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Abstract: Pneumonia has been directly responsible for a huge number of deaths all across the globe.
Pneumonia shares visual features with other respiratory diseases, such as tuberculosis, which can
make it difficult to distinguish between them. Moreover, there is significant variability in the way chest
X-ray images are acquired and processed, which can impact the quality and consistency of the images.
This can make it challenging to develop robust algorithms that can accurately identify pneumonia
in all types of images. Hence, there is a need to develop robust, data-driven algorithms that are
trained on large, high-quality datasets and validated using a range of imaging techniques and expert
radiological analysis. In this research, a deep-learning-based model is demonstrated for differentiating
between normal and severe cases of pneumonia. This complete proposed system has a total of eight
pre-trained models, namely, ResNet50, ResNet152V2, DenseNet121, DenseNet201, Xception, VGG16,
EfficientNet, and MobileNet. These eight pre-trained models were simulated on two datasets having
5856 images and 112,120 images of chest X-rays. The best accuracy is obtained on the MobileNet
model with values of 94.23% and 93.75% on two different datasets. Key hyperparameters including
batch sizes, number of epochs, and different optimizers have all been considered during comparative
interpretation of these models to determine the most appropriate model.

Keywords: deep learning; classification; pneumonia; transfer learning; disease; chest X-ray images

1. Introduction

Pneumonia is a respiratory disease that causes inflammation in one or both lungs,
resulting in symptoms such as cough, fever, and difficulty breathing. Early detection of
pneumonia is essential for effective treatment and improved patient outcomes. Unfortu-
nately, pneumonia is just one of several lung diseases, thus radiographic results do not
always confirm a pneumonia diagnosis. Therefore, with current technology, it is impossi-
ble to distinguish pneumonia from other lung diseases with certainty using radiological
criteria [1].

Developing accurate pneumonia detection algorithms requires large amounts of high-
quality labeled data, which can be difficult to obtain. This is particularly challenging in the
case of pneumonia, where expert radiologists are required to label the data, and the number
of available labeled images is limited. Deep learning, a subset of artificial intelligence, has
emerged as a powerful tool for detecting and diagnosing pneumonia from medical images
such as chest X-rays [2].

Deep-learning algorithms can be trained on large datasets of chest X-rays to recognize
patterns and features that are indicative of pneumonia. This involves using convolutional
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neural networks (CNNs), a type of deep-learning architecture that is particularly well
suited to image recognition tasks. By analyzing the texture, shape, and intensity of pixels
in chest X-rays, CNNs can learn to identify regions of the image that correspond to areas of
infection or inflammation in the lungs [3].

Once trained, deep-learning models can be used to classify new chest X-rays as
either showing signs of pneumonia or not. This can be done in real time, making it a
potentially valuable tool for healthcare professionals in diagnosing and treating patients
with pneumonia. Additionally, deep-learning models can be used to assist radiologists
in interpreting chest X-rays, reducing the risk of misdiagnosis and improving patient
outcomes [4].

The following list summarizes the main contributions of the research that is being proposed:

• In this research, a MobileNet model has been proposed to detect pneumonia. The
model is simulated on two datasets having 5856 and 112,120 chest X-ray images.

• The performance of the proposed MobileNet model has been compared with ResNet50,
ResNet152V2, DenseNet201, EfficientNet, Xception, VGG16, and DenseNet121 in terms
of accuracy, precision, recall, F1-score, and the area under the curve (AUC).

• The proposed model has been simulated with different optimizers namely ADAM,
ADADELTA, and SGD with different batch sizes and epochs of 16, 32, and 64.

The other parts of the paper are as follows, Section 2 shows related work, Section 3
comprises the proposed methodology, the results and discussion are explained in Section 4,
and the conclusion is shown in Section 5.

2. Related Work

In recent years, a number of techniques, especially a few profound deep-learning
strategies, have been proposed to briefly layout a strategy in pneumonia diagnosis utilizing
chest X-ray images. The authors [5] had worked on ResNet18 using 349 chest X-ray images
and were performing classification using X-ray images on two classes, namely pneumonia
and non-pneumonia, showing an accuracy of 99.4%; however, the number of images was
very small. The authors in [6] had worked on CoviWavNet using 11,164 CT scans and
were performing classification on two classes, namely SARS-CoV and normal, showing an
accuracy of 99.33%. The authors in [7] worked on the VGG16 model using 12,146 CT scans
and performed classification on three classes, namely COVID-19, pneumonia, tuberculosis,
and healthy cases showing an accuracy of 99.12%. The authors in [8] had worked on
ResNeT101 using 2482 chest X-ray images and performed classification on two classes,
namely COVID-19 and non-COVID-19, showing an accuracy of 99%. The authors in [9] had
worked on VGG16 using 7000 chest X-ray images and performed classification on three
classes, namely novel coronavirus pneumonia, patients with common pneumonia (CP),
and normal controls showing an accuracy of 93.57%

