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Abstract: Due to the increasing cost of health insurance, for decades, many countries have endeavored
to constrain the cost of insurance by utilizing a DRG payment system. In most cases, under the
DRG payment system, hospitals cannot exactly know which DRG code inpatients are until they
are discharged. This paper focuses on the prediction of what DRG code appendectomy patients
will be classified with when they are admitted to hospital. We utilize two models (or classifiers)
constructed using the C4.5 algorithm and back-propagation neural network (BPN). We conducted
experiments with the data collected from two hospitals. The results show that the accuracies of these
two classification models can be up to 97.84% and 98.70%, respectively. According to the predicted
DRG code, hospitals can effectively arrange medical resources with certainty, then, in turn, improve
the quality of the medical care patients receive.

Keywords: diagnosis-related groups; DRG; C4.5; back-propagation neural network; appendectomy

1. Introduction

Due to the gradual increase in medical expenditures each year, insurance institutions in
many countries, such as Germany, Canada, Japan, Taiwan, etc., have adopted a prospective
payment system (PPS) to control the increasing expenditures [1]. In the past, the payment
system for health insurance has worked on a fee-for-service policy, which may have resulted
in an incentive to over-supply medical services or cause a supplier-induced demand for
medical resources. To improve the defect of fee-for-service and to control the abnormal
increment of medical expenditures, many countries devote their efforts to the revolution of
the payment system. Compared to fee-for-service payment, the PPS has the potential to
reduce the waste of medical resources by encouraging a change in terms of reimbursement.
Among the PPS, the global budget system is a well-known macro-control measure, while
case payment is a micro-control measure [2,3]. Case payment aims to reduce costs by
imposing financial responsibility on the service providers by providing fixed costs for
a certain set of diseases, while DRG (diagnosis-related group) payment using a fixed
price has a broader definition compared to case payment. Since commencing the cost-
containment property, the DRG payment system has changed the behaviors of doctors and
hospitals due to the fact that they are forced to participate in the allocation of financial
and medical resources to ensure high-quality medical care and to monitor the increase in
medical expenditures.

However, the DRG code of patients may not be completely confirmed until they are
discharged [4]. In other words, the hospital does not know how many available medical
resources can be reimbursed during the hospitalization of inpatients. If there was an earlier
and more accurate understanding of the likely DRGs of incoming patients, administrators
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would be able to make more informed decisions about staffing levels, equipment needs,
and other resource allocation decisions.

Acute appendicitis, an inflammation of the appendix, is the most common cause of
emergency abdominal surgery [5–7]. The major diagnostic categories (MDCs) of patients
with appendectomy are classified as MDC6 (diseases of the digestive system) according
to the TDRG of Taiwan [8]. As shown in Table 1, the operating room procedures of
appendectomy patients are 47.01, 47.09, 47.2, or 47.99, respectively, coded in ICD10-CM.
From the table, it can be seen that the presence of complications or comorbidities (CCs) in
patients is an important discriminator of DRG code for the patients. Precisely, patients, if
classified as DRG 164 and DRG 167, receive the same principal diagnosis and operating
room procedures as patients classified as DRG 165 and 167, except that the formers have
CCs. However, if we only use the above attributes to classify patients, we cannot accurately
obtain their DRG code until the patients’ discharge. Identifying which DRG the patient
should be classified as before they are discharged is important to control costs for hospitals.
The literature [9–12] shows that physiological risk factors have an influence on the health
conditions and episodes of illness of individuals. One’s personal health condition reflects
physiological levels that can be obtained through medical examinations and screenings.
The aim of this paper is to use classification methods to obtain DRG codes using the medical
examination data, gender, age, etc., of patients with appendectomies (i.e., input attributes).
Through doing this, which DRG code a patient with appendectomy can be determined
before his/her discharge.

Table 1. DRGs for patients with appendectomy defined by NHI, Taiwan.

DRG Item Principal Diagnosis ** Operating Room
Procedures ***

164 Appendectomy with complicated
principal diagnosis With CC *

540.0
540.1

47.01
47.09
47.2

47.99165 Appendectomy with complicated
principal diagnosis Without CC

166 Appendectomy without
complicated principal diagnosis With CC

540.9
541
542

543.0
543.9

47.01
47.09
47.2

47.99167 Appendectomy without
complicated principal diagnosis Without CC

Note: * CC—complication and comorbidity. ** 540.0—acute appendicitis with generalized peritonitis. 540.1—acute
appendicitis with peritoneal abscess. 540.9—acute appendicitis without mention of peritonitis. 541—appendicitis
but unqualified. 542—other appendicitis. 543.0—hyperplasia of appendix (lymphoid). 543.9—other and unspeci-
fied diseases of appendix. *** 47.01—laparoscopic appendectomy. 47.09—other appendectomy. 47.2—drainage of
appendicle abscess. 47.99—other operations on appendix.

Until now, there has been little research aimed at predicting the DRG code of inpatients
with appendectomy before they are discharged. The aim of this paper is to predict the DRG
code of inpatients suffering from appendectomy as early as possible. Since the information
of an inpatient, such as their ICD-10 and complication and comorbidity, cannot be precisely
known until he/she is discharged, this paper uses other vital signs data, which can be
obtained while an inpatient is admitted to hospital in order to predict their code. Two
popular algorithms, a decision tree C4.5 and a back-propagation neural network (BPN), are
used for the classification.

