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Abstract: Oral cancer is considered one of the most common cancer types in several counties. Earlier-
stage identification is essential for better prognosis, treatment, and survival. To enhance precision
medicine, Internet of Medical Things (IoMT) and deep learning (DL) models can be developed for
automated oral cancer classification to improve detection rate and decrease cancer-specific mortality.
This article focuses on the design of an optimal Inception-Deep Convolution Neural Network for Oral
Potentially Malignant Disorder Detection (OIDCNN-OPMDD) technique in the IoMT environment.
The presented OIDCNN-OPMDD technique mainly concentrates on identifying and classifying oral
cancer by using an IoMT device-based data collection process. In this study, the feature extraction
and classification process are performed using the IDCNN model, which integrates the Inception
module with DCNN. To enhance the classification performance of the IDCNN model, the moth flame
optimization (MFO) technique can be employed. The experimental results of the OIDCNN-OPMDD
technique are investigated, and the results are inspected under specific measures. The experimental
outcome pointed out the enhanced performance of the OIDCNN-OPMDD model over other DL models.

Keywords: Internet of Medical Things; oral cancer; biomedical imaging; artificial intelligence;
Inception model; hybrid deep learning

1. Introduction

The Internet of Medical Things (IoMT) is an extended version of the Internet of Things
(IoT), which encompasses several interlinked devices that can be employed for timely
support to patients and the healthcare sector [1]. Oral squamous cell carcinoma (OSCC)
is a common cancer, and its existing rate seems to be increasing worldwide. Usually, the
preferred therapy, primary cornerstone therapy, is a surgical treatment for OSCC [2,3]. In
addition, considering the aggressive nature of OSCC, and most patients were identified
with advanced locoregionally diseases, multimodality therapy and concomitant chemora-
diotherapy can be imperative [4–6]. Instead of the above-stated treatment possibilities, the
higher occurrence rate and the suboptimal treatment result form an important concern to
date. The initial analysis is very important for better treatment, survival, and prognosis [7].
At the same time, a late diagnosis will hamper the quest for precision medicine in spite
of the new developments in understanding the molecular system of tumors [8]. Hence,
the deep machine learning (ML) method was touted to improve initial identification and
decrease cancer-specific morbidity and mortality. Automatic image analysis can assist
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clinicians and pathologists in the initial level of OSCC and makes informed decisions
regarding cancer management [9].

The dependability of automatic decisions is higher for real clinical applications [10].
Even with the promising performance, conventional deep learning (DL)-related classifi-
cation lacks doctors’ capability to quantify decision uncertainty [11]. Without uncertainty
measurements, physicians could not depend on decisions from DL-related automated sys-
tems in practical clinical routines. Irrespective of the robustness of a DL technique, tough
diagnostic cases were unavoidable and might result in serious consequences for patients
when the method is not referred for more analysis [12]. Previous methods have yet to learn
that model how much confidence an individual output has. In this study, the author devises
a DL oral cancer image classification structure that quantifies the output uncertainty of the
methods and recommends that problematic cases with higher uncertainty values are men-
tioned for more analyses. This DL technique has uncertainty predictions and is compiled
to assist and accelerate conventional medical workflows, not replace them [13,14]. DL tech-
niques are frequently considered a ‘black-box’; however, the techniques are highly trustable
and reliable by offering uncertain data and possibly rising overall performance [15]. In
such a case, the automatic classifier is a tireless front-line clinician who requires no rest,
presenting diagnoses when confident and denoting tough cases to experienced experts
when uncertain.

The author in [16] applied and evaluated the efficiency of six deep convolution neu-
ral network (DCNN) methods, including the TL approach, for directly identifying pre-
cancerous tongue lesions using small data of medically annotated images to identify earlier
signs of OCC. DCNN method could differentiate between pre-cancerous tongue lesions
and benign and distinguish five classes of tongue lesions, viz., geographic tongue, hairy
tongue, fissured tongue, oral hairy leukoplakia, and strawberry tongue, with higher clas-
sifier performance. In [17], the authors developed an image classification model using
the Inception-ResNet-V2 model. The authors also generated an automatic heat map to
emphasize the region of the images probably to be included in the decision-making process.