Ksibi et al. used a pre-trained ResNet model on ImageNet weights. The maximum
degree of accuracy was 98.34%, which was higher than the accuracy attained by other
cutting-edge techniques analyzed in past studies [10]. Luz et al. had displayed a tall
execution within the classic ImageNet dataset whereas showing it as a little division would
have taken a toll on other popular architectures such as the ResNet and VGGs. This
proposed model achieves a high accuracy value of 93.9% [11]. The dataset, which included
112,120 chest X-ray pictures from 30,805 patients was used by Rajpurkar et al. There
are training and test sets for the full dataset. The photos are scaled down to 224 × 224
and normalized using metrics from the ImageNet16 training dataset. These photos are
used to train the CheXNet model, which uses the DenseNet 121 layered Dense CNN. The
classification job was pneumonia/no pneumonia; hence, this layer was changed to a single
sigmoid neuron. The classes pneumonia and non-pneumonia (14 classes including other
lung disorders) were quite unbalanced because the NIH dataset has 15 classes. When
tested with 420 photos, the model finished with an F1-score of 0.435 and an AUROC of
0.76 [12]. Pak KinWonga et al. recognized that COVID-19 pneumonia, non-COVID-19
viral pneumonia, bacterial pneumonia, mycoplasma pneumonia, and typical lung on chest
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CT images play a pivotal part in opportune isolation and restorative treatment. The test
appears to be that the proposed MSANet can accomplish an overall precision of 97.31%,
a value of recall of 96.18%, a value of F1-score of 96.71%, a value of accuracy of 97.46%,
and a macro-average region beneath the recipient working characteristic bend (AUC) of
0.9981 to recognize between numerous classes of pneumonia [13]. Furtado et al. used
Cimatec_XCOV19, a novel deep-learning system inspired by the Inception-V3 architecture
that can support the identification of abnormal chest radiographs and classify the abnormal
radiographs as suggestive of COVID-19. The Cimatec_XCOV19 algorithm obtained a
sensitivity value of 0.85, a specificity value of 0.82, and an AUC ROC of 0.93. The AUC
ROC of the algorithm is compared with a well-known public solution and did not find a
statistically relevant difference between their performances [14]. Cohen GP and Kagel et al.
utilized the combination of two pictures from an open-source dataset collected by them. The
information comprises four categories, namely normal pneumonia, bacterial pneumonia,
viral pneumonia, and COVID-19, for 2433 images. It was considered for Xception and
ResNet50 [15]. Barhoom et al. utilized deep-learning models for pneumonia classification
by giving whole X-ray images to extricate and learn one of kind of X-ray image from both
ordinary and pneumonia classes within the dataset. The diverse deep-learning models
utilized in comparing and recognizing pneumonia were CNN_1, CNN_2, DenseNet121,
VGG16, ResNet50, and InceptionV3 [16]. Mahmoudi et al. created a conclusion framework
based on profound learning methods to identify and measure COVID-19 contamination
and pneumonia screening utilizing CT imaging. A U-net design, based on CNN encoder
and CNN decoder approaches, was at that point presented for a quick and exact picture to
get lung and contamination segmentation models. The test illustrated that the proposed
framework accomplishes a dice score of 0.98 and 0.91 for lung and contamination division
errands individually and a precision of 0.98 for classification assignment [17]. Chhabra,
M et al. have proposed an effective ResNet-50 exchange learning-based convolutional
neural arrangement to anticipate pneumonia utilizing restorative pictures. A Kaggle-based
open-source dataset store is utilized for the test investigation [18]. In the proposed work,
MobileNet architecture is used for the classification of pneumonia and non-pneumonia
classes with 5863 chest X-ray images. Very little work has been implemented on the
classification of pneumonia and non-pneumonia classes with chest X-ray images. Necessary
changes have been implemented in the updated manuscript. Here, in the proposed work,
MobileNet architecture is used for the classification of pneumonia and non-pneumonia
classes with 5863 and 112,210 chest X-ray images.

3. Proposed Methodology

The proposed methodology employs a number of stages, which are covered in more
detail in the following sections, to diagnose pneumonia. Figure 1 depicts the suggested
methodology for an automated diagnosis of pneumonia. This model’s objective is to
categorize chest X-ray pictures into normal and pneumonia classes. The original chest
X-ray pictures are used as a base for the data augmentation procedures. The pre-trained
models are used in conjunction with the augmented images to classify pneumonia. The
following sections go into great detail about each level.



Healthcare 2023, 11, 1561 4 of 18Healthcare 2023, 11, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 1. Proposed methodology. 

3.1. Input Dataset 
Here, the pneumonia-chest X-ray dataset is utilized to gather pneumonia X-ray pic-

tures that consider images from different open sources and which has been overhauled 
routinely. Here, two datasets are used to train the models for diagnosing pneumonia. The 
first dataset consists of 5856 images of chest X-rays of which 4273 are pneumonia images 
and 1583 are normal chest X-ray images [19]. A total of 80% of the data are used for train-
ing, producing 4642 images (3418 images of pneumonia and 1224 normal images), 15% of 
the data are used for testing, producing 919 images (641 cases of pneumonia and 278 nor-
mal images), and the final 5% of the data are used for validation (214 cases of pneumonia 
and 81 non-pneumonia images). Figure 2 shows the chest X-ray sample images of normal 
and pneumonia classes. 