Classification is a process of learning that maps a data item into one of several pre-
defined classes [13–15]. The objective of learning is to create a classification model (or
classifier) for prediction [16,17]. Decision tree is a popular classification method; C4.5 is
a program used for inducing classification rules in the form of decision trees from a set
of given examples [16–18]. C4.5 uses information to help decide which attributes have
the largest amount of information to induce classification rules in the form of decision
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trees [18]. The advantages of a decision tree constructed by C4.5 are that (1) it can generate
understood rules and (2) it can handle continuous values and class variables.

Neural network is another frequently used method applied in the classification prob-
lem [19,20]. Nethe neuraletwork uses a large number of artificial neurons to simulate the
ability of biological neural networks [19]. Artificial neurons, which receive information
from the outside environment, or other artificial neurons simulate the functions of biological
neurons. After a simple calculation, these artificial neurons output the result to the outside
environment or other artificial neurons to represent complicated relationships between
input and output. The most popular type of neural network is the back-propagation neural
network (BPN), which uses the gradient steepest descent method to minimize the error
function [14]. The elements of the back-propagation neural network contain the input,
hidden, and output layers. The input layer consists of neurons standing for input attributes,
the hidden layer represents the interaction of the input layer, and the output layer contains
neurons standing for output attributes. The advantages of BPNs are that they can construct
a complicated nonlinear network model and learn patterns precisely [21]; in addition, their
recall speed is very fast. A BPN is suitable for pattern recognition, classification problem,
expert system, noise filter, data reduction function synthesis, and so on.

Similar to the C4.5 algorithm, BPNs have also been widely applied in the medical
field. For example, a BPN was developed to predict the length of stay of an inpatient [22].
Walczak [23] has developed a medical decision support system based on BPNs to predict
the transfusion requirements of patients during three-time slices: one for the first two hours,
another from the second hour to the sixth hour, and the third from the sixth hour to the
twenty-fourth hour. The accuracy of the support system can be up to 91.4% on average
for the three-time slices. Wu and Su [24] recognized a gait pattern in ankle arthrodesis
for distinguishing differences between healthy and pathological gait. The recognition
mechanism is developed upon BPNs, and the correctness of the classification can be up
to 95.8%.

Some researchers use BPNs and other techniques for classification. For example, Sakka
and Koutsouris [25] used data mining techniques to detect calcifications in mammograms,
whereas Su et al. [26] used fine needle aspiration cytology data to check whether a breast
tumor was malignant and used tongue diagnosis image data to check whether upper GI
was a disorder using a Bayesian network (BNs), C4.5, and a BPN. The best performance
among these three algorithms was the BPN, whose accuracy was 96.0% in diagnosing
breast tumors and 91.6% in diagnosing upper GI disorders.

Utilizing classification techniques to predict the DRG code of an appendectomy inpa-
tient while he/she is admitted to hospital is practicable. This paper utilizes two models
constructed using the C4.5 algorithm and back-propagation neural network (BPN) for the
classification. By conducting extensive experiments, this paper compares these two models
in predicting the DRG code of appendectomy patients. When an earlier classification is
obtained, hospitals that are in competition with each other can easily allocate their scarce
healthcare resource to the desired patient by adapting the suitable clinical pathway for dif-
ferent DRG codes in order to reduce the waste of medical resources [27]. Finally, the quality
of the treatment patients receive can be improved when resources are used effectively.

2. Materials and Methods
2.1. Data Processing

The literature [11,12] has shown that physiological risk factors influence the health
conditions and episodes of illness of individuals. One’s personal health condition reflects
physiological levels, which could be obtained using medical examinations and screenings.
This paper collected the medical examination data, gender, and age of patients with
appendectomies (i.e., input attributes) so that we could predict which DRG the patient is
before his/her discharge. In addition, we also identified which physical and physiological
factors potentially influence DRG classifications.
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In order to construct the classification model for the patients with appendectomy, the
paper used the historical data of patients with appendectomy (as the training data) from
two different regional hospitals in Taiwan (denoted as hospitals A and B) with 313 and
125 patients, respectively. Eligible patients were those who had undergone excision of the
appendix whilst they were in hospital. In addition, the paper selected the examination data
of these patients from their first day of hospitalization.

We then selected the examination data required by the physicians for the diagnosis of
appendectomy. Note that the sorts of vital sign data from the two hospitals are different;
that is, hospital A may have some vital sign data in its patient records, but hospital B does
not, and vice versa. The classification models were constructed by using the same algorithm
for the two hospitals based on their respective data. The attributes of examination data will
be used to construct the classification model in the paper.

These appendectomy patients were classified into four DRGs (from DRG 164 to DRG
167). The medical dataset has a large discrepancy in the number of classes in nature. For
example, only 6 patients were classified as DRG 165, but 290 patients were classified as DRG
167. If the imbalanced data are fed into the model for training, the model tends to learn
the majority class at the expense of the minority class. Such a skewed class distribution
problem leads to prediction without discrimination. The collected data are imbalanced data
in the way that some DRG classes are a minority while some are a majority. Oversampling
and undersampling in model training are techniques used to adjust the class distribution
of a dataset [28]. This paper adopted oversampling, i.e., argument (copy) the observations
in the minority class so that the number of observations of each DRG class was nearly
equal [29]. To be precise, we made copies of the minority class data in order to increase
the amount of minority class data. This type of oversampling has less bias and has been
commonly adopted in the literature. Tables 2 and 3 show the original sampling and their
augmented sampling of the DRGs of the patients with appendectomy in hospitals A and
B, respectively.