Rajan et al. [18] developed a novel methodology that exploits an adapted vesselness
measurement and DCNN to recognize oral cancer areas in IoT-related smart healthcare
schemes. The strong vesselness filter system manages noise when preserving smaller
structures. In contrast, the CNN framework significantly increases classifier performance
by deblurring region of interest (ROI), which is focused on combining multi-dimension
data from the feature vector selecting stage. The marked feature vector point is derived
from every interconnected module in the region and applied as input to train the CNN. The
author in [19] discovered the prospective application of deep learning and computer vision
methods in oral cancer in the scope of images and examined the prospect of an automatic
scheme for potentially recognizing oral malignant disorder having two phase channels.

Bhandari et al. [20] intend to raise the detection and classifying performances of oral
tumors in a decreased processing duration. The presented method has a CNN with an
adapted loss function for minimizing the fault in classifying and forecasting oral cancers
by decreasing the over-fitting dataset and supporting a multiclass classifier. The presented
method was tested on data samples from various data sets with four classes of oral cancers.
Chan et al. [21] present a new DCNN compiled with texture mapping to identify cancerous
areas and automatically mark the ROI in one method. The presented DCNN method has
two collaborative branches: the lower branch performs semantic segmentation and ROI
marking, whereas the upper one performs oral cancer detection. The network method
will extract the tumorous regions with the upper branch and the lower one making the
tumorous regions very accurate. A sliding window can be implemented for computing the
texture images’ standard deviation values.

This article focuses on designing an optimal Inception-Deep Convolution Neural
Network for Oral Potentially Malignant Disorder Detection (OIDCNN-OPMDD) tech-
nique. The presented OIDCNN-OPMDD technique mainly concentrates on identifying and
classifying oral cancer. In this study, the feature extraction and classification process are
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performed using the IDCNN model, which integrates the Inception module with DCNN. To
enhance the classification performance of the IDCNN model, the moth flame optimization
(MFO) technique can be employed. The experimental results of the OIDCNN-OPMDD
technique are investigated, and the results are inspected under various measures.

2. Methods

In this article, a new OIDCNN-OPMDD technique was projected to identify and
classify oral cancer in the IoMT environment. In this study, the feature extraction and
classification process can be executed by using the IDCNN model, which integrates the
Inception module with DCNN. To enhance the classification performance of the IDCNN
method, the MFO algorithm is utilized in this study. Figure 1 depicts the overall process of
the OIDCNN-OPMDD approach.
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2.1. Pre-Processing

Firstly, this work implemented several preprocessing levels to normalize the input images.
At first, the images were resized to an even size by bi-cubic interpolation on 4× 4 neighborhood
pixels. The image was resized by padlocking the sustaining quality and aspect ratio. Generally,
the retinal image is yellow and has a dark background. The input image overlaps with the
background image and gets eliminated to decrease noise. Matching the black contextual of
the input image results in darkness as prolonged into the image details. So, pre-processing
was agreed upon for eliminating the black background by fixing the pixel values for non-zero
and zero to the bright zone. Then, the application of threshold, the abstraction of the green
channel, was applied. The green channel will conserve extra retinal data, except red or blue.
The performance of CLAHE, which is contrast-limited adaptive histogram equalization, arrived
to enhance smaller areas and the retinal image quality. Then, the weighted Gaussian blur was
used to increase image structure and reduce noise. The σ standard deviation and Gaussian
function in 2D (x, y) are mathematically articulated in Equation (1).