Figure 1. Proposed methodology.

3.1. Input Dataset

Here, the pneumonia-chest X-ray dataset is utilized to gather pneumonia X-ray pic-
tures that consider images from different open sources and which has been overhauled
routinely. Here, two datasets are used to train the models for diagnosing pneumonia. The
first dataset consists of 5856 images of chest X-rays of which 4273 are pneumonia images
and 1583 are normal chest X-ray images [19]. A total of 80% of the data are used for training,
producing 4642 images (3418 images of pneumonia and 1224 normal images), 15% of the
data are used for testing, producing 919 images (641 cases of pneumonia and 278 normal
images), and the final 5% of the data are used for validation (214 cases of pneumonia and
81 non-pneumonia images). Figure 2 shows the chest X-ray sample images of normal and
pneumonia classes.



Healthcare 2023, 11, 1561 5 of 18Healthcare 2023, 11, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 2. Sample chest X-ray image of normal and pneumonia. 

The second dataset taken is ChestX-ray14 which contains 112,120 chest X-ray images 
of 30,085 individuals. Out of these 112,120 images, 1431 images had pneumonia labels on 
them. To take a balanced dataset, 1431 normal X-ray images (labeled with ‘No Findings’) 
were chosen from the dataset. Hence the finally taken dataset has 1431 pneumonia images 
and 1431 normal X-ray images. 80% of the data are used for training, producing 2290 im-
ages (1145 images each of pneumonia and normal images), 5% of the data are used for 
validation, producing 142 images (215 images each of pneumonia and normal images), 
and the final 15% of the data are used for testing, producing 430 (71 images of pneumonia 
and normal images). 

The count plot of the first dataset is used to depict counts for pneumonia and normal 
images. In order to display all images, Figure 3 shows that the training set’s x-axis contains 
values of 0 (which represents 1224 normal images) and 1 (which represents 3418 pneumo-
nia images), while the testing set’s x-axis contains values of 0 (which represents 278 nor-
mal images) and 1 (which represents 641 pneumonia images), and the training set’s y-axis 
displays the count plot of both pneumonia and normal images. 

   
(a) (b) (c) 

Figure 3. Count plot depicting count for the pneumonia and normal dataset: (a) training set (b) 
testing set (c) validation set. 

The training, testing, and validation datasets’ count plot is depicted to convey the 
proper format of the images used in the dataset for model prediction. There are three clas-
ses under which the original dataset is reviewed, i.e., pneumonia, normal, and total im-
ages and then the representation is further done under three parameters, i.e., training, 
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Figure 2. Sample chest X-ray image of normal and pneumonia.

The second dataset taken is ChestX-ray14 which contains 112,120 chest X-ray images
of 30,085 individuals. Out of these 112,120 images, 1431 images had pneumonia labels on
them. To take a balanced dataset, 1431 normal X-ray images (labeled with ‘No Findings’)
were chosen from the dataset. Hence the finally taken dataset has 1431 pneumonia images
and 1431 normal X-ray images. 80% of the data are used for training, producing 2290 im-
ages (1145 images each of pneumonia and normal images), 5% of the data are used for
validation, producing 142 images (215 images each of pneumonia and normal images), and
the final 15% of the data are used for testing, producing 430 (71 images of pneumonia and
normal images).

The count plot of the first dataset is used to depict counts for pneumonia and normal
images. In order to display all images, Figure 3 shows that the training set’s x-axis contains
values of 0 (which represents 1224 normal images) and 1 (which represents 3418 pneumonia
images), while the testing set’s x-axis contains values of 0 (which represents 278 normal
images) and 1 (which represents 641 pneumonia images), and the training set’s y-axis
displays the count plot of both pneumonia and normal images.
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Figure 3. Count plot depicting count for the pneumonia and normal dataset: (a) training set (b) testing
set (c) validation set.

The training, testing, and validation datasets’ count plot is depicted to convey the
proper format of the images used in the dataset for model prediction. There are three
classes under which the original dataset is reviewed, i.e., pneumonia, normal, and total
images and then the representation is further done under three parameters, i.e., training,
validation, and testing.

The details of data splitting on the training, validation, and testing classes of data are
evaluated in Table 1 and the evaluation of various CNN models will be done on this basis.
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Table 1. Details of data splitting.