Table 2. The original and augmented sampling distribution of DRGs of patients with appendectomy
in hospitals A and B.

Hospital A Hospital B

Original
Samples Ratio Copying

Samples
Original
Samples Ratio Copying

Samples

DRG 164 1 290 times 290 2 49 times 98
DRG 165 6 48 times 288 19 5 times 95
DRG 166 16 18 times 288 5 19 times 95
DRG 167 290 1 time 290 99 1 time 99

Total 313 1156 125 387

Table 3. Vital sign data recorded for patients with appendectomy in hospitals A and B.

Predicting Attribute A B Predicting Attribute A B Predicting Attribute A B

Gender v v MCHC v v Creatinine v v
Age v v Na (sodium) v v Glutamic oxaloacetic transaminase v v

Hemoglobin v v K (potassium) v v Blood urea nitrogen v v
Hematocrit v v Glucose v v Glutamic pyruvic transaminase v

N. seg. v v Platelet v Bleeding time v
Lymph v v Occult blood v Clotting time v
Mono v v specific gravity v Amylase v
Eosi v v PH (urine) v Nephelometry (chlamydia trachomatis Ag) v



Healthcare 2023, 11, 1598 5 of 17

Table 3. Cont.

Predicting Attribute A B Predicting Attribute A B Predicting Attribute A B

Baso v v Urobilinogen v RDW-CV v
W.B.C v v Color (urine) v Mean platelet volume v
R.B.C v v Clarity (urine) v Prothrombin time v
MCV v v R.B.C (urine) v Activated partial thromboplastin time v
MCH v v W.B.C (urine) v Ep. Cell v

Note: ‘v’ denotes prediction attributes that appear in hospitals A or B.

2.2. Classification Model Construction

This paper utilized a BPN to construct the classification model (called the classifier),
which learns by setting up a training dataset and compares the prediction class of a network
for each sample with the actual class. For each sample, the weights were modified in order
to minimize the mean squared error (MSE) between the prediction class and the actual class.
When the MSE between the two classes becomes stable, i.e., no more significant decrease,
the neural network can be deemed to have finished training. In terms of the number of
hidden layers, BPNs usually have good convergence behavior with one- or two-hidden
layers. According to previous experience, the general solutions can be a one-hidden layer,
and the complex ones can be a two-hidden layer [30]. The one-hidden layer was utilized
in this paper. In addition, for a larger number of units in the hidden layer, the slower
the network coverages, the smaller the error we will obtain. In this paper, we used the
default formula (shown in Equation (1)) as a way of counting the number of units in the
hidden layer.

Number of units of the hidden layer = (input units + output units)/2 (1)

The BPN uses the gradient descent method with an adjustment of the learning rate
and momentum factor to minimize the error function. Learning rate refers to the rate
at which errors modify the weights, and a momentum factor was used in this paper to
allow a previous weight change to influence the next weight change in this cycle. Based
on experience, optimal parameters (i.e., learning rate and momentum factor), which result
in the best convergence, were from 0.1 to 1.0 and from 0.1 to 0.9, respectively [30]. In this
paper, the values of the learning rate and momentum factor were set from 0.1 to 1.0 and
from 0.1 to 0.9, respectively, with a uniformly increased interval of 0.1.

We divided appendectomy patients into four groups (i.e., from DRG 164 to DRG 167)
as their classes. The procedure for constructing the classifiers is shown in Figure 1. In the
first step, for appendectomy patients, all the prediction attributes of the DRG mentioned in
Table 3 were fed into the BPN or C4.5 classifiers, then we adjusted the parameters of the
BPN in order to find the best BPN classifier in terms of accuracy. In the second step, in order
to construct classifiers, the paper adopts genetic search and best-first algorithms [31] to en-
hance accuracy through the method of finding out which attributes are more representative
among all attributes. The genetic search method uses a simple genetic algorithm, while
the best-first method uses the way of greedy hill climbing to search for the appropriate
attributes [31]. In this way, we also adjusted the parameters of the BPN in order to find
the best classifier. Then, we compared the accuracies of the classifiers constructed by C4.5
and the BPN with the selected attributes. In most cases, the selected attributes filtered
by genetic search or best-first algorithms can improve the accuracy of the classification
model [31]. In this paper, we identified which one was better than the other in order to
establish a more accurate classifier.
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Figure 1. Steps of classifier construction in this paper.

In the last step, we select the classifiers with the highest accuracy constructed using
C4.5 and the BPN with all or selected attributes, respectively. We combine these classi-
fiers using the bagging method in order to further enhance the classification accuracy.
Breiman [4] proposed a bagging method based on the concept of “bootstrap aggregat-
ing”. The bagging method aims to manipulate the training dataset by randomly replacing
the original training dataset in order to generate several new training datasets, namely,
C1, C2, . . . , CN. The replacement training datasets are known as bootstrap replicates of
the training dataset. Suppose we classify the new data sample, M, then each classifier
returns its class prediction to determine the final class (i.e., vote). These classifiers count
the votes and assign the class with the most votes (seen in Figure 2). Note that the RIFT
Study Group [32] also conducted a series of experiments to evaluate prediction models for
appendectomy patients. They focused on the prediction of whether a patient with acute
right iliac fossa (RIF) pain had an appendectomy. Their data may include eligible patients
who did not undergo surgery. The aim of this previous paper was to evaluate whether the
prediction models used were as reliable as the clinical decision support system, while our
paper focuses on the prediction of the DRG code (i.e., classification) for patients who have
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undergone surgery. Therefore, the motivation and focuses of that paper and the present
paper are different.