G(x, y) =
1

2πσ2 ε
x2+y2

2σ2 (1)

2.2. Oral Cancer Recognition Module

In order to detect and classify oral cancer, the IDCNN model was utilized in this work.
In this research, a DCNN mechanism with pre-trained Inception-v3 was developed [22].
The presented method is based on DTL, which aims at identifying the oral tumor from the
input datasets. To extract features from the datasets, this study used pre-trained Inception-
v3 architecture, and the classification model used DCNN. TL is a DL technique that exploits
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the module trained for the particular task as a primary point for model training for a
related task. Typically, it is simpler and much quicker for network fine tuning with TL
when compared to training a network from scratch. In this work, a DTL method-based
Inception-v3 was carried out. The suggested method was applied for extracting features
through its learned weight on the ImageNet datasets and CNN.

n Inception-v3 based DCNN method is deliberated to retrain; this technique comprises
convolution, AvgPool, concat layer, maxpool, full connection layer, softmax function,
and dropout.

n Average Pooling. It is a 2D function with a pooling size of (8 × 8) that reduces the
computational complexity and the variance of the dataset. This layer enables the
outcomes to flow toward the following layer.

n Convolution. A 299 × 299 × 3 input size is utilized through convolutional operation,
and this layer produces the feature map by convoluting the input dataset.

n Maxpool. It is a 2D max pooling operation, decreasing the dataset’s variance and
computation difficulty.

n Classified Result features like edges and average pooling are utilized to feature extraction.
n Concatenation. This layer is used for concatenating the different input blobs into an

individual blob of output. It takes a tensor as the input, from which a similar kind
of shape expect concatenation axes and return the output of individual tensor when
concatenating every input.

n It is regarded as the normalization technique for minimizing the over-fitting in the
ANN by overwhelming complex coadaptation from the trained dataset. Now, the
dropout scale is regarded as 0.4, and robust model to execute averaging with the NN
method. Furthermore, dropout represents the units’ hidden and visible sides in the
NN model.

n Fully Connected. This is utilized for connecting each neuron from one layer to others
that operate according to the traditional MLP-NN model.

n Softmax. This is utilized as the output function that operates correspondingly towards
the max layer once it is a parameter to train through gradient descent. The exponential
function causes an increment in the likelihood of the previous layer and correspondingly
compares with other values; each output summation is equivalent to one.

Generally, a 2D plane forms different independent neurons, and the DCNN is com-
posed of different layers with many 2D feature mapping plane models. There exist 4 rimary
segments of the DCNN. The initial one is the local perception that the global image does
not need to be deduced through all the neurons in a neural network, and global and local
data are attained by gathering local datasets. The second one is the convolution method.
The convolution functionality is used to extract image features, and the convolutional
kernels decrease the overall variables. The next one is weight sharing. This implies that the
parameter of the related convolutional kernel was exploited for the whole image. Due to
distinct locations in the image, the weight in the convolutional kernel would not be altered.
Furthermore, convolutional operation weight sharing would considerably decrease the
parameter of the convolutional kernels. The last one is the pooling layer, which is usually
fixed in the CNN behindhand convolutional layer, employed to decrease the feature dimen-
sion of the efficiency of the preceding convolutional layer instantaneously to preserve data
of the satisfactory crucial image.

To estimate the dot product of weight and the value in the input, a filter that is an array
of weights was utilized in a convolution layer that slides over the input from a preceding
layer. The procedure of backpropagation of error finds out such weights. Afterwards, an
activation function that integrates component-wise non-linearity generates a feature map
using every entry signifying a single neuron output from a small local area of the input.
Then, the feature map is utilized for training a NN model.

As a filter is regarded, once the number of filters is high, it can extract additional fea-
ture maps and improve the model performance. Therefore, the relative imprints of 32-32-64,
32-32-32, 64-64-64, and 64-64-128 filters are employed to select the proper filter on the
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condition that computation resource and DCNN network performance were regraded
on keeping the different influencing unchanged factors and distinct hierarchical architec-
tures. Therefore, 64-64-64 was selected as the convolutional filter, which considers the
performance, and each corresponding field size is 5 × 5.