Class
First Dataset

Train Validation Test

Pneumonia 3418 214 641

Normal 1224 81 278

Total 4642 295 919

Second Dataset

Pneumonia 1145 71 215

Normal 1145 71 215

Total 2290 142 430

3.2. Data Augmentation

The CNN models need a large number of data sources for optimal training to demon-
strate improved performance on larger datasets. Since there is only a small dataset being
used, this is employed to artificially enhance the dataset. This also aids in avoiding over-
fitting. The approach of data augmentation has been frequently used and increases the
number of pictures by applying a series of changes while maintaining class labels. Data
augmentation is applied to training images of the pneumonia class to increase the images’
diversity, which also acts as a dataset regulator. Data augmentation has also been applied to
the non-pneumonia (normal) images of the first dataset to increase its image number from
1224 to 3672 to balance the dataset. The number of training images of the pneumonia classes
total 3418 whereas the number for the non-pneumonia class is 3672. No augmentation
is performed on testing images and validation images of the dataset. Figure 4 illustrates
the methods used in this work to enhance the training images. The methods that are
used to enhance the images include random rotation, horizontal flipping, vertical rotation,
zooming, random brightness, and resizing of the images.
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3.3. Pneumonia Prediction Using Pre-Trained Models

When a large dataset is typically trained on a wide-scale image classification task then
that saved network is termed a pre-trained model. The model can be customized while
using either a pre-trained model or transfer learning according to the data augmentation
task, as shown in Figure 4.

For transfer learning, the concept is that, in case a demonstration is prepared on a
huge and general dataset, then, at that point, the image classification can be done with the
assistance of the highlight maps without having to hustle from scratch by preparing a huge
demonstration on a huge dataset.

Figure 1 shows all the pre-trained models used in this study. One of the most po-
tent deep neural networks, ResNet, excelled in the 2015 ILSVRC classification challenge,
achieving fantastic performance outcomes. ResNet also demonstrated strong generalization
performance on other identification tasks. The ResNet architecture has various variations,
all of which use the same basic idea but a different number of layers. In this paper, ResNet50
and ResNet152V2 models are used. Every ResNet plan employs 77 and 33 kernel sizes
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for the introductory convolution and max pooling, separately. The diagram below illus-
trates the ResNet50 architecture, which consists of four stages. The assumed input size is
224 × 224 × 3 for an explanation. In ResNet50 and ResNet152v2, a total of three layers are
piled on top of one another for each residual function. Convolutions (one, three, and one)
make up the three levels. The reduction and subsequent restoration of the dimensions are
accomplished by the 11 convolution layers. With lower input and output dimensions, the
33 layers are left as a bottleneck.

Table 2 also offered information on each of the five pre-trained models [20,21]. In
DenseNet, the input image is convoluted numerous times to provide high-level features.
Each layer in DenseNet receives additional information from all levels that came before
it and transmits its maps to all layers that came after it. Concatenation is employed.
Each layer is receiving “collective knowledge” from the levels that came before it. It
uses two types of DenseNet models. These are DenseNet121 and DenseNet201. Apart
from the fundamental convolutional and pooling layers, DenseNet is made up of two
significant building elements. They consist of Transition layers and Dense Blocks. A basic
convolution and pooling layer forms the foundation of DenseNet. The MobileNet model
utilized profoundly shrewd distinct convolution layers. When compared to a network
within the nets, the number of parameters is dramatically diminished. Lightweight deep
neural networks are delivered as a result of this. Table 2 describes the layers, parameters
(in millions), input layer size, and output layer size that make up pre-trained models.

Table 2. Descriptions of the pre-trained CNN models utilized in this work, including their architecture.

Model Layers Parameters
(in Millions)

Input Layer
Size

Output Layer
Size

MobileNet 28 13

224 × 224 × 3 (2,1)

ResNet50 50 25.6

ResNet152V2 164 60.4

DenseNet201 201 20.2

DenseNet121 121 8.1

Xception 71 22.8

VGG16 16 138

EfficientNet 10 8.4

In Table 2, the MobileNet model includes 28 layers, counting depth-wise and point-
wise solutions as separate layers. It has 13 million parameters with 3 million for the body
and 10 million for the top layer, as is customary, it has an input layer size of 224 × 224 × 3.
In addition, the other pre-trained model is ResNet50, which is 50 layers deep. It trained the
network with 25.6 million images. ResNet152V2 has 164 layers which are used in training
60.4 million parameters. DenseNet has two models, DenseNet 201 and DenseNet 121,
which are used to train the network on 201 and 121 layers with 20.2 and 8.1 million of
parameters, respectively.

This paper uses eight pre-trained models, namely MobileNet, ResNet50, ResNet152V2,
DenseNet201, DenseNet121, Xception, VGG16, and EfficientNet. Figure 1 displays the
block diagrams of these deep CNN models that had already undergone training.

3.4. Performance Parameters

The performance of the model will be assessed utilizing the parameter named accuracy,
which calculates the percentage of accurate predictions made by the model, and is examined
as one of the most important metrics. The formula for accuracy is shown in Equation (1).

A = T_P + T_N/(T_P + T_N + F_P + F_N) (1)
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Precision (P) is the ratio of true positives (T_P), i.e., correct predictions to the total
number of relevant findings, which is the sum of true positives and false positives (F_P).
The formula for ‘P’ is shown in Equation (2).

P = T_P/(T_P + F_P) (2)

Recall (R) is the ratio of T_P to the total sum of T_P and false negatives (F_N). The
recall formula is shown in Equation (3).

R = T_P/(T_P + F_N) (3)

The harmonic mean of ‘P’ and ‘R’ is called the F1-score (F1). The formula for the
F1-score is shown in Equation (4).