Healthcare 2023, 11, x FOR PEER REVIEW 7 of 17 
 

 

focuses on the prediction of the DRG code (i.e., classification) for patients who have un-
dergone surgery. Therefore, the motivation and focuses of that paper and the present pa-
per are different. 

 

Figure 2. Bagging method used in this paper. 

3. Results and Discussion 
3.1. Model Evaluation Index and Classification Results with All Attributes 

To demonstrate the feasibility of the prediction of DRG codes with examination data 
for patients with appendectomy when they are admitted to hospital, this paper con-
structed classifiers using C4.5 and BPN algorithms, associated some enhancing methods, 
then evaluated the accuracies of these models. Our first method used to evaluate the ro-
bustness of a classifier was to perform cross-validation. In detail, the accuracy of the pro-
posed classifiers was tested using tenfold cross-validation, meaning the collected dataset 
was divided into ten subsets, in which one subset was used as the testing dataset, and nine 
out of ten subsets were used as the training datasets. We then adopted the evaluation in-
dex, i.e., the precision rate, which is the number of predictions that are true and values 
that are positive (i.e., true positive) divided by the total number of predictions whose val-
ues are positive, used as the main index to evaluate the performance of the classifiers. The 
accuracy rate was also used to evaluate the performance of the prediction. Accuracy is the 
number of correct predictions out of all of the predictions. In detail, it is defined as the 
number of true-positive and true-negative predictions divided by the sum of the number 
of true-positive, true-negative, false-positive, and false-negative predictions. Other in-
dexes, such as the recall rate and specificity, were not adopted in this paper since their 
information cannot provide estimates of the reimbursement fee reimbursed for the hospi-
tals’ reference. 

For the first step shown in Figure 1, this paper constructed classifiers with all of the 
attributes. Then, this paper analyzed and compared the accuracies of the classifiers of C4.5 
and BPN algorithms. In general, precision and recall rates were used to evaluate the per-
formance of the classifier under binary or even multiple classes. The precision of a classi-
fier is defined as the number of correctly predicted members as a class out of all the pre-
dicted members of that class. The recall rate is different from the precision rate as it counts 
the ratio of the number of correctly predicted members as a class against the number of 
actual members belonging to that class. The recall rate is important as a classifier, espe-
cially in the medical field. 

There are 26 prediction attributes and 1156 examples in hospital A. Table 4a shows 
the confusion matrix of the C4.5 classifier for hospital A. From Table 4a, we compute the 
accuracy of model as 95.42% ((290 + 288 + 288 + 237)/1156), and the precision rates from 
DRG 164 to DRG 167 were 99.3% (=290/292), 92% (=288/313), 91.7% (=288/314), and 100% 

Data 

C1 

C2 

CN 

… 
Combine 

Votes 

New data 
sample M 

Class 
prediction 

Figure 2. Bagging method used in this paper.

3. Results and Discussion
3.1. Model Evaluation Index and Classification Results with All Attributes

To demonstrate the feasibility of the prediction of DRG codes with examination data
for patients with appendectomy when they are admitted to hospital, this paper constructed
classifiers using C4.5 and BPN algorithms, associated some enhancing methods, then
evaluated the accuracies of these models. Our first method used to evaluate the robustness
of a classifier was to perform cross-validation. In detail, the accuracy of the proposed
classifiers was tested using tenfold cross-validation, meaning the collected dataset was
divided into ten subsets, in which one subset was used as the testing dataset, and nine out
of ten subsets were used as the training datasets. We then adopted the evaluation index,
i.e., the precision rate, which is the number of predictions that are true and values that
are positive (i.e., true positive) divided by the total number of predictions whose values
are positive, used as the main index to evaluate the performance of the classifiers. The
accuracy rate was also used to evaluate the performance of the prediction. Accuracy is the
number of correct predictions out of all of the predictions. In detail, it is defined as the
number of true-positive and true-negative predictions divided by the sum of the number
of true-positive, true-negative, false-positive, and false-negative predictions. Other indexes,
such as the recall rate and specificity, were not adopted in this paper since their information
cannot provide estimates of the reimbursement fee reimbursed for the hospitals’ reference.

For the first step shown in Figure 1, this paper constructed classifiers with all of the
attributes. Then, this paper analyzed and compared the accuracies of the classifiers of
C4.5 and BPN algorithms. In general, precision and recall rates were used to evaluate
the performance of the classifier under binary or even multiple classes. The precision of
a classifier is defined as the number of correctly predicted members as a class out of all
the predicted members of that class. The recall rate is different from the precision rate
as it counts the ratio of the number of correctly predicted members as a class against the
number of actual members belonging to that class. The recall rate is important as a classifier,
especially in the medical field.