For Inception-v3, the likelihood of each label k ∈ {1, . . . , K} for all the training
instances is estimated as follows

Q(k|z) = exp (yk)

∑k
i exp (yi)

, (2)

In Equation (2), y signifies the non-normalized log probability. The distribution of
ground truth over label p(k|z) was normalized; therefore, ∑k p(k|z) = 1. For these systems,
the loss was given using cross-entropy:

C = ∑K
k=1 log (q(k))p(k). (3)

For logits yk, the cross-entropy loss can be distinguishable, and thus it is employed
in in-depth module gradient training, whose gradient has the simplest form of ∂C/∂yk =
q(k) − p(k), bounds between –1 and 1. Generally, this implies that the log probability of
accurate labels can be increased after the cross-entropy is minimalized. Therefore, it produces
some over-fitting problems. Inception-v3 regarded the distribution on labels with smooth
variable∈ independent of trained instances (k), from which the label distribution p(k|z) = Zk,z
was interchanged using

p′(k|z) = (1− ε)∂k,z + εν(k), (4)

that is a combination of the original p(k|z) distribution with 1 − ε weights and the ν(k)
fixed distribution with ε weight.

For a uniform distribution ν(k) = 1/K, label smoothing normalization is employed so
that it turns out to be

p′(k|z) = (1− ε)δk,z +
ε

K
. (5)

Consecutively, this is inferred as cross-entropy in the following

H
(

p′, q
)
= −∑K

k=1 log (q(k))p′(k) = (1− ε)H
(

p′, q
)
+ εH(v, q). (6)

Different activation features exist in the activation layer, namely softmax, sigmoid,
and ReLU. The process is to integrate non-linear factors to improve the model condition;
subsequently, it should be non-linear, and it is formulated by using Equation (7)

f (x) =
1

1 + e−x . (7)

The activation function of ReLU can be formulated in the following:

f (x) =
{

0, x ≤ 0,
x, x > 0.

(8)

The activation function of the softmax layer can be formulated in Equation (9):

f
(
xj
)
=

exj

∑ exi
. (9)

From the equation, f (x) indicates the activation function, and x denotes the activation
function input. This is a non-linear function such as sigmoid or ReLU that can be employed
for the element of convolution named activation function. If more than one pooling layer
has been used for the feature map produced through the convolution layer, the computation
perplexity of CNN can be decreased.
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2.3. Hyperparameter Tuning Model

To enhance the classification performance of the IDCNN method, the MFO algorithm
is utilized. MFO is an MH technique that mimics the behavior of moths in nature [23]. The
major stages of MFO are defined below:

MFO = (R, V, T), (10)

In Equation (10), R is used for randomly initializing the population of moths; the
fitness value, V, determines the major function that moves the moth around the search
space, and T shows a flag of the stopping condition.

In the major function (V), the moth location is upgraded using flames as follows:

→
A = S(

→
Ai, Fj), (11)

In Equation (11), S denotes the spiral function, Ai shows the i-th moths, and Fj indicates
the j-th flames and expresses in the following:

S(
→
Ai,

→
F j) =

→
Di · ebl · cos (2πl) +

→
F j, (12)

→
D = |

→
F j −

→
Ai|, (13)

In Equation (12), b shows a constant to define the logarithmic spiral curve, and
l ∈ [−1, 1] is randomly produced. Define the distance of i-th moths to j-th flames.

The optimal solution exploitation degrades owing to the changing of moth location
w.r.t Npop different locations in the problem. To resolve these issues there exists a method
used to resolve these problems by offering more than one flame (Fno) as follows:

Fno = round (N − iterc ×
Npop − 1
iter max

), (14)

Equation (14) iterc indicates the iterative number, Npop describes the maximal flame
number, and iter max specifies the stopping condition (the maximal iteration count). Algo-
rithm 1 illustrates the key procedure of the MFO approach.