F1 = 2 × (T_P × F_P)/(T_P + F_P) (4)

The AUC score is a graphical measure used to assess the effectiveness of a binary classifi-
cation model. When assessing machine learning tasks, the AUC score is frequently employed.

4. Results and Discussion

Here, eight pre-trained models are trained and simulated on the two datasets con-
taining 5856 and 112,120 chest X-ray images. Out of these 112,120 images, 1431 images
had pneumonia labels on them. To take a balanced dataset, 1431 normal X-ray images
(labeled with ‘No Findings’) were chosen from the dataset. The performance of each model
is depicted in terms of confusion matrix parameters. The representation of the training
performances of different CNN models using hyperparameters such as epochs, loss, binary
accuracy, mean absolute error (MAE), val_loss, val_binary accuracy, and val_mae is given
in Table 3. Using these parameters, the prediction of the best CNN model is done.

Table 3. Epoch-wise assessment of eight pre-trained models on the first dataset.

Model Epochs Loss Binary
Accuracy MAE Val_Loss Val_Binary_

Accuracy Val_Mae

MobileNet

8 0.1996 0.9151 0.1160 0.6880 0.8289 0.2061
. . . . . . .
. . . . . . .

32 0.1368 0.9479 0.0755 0.3013 0.8935 0.1244

ResNet50

8 0.1934 0.9221 0.1075 2.6490 0.4106 0.5786
. . . . . . .
. . . . . . .

32 0.1465 0.9413 0.0820 34.8674 0.2890 0.7098

ResNet152V2

8 0.2059 0.9163 0.1204 1.2353 0.3270 0.5921
. . . . . . .
. . . . . . .

32 0.1690 0.9336 0.0969 1.6554 0.7833 0.2140

DenseNet201

8 0.2524 0.8931 0.1488 1.2489 0.3916 0.5913
. . . . . . .
. . . . . . .

32 0.1604 0.9351 0.0891 3.9718 0.3802 0.5980

DenseNet121

8 0.2195 0.9085 0.1252 2.5500 0.7148 0.2883
. . . . . . .
. . . . . . .

32 0.1557 0.9421 0.0846 0.7925 0.8251 0.1894
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Table 3. Cont.

Model Epochs Loss Binary
Accuracy MAE Val_Loss Val_Binary_

Accuracy Val_Mae

Xception

8 0.2206 0.9108 0.1214 3.0510 0.7681 0.2259
. . . . . . .
. . . . . . .

32 0.1403 0.9442 0.0780 0.5172 0.8403 0.1698

VGG-16

8 0.6946 0.7232 0.4992 0.6934 0.2776 0.5001
. . . . . . .
. . . . . . .

32 0.6918 0.3599 0.5004 0.6938 0.2776 0.5003

EfficientNet

8 0.6946 0.7232 0.4992 0.6934 0.2776 0.5001
. . . . . . .
. . . . . . .

16 0.6918 0.3599 0.5004 0.6938 0.2776 0.5003

From Table 3 it can be analyzed that, out of the eight training models, the MobileNet
model has outperformed all other models in terms of loss, binary accuracy, validation loss,
validation binary accuracy, MAE, and validation MAE, having values of 0.1368, 0.9479,
0.3013, 0.8935, 0.0755, and 0.1244, respectively. The models that show the second and
the third highest values of accuracy are DenseNet121 and ResNet50, where the values of
accuracy are 0.9421 and 0.9413, respectively.

The depiction of the training performances of different CNN models using various
confusion matrix parameters is given in Table 4. Using these parameters, the prediction of
the best CNN model is done.

Table 4. Comparison of eight CNN models in terms of confusion matrix parameters on the first dataset.

Model Accuracy (%) Precision (%) Recall (%) F1-Score

MobileNet 90.85 95.28 91.41 91.41

ResNet50 30.57 100 0.4680 93.10

ResNet152V2 84.65 82.38 99.21 90.02

DenseNet201 34.27 100 5.772 91.01

DenseNet121 88.90 88.33 96.87 92.41

Xception 87.59 91.75 90.32 91.03

VGG16 30.20 85.21 43.16 93.13

EfficientNet 51.02 86.21 45.85 90.10

From Table 4, we conclude that MobileNet is the best CNN model among the above
eight CNN models. Whereas it can be observed that the other CNN models have lesser
accuracies. Table 4 shows that the MobileNet model performed the best overall, with an
accuracy rating of 90.85, a value of precision of 95.28, a value of recall of 91.41, and a value
of the F1-score 91.41 when compared to other CNN models.