There are 26 prediction attributes and 1156 examples in hospital A. Table 4a shows
the confusion matrix of the C4.5 classifier for hospital A. From Table 4a, we compute the
accuracy of model as 95.42% ((290 + 288 + 288 + 237)/1156), and the precision rates from
DRG 164 to DRG 167 were 99.3% (=290/292), 92% (=288/313), 91.7% (=288/314), and 100%
(=237/237), respectively. In addition to the accuracy and precision, we are also curious to
decipher the recall rate of each DRG code, which is the ratio of the number of correctly
predicted members as a DRG code against the number of actual members belonging to that
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DRG code. The recall rate rates from DRG 164 to DRG 167 are 100.0% (i.e., 290/290), 100.0%
(i.e., 288/288), 100.0% (i.e., 288/288), and 81.7% (i.e., 237/290), respectively. Note that DRG
167 stands for appendectomy patients with a diagnosis of “laparoscopic appendectomy
without complicated principal diagnosis without CC (comorbidity and complication)”,
while the other DRGs are appendectomy patients with a complicated diagnosis. In other
words, the patients classified as DRG 167 are patients who are not seriously ill. In most cases,
the complexity of an appendectomy patient cannot be quickly diagnosed upon his/her
admission to hospital; some patients may worsen or be fully diagnosed after undergoing an
advanced examination. Thus, this phenomenon can explain why the precision of a classifier
to identify the patient belonging to DRG 167 is highest, while the recall rate of the patients
belonging to DRG 167 is the lowest compared to those of other DRG codes.

Table 4. Confusion matrix of the C4.5 classifier with all attributes.

(a) Hospital A with 26 Prediction Attributes

Number of Patients’
Records

Predicted Class

DRG 164 DRG 165 DRG 166 DRG 167 Total

Actual
class

DRG 164 290 0 0 0 290

DRG 165 0 288 0 0 288

DRG 166 0 0 288 0 288

DRG 167 2 25 26 237 290

Total 292 313 314 237 1156

(b) Hospital B with 33 Prediction Attributes

Number of Patients’
Records

Predicted Class

DRG 164 DRG 165 DRG 166 DRG 167 Total

Actual
class

DRG 164 98 0 0 0 98

DRG 165 0 87 2 6 95

DRG 166 0 0 95 0 95

DRG 167 2 25 11 61 99

Total 100 112 108 67 387

There are 33 prediction attributes and 387 examples in hospital B. Table 4b shows the
confusion matrix of the C4.5 classifier for hospital B. We computed the accuracy of the
model to be 88.11% ((98 + 87 + 95 +61)/387), and the precision rates from DRG 164 to DRG
167 were 98% (i.e., 98/100), 77.6% (i.e., 87/112), 87.9% (i.e., 95/108), and 91% (i.e., 61/67),
respectively. In addition, the recall rates of each DRG code from DRG 164 to DRG 167
are 100.0% (i.e., 98/98), 91.6% (87/95), 100.0% (95/95), and 61.6% (61/99), respectively.
Similar to the above discussion for hospital A, the complexity of an appendectomy patient
cannot be quickly diagnosed at his/her admission as some patients may worsen or not be
fully diagnosed until after they have undergone an advanced examination. This reason
can account for the phenomenon that the precision of a classifier to identify the patient
belonging to DRG 167 is high, while the recall rate of the patients belonging to DRG 167 is
the lowest compared to those of other DRG codes.

For the BPN classifier, we set the learning rate from 0.1 to 1.0, with an increased
interval of 0.1 for each run of the test, then we evaluated their accuracy under the values of
the momentum factors from 0.1 to 0.9, respectively. Figure 3a shows the analysis diagram of
the classifier constructed using the BPN classifier with all the attributes of hospital A. The
result revealed that the prediction accuracy was stable in the case of most learning rates,
though it worsens when the learning rate is over 0.8 under the values of momentum factors
of 0.8 and 0.9. Figure 3b displays a zoomed-in picture of Figure 3a, where the accuracy is at
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its best (i.e., 98.70%), which occurred when the learning rates were set as 0.7 and 0.8 under
the values of their momentum factors of 0.7 and 0.9, respectively.
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As illustrated in Figure 3b, when the learning rates are 0.8 and 0.9 individually under
the values of the momentum factors of both 0.7 for hospital A, the confusion matrix (shown
in Table 5) shows that the accuracies of the BPN classifier are 98.7% and 98.7%, respectively.
They both consisted of TP rates from DRG 164 to DRG 167 of 100%, 100%, 100%, and
94.8%, respectively.

Figure 4 shows the analysis diagram of the classifier constructed using the BPN
classifier with all of the attributes of hospital B. The result revealed that the classification
performance is not stable; it became worse while the learning rate was increasing under
the increasing values of the momentum factors. Figure 4b is the zoomed-in picture of
Figure 4a, which shows when the accuracy reaches its best (i.e., 96.12%), occurring when
the learning rates were set as 02 and 0.8 under the values of their momentum factors of 0.4
and 0.7, respectively.
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Table 5. Confusion matrix of the BPN classifier with all attributes in hospital A.

(a) The learning rate is 0.8 under the value of a momentum factor of 0.7.

Number of Patients’
Records

Predicted Class

DRG 164 DRG 165 DRG 166 DRG 167 Total

Actual
class

DRG 164 290 0 0 0 290

DRG 165 0 288 0 0 288

DRG 166 0 0 288 0 288

DRG 167 2 4 9 275 290

Total 292 292 297 275 1156

(b) The Learning Rate is 0.9 under the Value of the Momentum Factor Being 0.7.