Algorithm 1 Pseudocode of MFO Algorithm

1: Generate early population of moths (A);
2: Compute the value of the fitness function of A;
3: while not T do
4: Compute the number of flames based on Equation (14):
5: FA = the value of fitness function of (A);
6: if Loop == 1 then
7: = sort(A);
8: = sort(FA);
9: else
10: F = sort(Ac−1, Ac);
11: = sort(Ac−1, Ac);
12: end if
13: for i = 1 : n do
14: for j = 1 : n2 do
15: Upgrade b and t
16: Calculate D
17: Upgrade A(i, j) by Equation (12)
18: end for
19: end for
20: end while
21: yj = A
22: Output: Optimum flames
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3. Results and Discussion

The oral cancer classification results of the OIDCNN-OPMDD method are investigated
utilizing the oral cancer dataset from the Kaggle repository [24]. Table 1 showcases the details
of the dataset. A few sample images are depicted in Figure 2. The dataset holds 131 samples
with two classes. The proposed model is simulated using Python 3.6.5 tool on PC i5-8600 k,
GeForce 1050 Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings are
learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation: ReLU.

Table 1. Dataset details.

Class No. of Samples

Cancer 87
Non-Cancer 44

Total Number of Samples 131
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Figure 3 illustrates the confusion matrices generated by the OIDCNN-OPMDD model.
With 80% of TR data, the OIDCNN-OPMDD method categorized 66 cases into cancer
and 33 into non-cancer classes. In parallel, with 20% of TS data, the OIDCNN-OPMDD
algorithm categorized 18 cases into the cancer class and 8 into the non-cancer class. At the
same time, with 70% of TR data, the OIDCNN-OPMDD technique categorized 62 instances
into the cancer class and 24 instances into the non-cancer class. In addition, with 30% of TS
data, the OIDCNN-OPMDD approach categorized 22 instances into the cancer class and 17
into the non-cancer class.

Table 2 and Figure 4 provide the oral cancer classification results of the OIDCNN-
OPMDD model on 80% of TR data. The OIDCNN-OPMDD model identified cancer class
instances with accuy, sensy, specy, Fscore, and MCC of 95.19%, 97.06%, 91.67%, 96.35%, and
89.33%, respectively. In addition, the OIDCNN-OPMDD model categorized non-cancer class
instances with accuy, sensy, specy, Fscore, and MCC of 95.19%, 91.67%, 97.06%, 92.96%, and
89.33%, respectively. In addition, the OIDCNN-OPMDD model attained average accuy, sensy,
specy, Fscore, and MCC of 95.19%, 94.36%, 94.36%, 94.65%, and 89.33%, correspondingly.

Table 3 and Figure 5 offer the oral cancer classification outcomes of the OIDCNN-
OPMDD algorithm on 20% of TS data. The OIDCNN-OPMDD approach identified cancer
class instances with accuy, sensy, specy, Fscore, and MCC of 96.30%, 94.74%, 100%, 97.30%, and
91.77%, correspondingly. Moreover, the OIDCNN-OPMDD method categorized non-cancer
class instances with accuy, sensy, specy, Fscore, and MCC of 96.30%, 100%, 94.74%, 94.12%, and
91.77%, respectively. Further, the OIDCNN-OPMDD approach gained average accuy, sensy,
specy, Fscore, and MCC of 96.30%, 97.37%, 97.37%, 95.71%, and 91.77%, correspondingly.
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Table 2. Result analysis of OIDCNN-OPMDD approach with distinct class labels under 80% of TR data.