The paired Student’s t-test is performed to compare the performance of different
deep-learning models used here to predict pneumonia. To compare their performance, the
test and training sets are taken from the same set of instances as the dataset. The accuracy
of different models is predicted at ten iterations. To perform a paired Student’s t-test, the
difference in accuracy for every pair of models is taken to test whether the mean difference
between the two paired samples is statistically significant or not. For this, two hypotheses
are made. The first is the Null Hypothesis (H0) in which the mean difference between the
two model’s predictions is zero, which means there is no difference in the performance of
paired models. The second hypothesis is the Alternate Hypothesis (H1), in which the mean
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difference between the two model’s predictions is not zero, which means that there is a
difference in the performance of the paired models. After that, t-statistics are calculated
using the formula given in Equation (5)

t = (mean of the differences)/(standard deviation of the differences/sqrt (sample size)) (5)

Then, using statistical software, the p-value is calculated for the evaluated value of
t and number of degrees of freedom N-1, where N is 10. During the p-value calcula-
tion, the significance level is taken as alpha = 0.05. The p-value of the MobileNet model
shows a significant difference with respect to seven models, i.e., ResNet50, ResNet152V2,
DenseNet201, VGG16, Xception, DenseNet121, and EfficientNet. The average p-value for
these five models is coming out as 0.00457. Since this p-value is less than our significance
level of 0.05, hypothesis ‘H0′ is rejected for MobileNet paired models, and we conclude
that the MobileNet model works better than the other seven models.

4.1. Analysis of the Best Model with Different Optimizers

After the analysis of Table 4, it can be concluded that the MobileNet model has
achieved a value of accuracy of 90.85%, which is the best value of accuracy as compared to
the other models. This pre-trained MobileNet model is analyzed on different optimizers to
calculate the accuracy, loss, and confusion matrix. Figure 5 lists the training performance in
terms of training loss, validation loss, and validation accuracy for various networks using
various optimizers. The confusion matrix for the same is depicted in Figure 6.
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4.1.1. Training and Validation Curve

The training and validation accuracies of MobileNet on different optimizers is eval-
uated. The Training and validation accuracy for the ADAM optimizer is depicted in
Figure 5a, on ADADELTA in Figure 5b, and on SGD in Figure 5c.
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Figure 5a shows the training and validation accuracy for the ADAM optimizer. It can
be seen from the figure that the value of the training accuracy is constant from an epoch
value of 26 to an epoch value of 30. The values of training accuracy and validation accuracy
are above 90% and approximately 88%, respectively.

Figure 5b depicts the training and validation accuracy for the ADADELTA optimizer.
It can be seen from the figure that the value of accuracy is increasing from an epoch value of
21 to an epoch value of 24. The value of validation accuracy shows a sudden increase from
10% to 88% and then shows a stable increase in value after that. The training accuracy’s
value is above 90% whereas its value was constant from an epoch value of 15 to an epoch
value of 20.

Figure 5c exhibits the training and validation accuracy for the SGD optimizer. The
figure indicates that the value of validation accuracy is continuously increasing from an
epoch value of 5 to an epoch value of 30. It can also be noticed that, at an 85% value, the
training and validation accuracy lines meet at epoch values of 24 and 26, giving a glimpse
of a steady development in accuracy.

4.1.2. Confusion Matrix

The pneumonia and non-pneumonia dataset is considered for the prediction. The
confusion matrix of the MobileNet model on three optimizers, namely ADAM, ADADELTA,
and SGD, is illustrated in Figure 6a, on ADADELTA in Figure 6b, and on SGD in Figure 6c.

It is evaluated from the confusion matrices that when the prediction is done using
the normal and pneumonia image datasets, then the MobileNet CNN model shows the
best accuracy on the ADAM optimizer as compared to the other two optimizers, i.e.,
ADADELTA and SGD.

The representation of accuracy, precision, recall, F1-score, and AUC score of the
MobileNet model on three optimizers, namely ADAM, ADADELTA, and SGD, is done and
the performance of every optimizer is calculated. The performance is depicted in Table 5.

Table 5. Evaluation of MobileNet model on different optimizers with confusion matrix parameters.

Optimizer Accuracy (%) Precision
(%) Recall (%) F1-Score AUC

ADAM 90.85 95.28 91.41 91.41 0.933

ADADELTA 88.46 96.20 86.89 91.31 0.971

SGD 35.14 97.87 7.176 13.37 0.867

From Table 5 it is obvious that the MobileNet model obtains the best results on ADAM
optimizer with a value of accuracy of 90.85, a value of precision of 95.28, a value of recall of
91.41, a value of F1-score of 91.41, and a value of AUC of 0.933 when compared to other
optimizers such as ADADELTA and SGD.

4.2. Analysis of Best Model with Different Batch Sizes

After the analysis from Table 5, the accuracy of MobileNet (90.85) is better than the
other models and shows the best accuracy on the ADAM optimizer. This pre-trained
MobileNet model is now analyzed on different batch sizes to calculate the accuracy, loss,
and confusion matrix. The performance obtained by distinctive networks at distinctive
batch sizes is recorded in Figure 7. The confusion matrix for the same is depicted in Figure 8.
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4.2.1. Training and Validation Curve

The Training and Validation accuracies and losses of MobileNet on different batch
sizes are computed. The Training and validation accuracy of MobileNet on a 16-bit batch
size is depicted in Figure 7a, a 32-bit batch size in Figure 7b, and a 64-bit batch size in
Figure 7c.

The validation and training accuracy for the value of batch size 16 is shown in Figure 7a.
The value of the training accuracy remains the same from an epoch value of 14 to an epoch
value of 18. From 35% to 85% on epoch values 4–6 and 7–11 the validation accuracy has
increased consistently. The values of training accuracy and validation accuracy are above
90% and approximately 88%, respectively. After the constant increase in accuracy, the
training and validation lines meet at a common point at 82% on epoch value 31.