Number of Patients’
Records

Predicted Class

DRG 164 DRG 165 DRG 166 DRG 167 Total

Actual
class

DRG 164 290 0 0 0 290

DRG 165 0 288 0 0 288

DRG 166 0 0 288 0 288

DRG 167 1 4 10 275 290

Total 291 292 298 275 1156

As an illustration of Figure 4b, when the learning rates are 0.2 and 0.8 individually
under the values of momentum factors of 0.4 and 0.7 for hospital B, the confusion matrix
(shown in Table 6) shows that the accuracies of the BPN classifier are 96.12% and 96.12%,
respectively, which consist of TP rates from DRG 164 to DRG 167 which are 100%, 100%,
100%, and 84.8%, respectively. From the above results for classifiers C4.5 and BPN for
hospitals A or B, the accuracy of the classifiers constructed using BPN algorithms with all
attributes is better than those constructed using C4.5 classifiers with all attributes. This
result is the same as that obtained by [33], which indicated that the accuracy of the classifier
trained by a neuron network was higher than that trained by a decision tree.

Table 6. Confusion matrix of the BPN classifier with all attributes in hospital B.

(a) The Learning Rate is 0.2 under the Value of a Momentum Factor of 0.8.

Number of Patients’ Records
Predicted Class

DRG 164 DRG 165 DRG 166 DRG 167 Total

Actual
class

DRG 164 98 0 0 0 98

DRG 165 0 95 0 0 95

DRG 166 0 0 95 0 95

DRG 167 2 12 1 84 99

Total 100 107 96 84 387

(b) The Learning Rate is 0.4 under the Value of a Momentum Factor Being 0.7.

Number of Patients’ Records
Predicted Class

DRG 164 DRG 165 DRG 166 DRG 167 Total

Actual class

DRG 164 98 0 0 0 98

DRG 165 0 95 0 0 95

DRG 166 0 0 95 0 95

DRG 167 2 13 0 84 99

Total 100 108 95 84 387
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3.2. Classification Results with Selected Attributes

Clearly, not all the attributes in hospitals A and B are related to the prediction of
the classification. This paper used best-first and genetic algorithms to determine which
attributes relate to the perdition at first, as is depicted by step 2 in Figure 1. This paper
incorporates packages from Weka, version 4.1, to perform these two filtering algorithms.
Weka is an open-source data mining and analysis software package written in Java, devel-
oped at the University of Waikato, New Zealand, and contains a collection of visualization
tools and algorithms for data analysis and predictive modeling [34]. For hospital A, the
results of the best-first algorithm are the selection of 9 attributes, including gender, age,
R.B.C, MCV, N.seg., Mono, Eosi, K, and platelet, while the results of the genetic-search
algorithm are the selection of 11 attributes, including gender, age, W.B.C, MCV, N.seg., Eosi,
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lymph, Na, K, glucose, and platelet. Similarly, for hospital B, the results of the best-first
algorithm are that 5 attributes were selected, including age, hematocrit, lymph, Mono, and
Eosi, while the results of the genetic-search algorithm are the selection of 10 attributes,
including age, hemoglobin, hematocrit, MCH, N.seg., lymph, Mono, Eosi, glucose, and
glutamic oxaloacetic transaminase. Next, we performed the experiments using the C4.5
classifier for hospital A with selected attributes that were filtered using best-first and genetic
search algorithms, then we compared their accuracies with that of the C4.5 classifier with
all attributes. For hospital A, the accuracies of the two C4.5 classifiers with the selected
attributes of genetic search (its accuracy value being 96.71%) and best-first (its accuracy
value being 97.06%) algorithms are both higher than the accuracy of the C4.5 classifiers
with all attributes (its accuracy value being 95.42%). From the above experiment results,
it can be seen that the C4.5 classifier with the best-first algorithm outperforms the C4.5
classifier with the genetic search one in terms of accuracy. Table 7 shows the confusion
matrix of the accuracy (i.e., 97.06%) of the classification with the selected attributes using
the best-first algorithm, then the C4.5 classifier only; it shows that the TP rates from DRG
164 to DRG 167 are 100.0%, 100.0%, 100.0%, and 88.3%, respectively.

Table 7. Confusion matrix with selected attributes by best-first and C4.5 classifier for hospital A.

Number of Patients’
Records

Predicted Class

DRG 164 DRG 165 DRG 166 DRG 167 Total

Actual
class

DRG 164 290 0 0 0 290

DRG 165 0 288 0 0 288

DRG 166 0 0 288 0 288

DRG 167 2 14 18 256 290

Total 292 302 306 256 1156

We also performed experiments for hospital B with the C4.5 classifier with the selected
attributes, which were filtered using best-first and genetic search algorithms; we then com-
pared their accuracies with those of the C4.5 classifier but with all attributes. Additionally,
similar experiments were performed using the BP classifier. Similarly, for hospital B, the
accuracies of the two classifiers with the selected attributes by genetic search (its accuracy
value being 93.80%) and best-first (its accuracy value being 91.21%) algorithms are both
higher than the accuracy of the classification with all attributes (its accuracy value being
88.11%). However, from the results of the above experiments, it is shown that the C4.5
classifier with the best-first algorithm does not outperform the C4.5 classifier with the
genetic search algorithm in terms of accuracy. Table 8 shows the confusion matrix of the
accuracy (i.e., 93.80%) of the classification with the selected attributes using the generic
search algorithm and then the C4.5 classifier. It also shows that the TP rates from DRG 164
to DRG 167 are 100.0%, 100.0%, 100.0%, and 75.8%, respectively.