Training Phase (80%)

Labels Accuracy Sensitivity Specificity F-Score MCC

Cancer 95.19 97.06 91.67 96.35 89.33
Non-Cancer 95.19 91.67 97.06 92.96 89.33

Average 95.19 94.36 94.36 94.65 89.33

Table 4 and Figure 6 present the oral cancer classification results of the OIDCNN-OPMDD
method on 70% of TR data. The OIDCNN-OPMDD approach identified cancer class instances
with accuy, sensy, specy, Fscore, and MCC of 94.51%, 96.88%, 88.89%, 96.12%, and 86.72%
correspondingly. Likewise, the OIDCNN-OPMDD technique categorized non-cancer class
instances with accuy, sensy, specy, Fscore, and MCC of 94.51%, 88.89%, 96.88%, 90.57%, and
86.72% correspondingly. Moreover, the OIDCNN-OPMDD approach acquired average accuy,
sensy, specy, Fscore, and MCC of 94.51%, 92.88%, 92.88%, 93.35%, and 86.72%, correspondingly.
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Table 3. Result analysis of OIDCNN-OPMDD approach with distinct class labels under 20% of TS data.

Testing Phase (20%)

Labels Accuracy Sensitivity Specificity F-Score MCC

Cancer 96.30 94.74 100.00 97.30 91.77
Non-Cancer 96.30 100.00 94.74 94.12 91.77

Average 96.30 97.37 97.37 95.71 91.77
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Table 4. Result analysis of OIDCNN-OPMDD approach with distinct class labels under 70% of TR data.

Training Phase (70%)

Labels Accuracy Sensitivity Specificity F-Score MCC

Cancer 94.51 96.88 88.89 96.12 86.72
Non-Cancer 94.51 88.89 96.88 90.57 86.72

Average 94.51 92.88 92.88 93.35 86.72
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Table 5 and Figure 7 present the oral cancer classification results of the OIDCNN-
OPMDD approach on 30% of TS data. The OIDCNN-OPMDD technique identified cancer
class instances with accuy, sensy, specy, Fscore, and MCC of 97.50%, 95.65%, 100%, 97.78%,
and 95.05% correspondingly. Further, the OIDCNN-OPMDD approach categorized non-
cancer class instances with accuy, sensy, specy, Fscore, and MCC of 97.50%, 100%, 95.65%,
97.14%, and 95.05% correspondingly. Along with that, the OIDCNN-OPMDD algorithm
gained average accuy, sensy, specy, Fscore, and MCC of 97.50%, 97.83%, 97.83%, 97.46%, and
95.05% correspondingly.

Table 5. Result analysis of OIDCNN-OPMDD approach with distinct class labels under 30% of TS data.

Testing Phase (30%)

Labels Accuracy Sensitivity Specificity F-Score MCC

Cancer 97.50 95.65 100.00 97.78 95.05
Non-Cancer 97.50 100.00 95.65 97.14 95.05

Average 97.50 97.83 97.83 97.46 95.05

The training accuracy (TRA) and validation accuracy (VLA) acquired by the OIDCNN-
OPMDD approach on the test dataset is displayed in Figure 8. The experimental result
inferred that the OIDCNN-OPMDD approach had achieved maximal values of TRA and
VLA. The VLA is greater than TRA.
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The training loss (TRL) and validation loss (VLL) obtained by the OIDCNN-OPMDD
technique on the test dataset are exhibited in Figure 9. The experimental result implied the
OIDCNN-OPMDD method had established minimal values of TRL and VLL. Particularly,
the VLL is lesser than TRL.

A clear precision–recall examination of the OIDCNN-OPMDD algorithm on the test
dataset is shown in Figure 10. The figure denoted the OIDCNN-OPMDD approach has
enhanced values of precision–recall values under all classes.
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A brief ROC inquiry of the OIDCNN-OPMDD technique on the test dataset is dis-
played in Figure 11. The outcomes denoted by the OIDCNN-OPMDD method have shown
their ability to categorize distinct classes on the test dataset.