For a batch size of 32, the training and validation accuracy is depicted in Figure 7b. It
can be observed from the graphical representation that the value of the validation accuracy
is increasing from an epoch value of 11 to an epoch value of 24 at a progressive rate. The
value of the training accuracy shows an increase of 5 points from 90% to 95% on the value
of epoch increasing from 10 to 21.

Figure 7c exhibits the values of the training and validation accuracy for the batch size
of 64. The figure indicates that the value of the training accuracy is continuously increasing
from an epoch value of 1 to an epoch value of 30 with the increase in validation accuracy
exceeding 90% and this depicts the maximum accuracy rate as compared to the training
and validation accuracy on other batch sizes.

4.2.2. Confusion Matrix

The pneumonia and non-pneumonia datasets are reviewed for prediction. The output
is extracted in the form of confusion matrices. The matrix of MobileNet on the 16-bit batch
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size is depicted in Figure 8a, the 32-bit batch size in Figure 8b, and the 64-bit batch size in
Figure 8c.

It is evaluated from the confusion matrices that, when the prediction is done using the
normal and pneumonia image datasets, then the MobileNet CNN model shows the best
performance on the 16 batch size as compared to the other two batch sizes, i.e., 32 batch
size and 64 batch size.

The representation of the accuracy, precision, recall, F1-score, and AUC score of
the MobileNet model on the three batch sizes, namely 16, 32, and 64, is done and the
performance on every batch size is calculated. The performance is depicted in Table 6.

Table 6. Evaluation of MobileNet model for different batch sizes on different parameters.

Batch Size Accuracy (%) Precision (%) Recall (%) F1-Score AUC

16 92.05 96.71 91.73 94.15 0.980

32 90.85 95.28 91.41 93.31 0.970

64 82.91 98.98 76.28 86.16 0.971

When compared to other batch sizes like 32 and 64, Table 6 shows that the MobileNet
model performed best on the batch size 16, with values of accuracy of 92.05, precision (%)
of 96.71, recall of 91.73, F1-score of 94.15, and AUC of 0.980.

4.3. Analysis of Best Model with Different Epochs

After the analysis from Tables 5 and 6, the accuracy of MobileNet is best compared to
other models and shows the best accuracy on the ADAM optimizer with a 16 batch size.
This pre-trained MobileNet model is now analyzed on different epochs to calculate the
accuracy, loss, and confusion matrix. Figure 9 lists the training performance for various
networks at various epochs in terms of training loss, validation loss, and validation accuracy.
Figure 10 shows the confusion matrix for the same.
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4.3.1. Training and Validation Curve

The Training and validation accuracies and losses of MobileNet on different epochs
are projected. The Training and validation accuracy of MobileNet on 16 epochs is depicted
in Figure 9a, 32 epochs in Figure 9b, and on 64 epochs in Figure 9c.

Figure 9a shows the validation and training accuracy for the value of epoch 16. The
training accuracy is increasing from the epoch of value 1 until the epoch of value 12 and
after that the increase in the curve is constant. The nearest point where the training and
validation accuracy curves meet is 85%. The percentage values of the training accuracy and
validation accuracy are above 90% and approximately 88%, respectively. After the constant
increase in accuracy, the validation accuracy becomes stable at the value of epoch 10 where
the accuracy percentage is 82%.

The validation accuracy and training of 32 epoch values are depicted in Figure 9b. The
training accuracy curve is moving at a constant pace and the validation accuracy curve
has an increase in value with an increase in the epoch values. The point where both the
training and validation curves meet is at 85% on epoch value 30.

Demonstration of the training and validation accuracy for epoch 64 is depicted in
Figure 9c. The figure shows that there is an inconsistent increase in the validation accuracy
on various epoch values such as epoch value 15 and epoch value 30 but, after some epochs,
the rate of elevation to which the validation accuracy curve goes is similar to the training
accuracy curve. The values of training and validation accuracies are above 90% and
89%, respectively.

4.3.2. Confusion Matrix

The pneumonia and non-pneumonia datasets are calibrated for an indication of output.
The yield is extricated in the shape of confusion matrices. The MobileNet confusion matrix
on 16 epochs is depicted in Figure 10a, 32-bit epoch in Figure 10b, and 64-bit epoch in
Figure 10c.

It is determined from the confusion matrices that, when the prediction is done using
the normal and pneumonia image datasets, then the MobileNet CNN model shows the best
performance on 64 epochs when compared to other epochs, i.e., 16 epochs and 32 epochs.

The representation of accuracy, precision, recall, F1-score, and AUC score of the
MobileNet model on three epochs, namely 16, 32, and 64, is done and the performance on
every epoch is calculated. The performance is depicted in Table 7.

Table 7. Evaluation of MobileNet models on different epochs on different parameters.

