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Abstract: Effectively handling the limited number of surgery operating rooms equipped with ex-
pensive equipment is a challenging task for hospital management such as reducing the case-time
duration and reducing idle time. Improving the efficiency of operating room usage via reducing
the idle time with better scheduling would rely on accurate estimation of surgery duration. Our
model can achieve a good prediction result on surgery duration with a dozen of features. We have
found the result of our best performing department-specific XGBoost model with the values 31.6 min,
18.71 min, 0.71, 28% and 27% for the metrics of root-mean-square error (RMSE), mean absolute error
(MAE), coefficient of determination (R2), mean absolute percentage error (MAPE) and proportion
of estimated result within 10% variation, respectively. We have presented each department-specific
result with our estimated results between 5 and 10 min deviation would be more informative to the
users in the real application. Our study shows comparable performance with previous studies, and
the machine learning methods use fewer features that are better suited for universal usability.

Keywords: operating room usage time; scheduling; machine learning; XGBoost

1. Introduction
1.1. Background

Surgery operation rooms (ORs) are considered valuable in terms of high medical and
human resource cost. Although the OR is a limited and high-cost resource, it also earns
higher profits for hospitals [1]. A previous study tries to find the direct and indirect costs
of 1 minute of OR time and also analyzes the cost of facility features, direct, and indirect
costs related to the OR. Based on the California hospital financial statements, the OR time
is measured at $36 to $37 per minute [2]. This signifies that the efficient use of the operation
room is an important research topic. The booking and scheduling of an operating room
can be very complicated due to the need for collaboration between different departments.
An optimized OR room schedule does not rely only on the available operation room but
also the other post-op resource’s availability [3]. In order to increase OR room usage
efficiency, various research studies have been conducted from several perspectives such
as improving the OR scheduling [4], identifying causes of delay [5], optimizing workflow
and standardizing equipment [6]. In this study, we focus on the difficulties experienced
while improving efficiency through the scheduling process. Many hospitals have their own
policy to optimize their OR scheduling, however, the effectiveness of the policy rely on
accurately estimated usage time of OR rooms. In general, the OR room usage time heavily
depends on the doctor’s personal experience. In some cases, there are certain hospitals
that still follow the queued method where every patient who needs surgery is prioritized
in order and waits until their turn. We believe that a precise estimation of operation (OP)
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time can help both medical institutions and patients. The accurate estimation of operation
time can potentially improve patients quality of healthcare by reducing their wait time and
proper reschedule.