Table 6 depicts detailed comparative oral classification outcomes of the OIDCNN-
OPMDD model with recent DL models [10,19]. Figure 12 offers a comparative study
of the OIDCNN-OPMDD model with existing models in terms of accuy. These results
indicated the ineffectual outcome of the Inception-v4 model with a minimal accuy of 85.14%,
whereas the DBN model reported a slightly improved accuy of 86.36%. In addition, the
DenseNet-161 method reached reasonable outcomes with an accuy of 90.06%. Next, the
CNN model resulted in considerable performance with an accuy of 94.14%. However, the
OIDCNN-OPMDD model outperformed the other ones with an increased accuy of 97.50%.
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Table 6. Comparative analysis of OIDCNN-OPMDD approach with existing algorithms [10,19].

Methods Accuracy Sensitivity Specificity F-Score

OIDCNN-OPMDD 97.50 97.83 97.83 97.46
DBN 86.36 84.12 91.15 85.74
CNN 94.14 93.93 96.89 95.39

Inception-v4 85.14 86.68 89.42 87.24
DenseNet-161 90.06 88.21 85.59 86.22
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Figure 12. accuy analysis of the OIDCNN-OPMDD approach with existing algorithms.

Figure 13 portrays a comparative analysis of the OIDCNN-OPMDD algorithm with
existing models in terms of sensy. These results represented the ineffectual outcome of
the Inception-v4 approach with a minimal sensy of 86.68%, whereas the DBN method
reported a slightly improved sensy of 84.12%. In addition, the DenseNet-161 algorithm
reached reasonable outcomes with a sensy of 88.21%. Then, the CNN technique resulted in
notable performance with a sensy of 93.93%. However, the OIDCNN-OPMDD approach
outperformed the others with an increased sensy of 97.83%.
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Figure 13. Sensy analysis of the OIDCNN-OPMDD approach with existing algorithms.

Figure 14 displays the detailed study of the OIDCNN-OPMDD approach with existing
algorithms in terms of specy. These results implicit the ineffectual outcome of the Inception-
v4 technique with a minimal specy of 89.42%, whereas the DBN approach managed to
report a slightly improved specy of 91.15%. In addition, the DenseNet-161 methodology
reached reasonable outcomes with a specy of 85.59%. Then, the CNN algorithm resulted in
notable performance with a specy of 96.89%. However, the OIDCNN-OPMDD methodology
outperformed the others with an increased specy of 97.83%.
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Figure 14. Specy analysis of OIDCNN-OPMDD approach with existing algorithms.

Figure 15 exemplifies the comprehensive inception of the OIDCNN-OPMDD algorithm
with existing models in terms of Fscore. These results denoted the ineffectual outcome of the
Inception-v4 technique with a minimal Fscore of 87.24%, whereas the DBN approach man-
aged to report a slightly improved Fscore of 85.74%. Moreover, the DenseNet-161 methodol-
ogy reached reasonable outcomes with a Fscore of 86.22%. Next, the CNN technique resulted
in notable performance with a Fscore of 95.39%. However, the OIDCNN-OPMDD approach
outperformed the other ones with an increased Fscore of 97.46%.
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Thus, the OIDCNN-OPMDD model is found to be a productive solution for oral
cancer detection. The enhanced performance of the proposed model is due to the optimal
hyperparameter tuning using the MFO algorithm.

4. Conclusions

In this article, a novel OIDCNN-OPMDD approach was devised for the identification
and classification of oral cancer. In this study, the feature extraction and classification
process are performed using the IDCNN model, which integrates the Inception module
with DCNN. To enhance the classification performance of the IDCNN method, the MFO
algorithm is utilized in this study. The experimental results of the OIDCNN-OPMDD
technique were investigated, and the outcomes were scrutinized under specific measures.
The experimental outcome pointed out the enhanced performance of the OIDCNN-OPMDD
model over other DL models. Thus, the OIDCNN-OPMDD model can be utilized for
automated oral cancer recognition and classification process. In the future, the deep
instance segmentation process can be combined with the OIDCNN-OPMDD model to
boost the overall classification outcomes.
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