Table 8. Confusion matrix with selected attributes by generic search and C4.5 classifier for hospital B.

Number of Patients’
Records

Predicted Class

DRG 164 DRG 165 DRG 166 DRG 167 Total

Actual
class

DRG 164 98 0 0 0 98

DRG 165 0 95 0 0 95

DRG 166 0 0 95 0 95

DRG 167 1 21 2 75 99

Total 99 116 97 75 387
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Next, we performed another set of experiments to check whether the best-first and
generic algorithms can enhance the accuracy of the BPN algorithm. In these experiments,
learning rates were set from 0.1 to 1.0 with a uniformly increased interval of 0.1 under
the values of momentum factors from 0.1 to 0.9, respectively. Since the combination of
the experiments is too big, only the cases with the highest accuracy are shown. Table 9
summarizes the best cases with the selected attributes filtered by best-first and generic
algorithms and then the BPN classifier for the data of hospitals A and B. It can be seen that
the accuracies of the classification using the genetic search algorithm and the BPN classifier
for hospitals A and B are both higher than those achieved by the best-first algorithm and
then the BPN classifier.

Table 9. Cases of highest accuracy with the selected attributes by best-first and generic search
algorithm and BPN classifier.

Accuracy (%)
Selection Attributes Method

Best-First Genetic Search

Hospital A
Learning rate 0.1

Momentum factor 0.1
Accuracy 94.12%

Learning rate 0.5
Momentum factor 0.3

Accuracy 97.49%

Learning rate 0.6
Momentum factor 0.4

Accuracy 97.49%

Hospital B
Learning rate 0.9

Momentum factor 0.1
Accuracy 85.27%

Learning rate 0.7
Momentum factor 0.6

Accuracy 94.57%

The results in Table 9 reveal that using the genetic search algorithm and the BPN
classifier is a better way of enhancing the performance of the classification. Note that the
highest accuracies of classification with the selected attributes using genetic search and
best-first algorithms and the BPN classifier (i.e., 97.49% and 94.12, as seen in Table 9) for
hospital A are both lower than the accuracy of the classification with all attributes by the
BPN classifier (i.e., 98.70%, seen in Section 3.1 that occurs when the learning rates are set
as 0.7 and 0.8 under the values of their momentum factors being 0.7 and 0.9, respectively).
Additionally, note that the highest accuracies of classification with the selected attributes
using genetic search and best-first algorithms and the BPN classifier (i.e., 85.27% and 94.57,
as seen in Table 9) for hospital B are also both lower than the accuracy of the classification
with all attributes using the BPN classifier (i.e., 96.12%, as seen in Section 3.1, that occurs
when the learning rates are set as 0.2 and 0.8 under the values of their momentum factors
of 0.4 and 0.7, respectively). It is estimated that the BPN classifier with all attributes retains
all information so as that the BPN can modify the weights continuously to obtain higher
accuracy. Based on the results of the experiments, this paper further introduced the bagging
method to the two classifiers to enhance the accuracy.

3.3. Classification Results with Bagging Method

Bagging is a machine learning technique [35] which allows many weak classifiers to
combine their efforts, which renders a single strong classifier. In most cases, bagging can
produce a better classifier to enhance accuracy. This paper incorporates the bagging method,
also from the Weka package, to the C4.5 and BPN classifier to increase their accuracies, as
is shown in step 3 in Figure 1. In the previous set of experiments with the data of hospital
A, the highest accuracy is 97.06%, which occurs when using the C4.5 classifier associated
with the best-first algorithm. Table 10 shows the confusion matrix of the C4.5 classifier
incorporated using the bagging method; the table shows that the accuracy of the C4.5
classifier using the bagging method reaches a value of 97.84%, which consists of TP rates
from DRG 164 to DRG 167 of 100.0%, 100.0%, 100.0%, and 91.4%, respectively. As has been
shown, the incorporation of the bagging method can slightly increase accuracy.
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Table 10. Confusion matrix of the C4.5 classifier with bagging method for hospital A.

Number of Patients’
Records

Predicted Class

DRG 164 DRG 165 DRG 166 DRG 167 Total

Actual
class

DRG 164 290 0 0 0 290

DRG 165 0 288 0 0 288

DRG 166 0 0 288 0 288

DRG 167 2 11 12 265 290

Total 292 299 300 265 1156

Reviewing the experiments which used the data of hospital A when using the BPN
classifier instead of C4.5, the highest accuracy obtained was 98.70%, which occurred in two
cases when the learning rates were set as 0.7 and 0.8 under the values of their momentum
factors as 0.7 and 0.9, respectively, and all the attributes were selected. For the two cases,
the accuracies of the BPN classifier when incorporating the bagging method were 98.18%
and 98.44%, respectively. It can be seen that these accuracies of the BPN classifier when
incorporating the bagging method are almost the same as that of the sole BPN classifier. It
can be guessed that all the variants of the BPN classifiers have similar accuracy.