Epochs Accuracy (%) Precision (%) Recall (%) F1-Score AUC

16 89.22 94.71 89.54 92.06 0.955

32 92.05 96.71 91.73 94.15 0.980

64 94.23 93.75 98.28 95.96 0.972

Table 7 shows that, in contrast to other epochs, such as 16 and 64, the MobileNet model
stood out on 64 epochs with values of accuracy of 92.05, precision of 96.71, recall of 91.73,
F1-score of 94.15, and AUC of 0.980 and the ROC curve depicts a value of 0.88, as shown in
Figure 11.

4.3.3. Evaluation of Best Model at Different Datasets

From the last sections, it can be analyzed that the MobileNet model works best with
the ADAM optimizer with 64 epochs and 16 batch sizes on the first dataset. Therefore,
the MobileNet model is simulated on another dataset with the same hyperparameters, i.e.,
ADAM optimizer, 64 epochs, and 16 batch sizes.

The second dataset taken is ChestX-ray14, which was published by Wang et al. [22]
and contains 112,120 chest X-ray images of 30,085 individuals. Out of these 112,120 images,
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1431 images had pneumonia labels on them. To take a balanced dataset, 1431 normal X-ray
images (labeled with ‘No Findings’) were chosen from the dataset. Hence, the finally taken
dataset has 1431 pneumonia images and 1431 normal X-ray images. Further, this dataset
was simulated with the MobileNet model with the same hyperparameters as discussed
above. The results for both datasets are shown in Table 8.
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Table 8. Results of MobileNet model on different datasets.

Number of Images Accuracy (%) Precision (%) Recall (%) F1-Score (%)

5856 94.23 93.75 98.28 95.96

112,120 93.75 91.36 94.39 93.18

4.3.4. State-of-Art Comparison (SOTA)

In this section, the proposed model is compared with the work of other researchers that
have worked on pneumonia and COVID diagnoses using different techniques and different
datasets. From Table 9, it can be analyzed that the authors in [22–25] had worked on the
diagnosis of COVID. Whereas the authors in [5,9,26–33] had worked on the diagnosis of
pneumonia. The authors in [22,23,25] achieved higher accuracy than the proposed model,
but they worked on the diagnosis of COVID whereas the proposed model is used for
diagnosing pneumonia. Moreover, the author in [5] also achieved a good accuracy of 99.4%
but had worked on a much smaller number of images, i.e., 349.

Table 9. SOTA on chest X-ray images using different techniques.

Ref/Year Technique Classes Number of Images Accuracy

Based on COVID-19 Detection

[22]/2021 GoogleNet Normal and novel COVID-19 5000 97.89%

[23]/2022 DC-Net-R Normal and COVID-19 296 96.13%

[24]/2022 ResNet50v2 Covid and Non COVID 2756 87%

[25]/2022 ResNet50V2 COVID-19 and non-COVID-19 2458 97.75%

Based on Pneumonia Detection

[5]/2021 ResNet18 Pneumonia, Non-pneumonia 349 99.4%

[9]/2021 VGG16 novel coronavirus pneumonia, patients with
common pneumonia (CP), and normal controls 7000 93.57%

[26]/2021 AlexNet COVID-19, non-COVID-19 viral pneumonia,
bacterial pneumonia, and normal 2855 93.42%
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Table 9. Cont.

Ref/Year Technique Classes Number of Images Accuracy

[27]/2019 AlexNet, GoogLeNet
and ResNet Normal and Pneumonia 1431 pneumonia and

1431 normal 90%

[28]/2020 VGG-16 Normal, Bacterial Pneumonia and Virus Pneumonia 5232 93.0%

[29]/2021 InceptionResNetV2 Bacteria, Virus, normal, Pneumonia, 5232 90.7%

[30]/2021 Attention-based
VGG-16

COVID, Normal, No_findings, Pneumonia Bacteria,
Pneumonia Viral

Dataset 1–1125,
Dataset 2–1638,
Dataset 3–2138

79.58%
85.43%
87.49%

[31]/2021
Multi-scale bag of

deep visual features
with VGG

COVID, Normal, No_findings, Pneumonia Bacteria,
Pneumonia Viral

Dataset 1–375,
Dataset 2–1280,
Dataset 3–1600,
Dataset 4–276

84.37%
88.88%
90.30%
83.65%

[32]/2022 CNN + modified
dropout Model Healthy and Pneumonia 5856 91.0%

[33]/2022 Pre-activation ResNet
with DenseNet169 Pneumonia and Non-Pneumonia 5856 90%

Proposed model MobileNet Pneumonia, Non-Pneumonia Dataset 1- 5856,
Dataset 2- 1,12,120

94.23%
93.75%

5. Conclusions

To separate pneumonia instances from typical cases, the power of five pre-trained
CNN models, namely ResNet50, ResNet152V2, DenseNet121, DenseNet201, and MobileNet,
is analyzed. The best result is obtained by MobileNet on 16 batch sizes, 64 epochs, and
the ADAM optimizer. The predictions have been validated on publicly available chest
radiological images. The accuracy measured using the MobileNet model is 94.23. These
metrics will let analysts come up with ideas for the cure of more beneficial CNN-based
models for COVID-19 preliminary resolutions.
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