1.2. Previous Studies

Surgical procedures consist of pre-surgery, surgery, and post-surgery. Pre-surgery is
the process of setting up and preparing for the operation. The duration of surgery includes
the anesthesia procedure and surgical procedure. Pre-operative and post-operative times
are included in the non-operative period, whereas the operative phase comprises the total
operation time [7–9]. Patients are categorized into inpatients, outpatients and emergency
cases. Surgery is scheduled in advance for both inpatients and outpatients based on the
multiple resource availability. Advance scheduling is not possible for emergency patients.
Anesthetists, nurses, surgeon groups, medical technicians, medical supplies, and operat-
ing rooms (ORs) are involved in a surgical procedure [10]. The OR scheduling process
considers time-based constraints to measure performance [11]. Excess time and idle time
are considered essential metrics in a few research studies. The precise estimation of the
operating room usage time can be helpful to the patients. Surgical durations are difficult
to predict in advance, which may cause long OR overtime and idle times. OR overtime
may cause surgery cancellation and failure of the healthcare experience. Idle time leads
to poor usage of OR capacity [12–14]. Multiple studies have attempted to implement new
prediction models for estimating operation room usage time in past decades. Recently,
the coronavirus disease 2019 (COVID-19) caused a high number of cancellations of sur-
gical operations which increased the wait lists and in turn affected the patient healthcare
experience. During this pandemic situation, recent inspections have used surgeon-specific
data to enhance surgery bookings using machine learning model [15]. With the intention of
lowering surgical costs, a modular artificial neural network-based solution is created to
anticipate surgical duration using the procedure and medication data [16]. Another neural
network-based approach independently balances the data and also utilizes the MLP model
to provide duration prediction systems for surgery and anesthesia [17]. Eijkman et al. have
created a model with linear mix modeling on over 17 thousand entries of data consisting of
different features including patients’ personal psychological information [18]. Their pro-
posed model is a simple linear regression and achieved good improvement in the estimation
of operative time compared with previous studies. Similarly, Edelman et al. incorporated
the linear regression models on over 79 thousand records of OR room usage data with fewer
features but these results heavily rely on anesthesia-related characteristics [19]. Bartek et al.
developed models to forecast case-time duration with the help of linear regression and su-
pervised machine learning [20]. Their model took advantage of three different data groups
named all-inclusive, service-specific, and surgeon-specific to predict case-time duration.
The XGBoost model has scored better results and outperformed the traditional linear regres-
sion models in every category. The model needs detailed patient information which leads to
backlogs when there is no data related to patient physiological information. Past literature
utilizes computer simulation to determine OR scheduling [4]. Their study comprises the
wait time and surgery time as essential parameters. Block time is decided based upon
the expected total duration of inpatient and outpatient cases which helps to enhance OR
utilization by adopting OR scheduling tricks. A latest study considers demographic data,
operation procedures, anesthesia type and the level of expertise of the primary surgeon as
suitable features for the prediction of length of surgery [21]. Bandi et al. has handled a mul-
tifaceted problem that includes OR staffing and scheduling which paves the way to create
new criteria for constructing online algorithms termed “the robust competitive ratio” [22].
Li et al. handled the similar OR schedule re-optimization problem in their approach which
significantly improves an existing method by addressing the surgeon’s preferences as well
as all of the limitations [23]. A recent research proposes an OR scheduling framework based
on patients’ preferences. This investigation considers certain attributes such as professional
experiences, same ethnicity, same gender, communication skills and several criteria have
been involved to produce this framework [24].



Healthcare 2022, 10, 1518 3 of 24

1.3. Aim of This Study

This study applied machine learning and deep learning methods to the surgery room
usage records to explore various options for improving OR room usage efficiency. Our
work aims to construct prediction models to accurately predict the OR room usage time
and compare the performance of different models. All the models are restricted to using a
few simple parameters that are available before the surgery. Due to the lacking of detailed
personal information records such as age, gender and medical history, the model will not
include any patient’s personal information. The nature of this study in which restricted
parameters are involved to reveal our method can be implemented in most cases.

2. Materials and Methods
2.1. Data Source

This study makes use of surgery room usage records from Shin Kong Wu Huo-Shih
Memorial Hospital from January 2015 to September 2019. The raw data collection contains a
total of 124,528 entries of room usage records, including 112 columns of various parameters.
There are no patient information and identifiable information in the data collection. The ta-
ble comprises department numbers, involved personnel (including doctors and nurses),
patient status, surgery urgency, discovery and doctor’s comments during the procedure,
timestamps, and procedure IDs. Appendix A contains a full structure of the raw data table.

2.2. Data Preprocessing

Deletion and interpolation are the two primary processing methods for handling
missing data problem [25]. The deletion process simply removes missing data and retains
the remaining dataset for further analysis. This is a simple and feasible solution to deal with
the missing data. The impact of deleting missing data is less when the amount of missing
data is small [26]. In total, we exclude columns of missing values, ID-like parameters,
timestamp parameters and comments during the data preprocessing. Multiple types of
data are not suitable for applying interpolation techniques to recover the raw data. We
choose the deletion method to handle the missing data issue. Many of the 112 columns are
eliminated due to being empty or in an unsuitable format such as date format or timestamp
format. Features that are not available prior to the procedure are eliminated to avoid
confounding the response. Finally, all ID-like parameters such as doctor and nurse ID are
also excluded, thus limiting the number of features utilized in this study. A few additional
characteristics are created, resulting in a total of 15 features used in this study. A total of
62 columns were eliminated due to being empty, and a total of 13 columns of timestamps
are also removed. A total of 17 columns indicating personnel IDs, hardware IDs, and room
numbers are removed too. A total of ten columns of text-based comments and diagnoses
are removed as well. There are a total of 5 new feature columns generated. The prediction
target of total surgery room usage time is calculated based on the time stamp difference
between entering and exiting the room. The number of involved doctors and nurses is
divided into two columns to replace individual IDs. The total number of the procedure
is also calculated. Moreover, the number of days since the patient had their last surgery
is calculated.