As for hospital B, the results mentioned previously show that the highest accuracy is
93.80% when the C4.5 classifier is used in association with the genetic-search algorithm.
Table 11 is the confusion matrix of the C4.5 classifier incorporating the bagging method. Its
accuracy can reach 95.61%, which consists of TP rates from DRG 164 to DRG 167 of 100.0%,
100.0%, 100.0%, and 82.8%, respectively. As has been demonstrated, the incorporation of
the bagging method can increase the accuracy of the C4.5 classifier considerably.

Table 11. Confusion matrix of the C4.5 classifier with bagging method for hospital B.

Number of Patients’
Records

Predicted Class

DRG 164 DRG 165 DRG 166 DRG 167 Total

Actual
class

DRG 164 98 0 0 0 98

DRG 165 0 95 0 0 95

DRG 166 0 0 95 0 95

DRG 167 1 15 1 82 99

Total 99 110 96 82 387

For the experiments which used the data of hospital B when using the BPN classifier
instead of C4.5, the highest accuracy was 96.12%, which occurred in the two cases when
the learning rates were set as 0.2 and 0.8 under the values of their momentum factors
being 0.4 and 0.7, respectively, and when all the attributes were selected. For the two cases,
the accuracies of the BPN classifier, if incorporating the bagging algorithm, become the
values of 94.83% and 95.09%, respectively. It can be seen that these accuracies of the BPN
classifier, if incorporating the bagging method in the BPN algorithm, are slightly lower
than that of the sole BPN algorithm. However, the difference in the accuracies is within the
estimated errors.

In summary of all the experiments and discussions which have occurred in these sub-
sections, the highest accuracies under all of the combinations, namely, all attributes/selected
attributes by best-first or genetic search algorithms, and the incorporation of the bagging
method, are collated in Figure 5. It can be seen that the accuracies of the C4.5 classifier with
the selected attributes using the best-first or genetic search algorithms are both higher than
that of the C4.5 classifier with all attributes. In addition, the accuracies of the C4.5 classifier,
when further incorporating the bagging method, can reach the highest accuracy among
all the combinations. The results can be explained that not all attributes have an influence
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on DRG classification if using the C4.5 decision-tree classifier. Another reason is that the
C4.5 classifier is constructed using a binary tree. The selected attributes can reduce the tree
height of the classifier and increase its accuracy.
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For the neuron-net-based classifier, it can be seen that the accuracies of the BPN
classifier with the selected attributes or an incorporated bagging method are all lower than
the BPN classifier solely. It is estimated that the BPN classifier with all attributes stores all
information, meaning the neuron network can modify the weights continuously in order to
obtain the highest accuracy.

We conclude that the values of the accuracy of the DRG code classification for appen-
dectomy patients in two hospitals can reach as high as 97.84% and 98.70% under all of the
possible combinations. In addition, the accuracy of the classifiers using the BPN classifier is
higher than that using the C4.5 classifier when all the attributes are considered. In contrast,
when selecting the related attributes, the accuracy of the C4.5 classifier then increases since
the related attributes are more representative. The accuracy of the C4.5 classifier can be
further improved when the bagging method is incorporated, while the accuracy of the
BPN classifier when incorporating the bagging method does not increase as much as the
C4.5 classifier.

4. Conclusions and Research Limitations

The goal of utilizing two algorithms (C4.5 and BPN) to construct the classifiers for
the prediction of the DRG code for appendectomy patients using their medical data before
their discharge from hospital is feasible, and the accuracy is very high. Thus, once patients
with appendectomies are admitted, the pre-determination of the DRG codes can be used
to control and decrease medical expenses and resources and improve the quality of the
medical care they receive. The paper is a practical one, though it did not propose a novel
technique. We hope that the results will influence the clinical guidelines and protocols
in terms of caring for appendectomy patients. With the earlier classification, hospitals
which are in competition with each other would only be able to effectively allocate their
healthcare resources to the desired treatments in order to achieve one of the sustainable
development goals. This paper details the performance (accuracy, precision, and recall)
of the classification techniques applied to appendectomy patients, and the classification
techniques used here can be further embedded in a clinical decision system in order to
facilitate the making of informed decisions regarding the arrangement of staffing levels,
equipment needs, and other resource allocations.

The filtered attribute achieved by best-first and generic search algorithms can con-
tribute to the accuracy of the C4.5 classifier, but the increase in the accuracy of the BPN
classifier is not as obvious. However, a hospital should record the items used in medical
examinations that are chosen as representative attributes in time in order to predict the
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DRGs of the inpatients as soon as they are admitted. If the computing power allows and the
time allocated to wait for the prediction result is long enough, the accuracy of the classifiers
could be further enhanced by incorporating the bagging method.

This paper demonstrates that the C4.5 and BPN classifiers and their variants have
high accuracy in classifying patients with appendectomies into the appropriate DRG codes.
Similar processes can be applied to other DRG diseases in order to obtain a potential
reimbursement before the patient is discharged from hospital. As medical records in
different hospitals may have different record fields, the classifier, and the results cannot be
directly applied to all hospitals. In other words, a specific DRG classification model should
be constructed individually based on the types and characteristics of the medical records
kept in the hospital. The classifier in this paper can be further enhanced, for example, by
setting the weights of examination records and filtering the unrelated attributes in order to
obtain more training data.
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