective comparison for the triage and
detection tasks (identifying pathological changes in a study); however, it did not facilitate
the comparison of accuracy in solving a classification and differential diagnosis task. It is
currently strongly recommended to compare the AI models and healthcare professionals on
the same datasets for an objective comparison [41]. In our study, all results were received
on the same samples. The values of the diagnostic accuracy metrics obtained in this study
could be used as a threshold for a successful validation of adaptive AI models during the
acceptance tests [42].

A comparative accuracy assessment of the detection of pathological signs in mammog-
raphy and fluorographic images between radiologists and AI showed that the diagnostic
accuracy metrics of radiologists exceeded those of AI, and this was statistically significant.
However, for chest X-ray, our study showed no statistically significant differences between
AI and radiologists, which was consistent with the results of Wu et al. [18]. This implies
the potential for using AI algorithms for the preliminary interpretation of chest X-ray
under conditions of a staff shortage [18]. Regarding mammography, a study by McKinney
et al. [14] was indicative, in which the AI model was not inferior in performance to breast
imaging specialists and allowed radiologists to reduce the workload on doctors by up to
88%. The other group [4] came to similar conclusions. In contrast to the results of the
work of McKinney S.M. [14], in our study, the accuracy metrics of the average radiologists
were higher than those of the AI models. None of the AI models surpassed radiologists in
this study. However, this study emphasizes the potential of using machine learning tech-
niques to improve the interpretation of screening mammography by radiologists without
significant experience in breast imaging.

In the present study, the data obtained clearly demonstrated that AI models exhib-
ited superior diagnostic accuracy compared to novice radiologists. This finding aligns
with previous research studies that have also reported the effectiveness of AI models in
improving diagnostic accuracy [43] The results suggest that AI models have the potential
to serve as decision support systems (DSS) for novice radiologists, assisting them in their
training and enhancing the quality of their work. In conclusion, the data from this study
support the notion that AI models outperform novice radiologists in terms of diagnostic
accuracy, which is consistent with previous research. The potential use of AI models as DSS
tools for beginners holds promise in improving their training and improving the quality of
their work. More research and implementation efforts are needed to explore the optimal
integration of AI models into radiology practice and to assess their long-term impact on
patient outcomes.

In this study, we conducted a comparison of diagnostic accuracy between a radiologist
and AI algorithms. Our findings clearly demonstrated that, as the radiologist’s experience
increased, quality indicators also improved. This indicates that with an increasing number
of examined studies, the accuracy of the radiologists’ work tends to increase. Similarly, the
same observation can be made for AI algorithms: the larger the dataset used for training,
the higher the quality of the AI model. To provide context, some researchers have used
a significant dataset of 108,948 [44] studies when developing AI for chest radiography.
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On average, a radiologist interprets 50 examinations per shift. Therefore, over a period
of 10 years, a radiologist would review slightly more than 120,000 studies. Consequently,
the number of studies evaluated by a radiologist in a 10-year period can be considered
comparable to the dataset on which an AI algorithm could be trained.

Due to the lack of radiologists and a continuous increase in the amount of routine
radiology examinations, the use of AI will make it possible to revise the healthcare devel-
opment pathway for radiology [45]. For example, instead of the increase in the number
of radiology residents to fulfill primary healthcare needs, one could shift the pathway to
the direction of narrower specialization and expertise for the radiologists, while leaving
routine screening studies to AI.

5. Conclusions

Benchmarking of AI models and radiologists on a multicenter and multinational level
demonstrated that the overall accuracy of AI was lower than the accuracy of the radiol-
ogists. The AI and radiologists’ performance levels were the most comparable for chest
X-ray. In contrast, AI was inferior to human readers for fluorography and mammography.
Similar to previous studies, the diagnostic accuracy of AI can be compared with physicians
undergoing residency training in radiology. In summary, this study showed that the appli-
cation of existing AI models for routine and mass screening in radiology is possible as a
substitute for residency trainees in their first reading to reduce the workload of radiologists.
The diagnostic accuracy metrics for screening methods of the average radiologist obtained
in this work can be used as target values in the development, training and fine-tuning of
AI algorithms.

6. Limitation

The current study was limited by the relatively small size of the dataset; thus, the
diagnostic accuracy metrics of separate pathological findings with sufficient statistical
significance could not be calculated.

The limitations of the study from the radiologists’ point of view included the lack of
clinical information, the limited functionality of the DICOM web viewer, a sample of studies
enriched with pathologies that differed from routine practice and a strictly algorithmic
probability model for interpreting the studies.

In this work, AI models were used in versions that were relevant at the end of 2021.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/healthcare11121684/s1, Table S1: Details of AI models; Table S2:
Diagnostic performance metrics per AI model.
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