The resulted 15 features columns are as follows:

• ODR_DEPT : Department’s ID;
• ODR_WOUD : Patient’s wound cleanness;
• ODR_ASA : Patient’s anesthesia risk;
• num_M_DR : Total number of doctors will be partaking the surgery;
• num_DN&WN : Total number of nurses (scrub nurse and circulation nurse) will be

partaking in the surgery;
• num_OP : Total number of planned procedures;
• Day_since_last : Number of days since patient’s last surgery;
• ODR_PAYK_cat : Patient payment category (Health insurance status);
• ODR_PSRC_cat : Patient source category (Inpatient, Outpatient, Emergency room );
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• ODR_EFLG_cat : Category (if it is emergency surgery);
• ODR_OP_1_cat : Procedures id of the first procedure to be performed;
• ODR_OP_2_cat : Procedures id of the second procedure to be performed;
• ODR_OP_3_cat : Procedures id of the third procedure to be performed;
• ODR_OP_4_cat : Procedures id of the forth procedure to be performed;
• ODR_Total_time: Total time (in minutes) spent in OR room.

A total of 987 entries of data are excluded from the study for having negative time
spent in the OR room. Another 65 entries of data are excluded from the data for being
an extreme outlier with more than 800 minutes of surgery time, thus leaving a total of
123,476 records. Label encoding methods are then applied to transform the categorical data
into a usable format for training the models. The data entries are further sorted according
to their department numbers to construct a department-specific data set.

Table 1 summarizes the overall data characteristic profile when grouped by different
departments, while Figure 1 highlights each feature’s correlation with total OR room usage
time distribution in form of a box-plot. Figure 1 illustrates that the total time is strongly
correlated with the number of participating doctors, nurses, and operations scheduled.
The anesthesia risk level has a high association with total usage time. Each different
department also has its unique overall distribution of total time spent in the OR room.

Table 1. Data demographic.

Dept. Sample Count Doctors Nurses Unique OPs

16 21,968 58 182 367
29 20,476 52 169 266
14 14,763 52 185 602
17 13,566 72 179 652
22 13,338 60 178 674
24 12,410 69 185 279
11 9874 39 175 123
28 7670 46 168 448
13 4017 43 170 213
15 1965 8 155 141
12 1800 34 164 176
66 635 25 141 136
31 521 6 113 22
30 454 26 130 155
5 13 4 29 7
25 4 2 12 4
18 2 2 6 3

All 123,476 158 202 1916
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(a) Total time for each department (b) Total time with number of nurses

(c) Total time with number of Doctors (d) Total time with number of operations

(e) Total time with ASA risk score (f) Total time with emergency lavel

(g) Total time with payment category (h) Total time with patient source

Figure 1. Feature demographic.

2.3. Methods

In this study, we apply four machine learning models including XGBoost (Extreme
Gradient Boosting), Random Forest, Artificial Neural Network (ANN), and 1-dimensional
Convolution neural network (1dCNN) to forecast OR usage time. The first two methods
are based on decision trees, while the last two methods are based on deep neural networks.
Initially, we prepare an all-inclusive dataset that contains all data records to optimize a
more generic model. The all-inclusive model is used to do a preliminary evaluation of the
model’s performance. The second department-specific dataset trains a dedicated model for
each department separately. The departments with a thousand records are used to ensure
each department’s model has sufficient learning data for the department-specific models.
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Having two different datasets reveal whether the model benefits from cross-department
data. The step-by-step process of this study is depicted in Figure 2. The flow chart shows
the workflow of this study from raw data to final performance measurement.

Figure 2. Process flowchart of data and model.

Tianqi Chen originally releases XGBoost in 2014, and it has since become a popular
open-source package used by data scientists. XGBoost is a scalable end-to-end tree boosting
machine learning system that utilizes fewer resources than existing systems. The tree boost-
ing method builds a series of trees that improves based on their predecessor’s prediction
error. Iterative training is applied to improve on prior iterations by lowering errors. Since
2015, XGBoost models have won multiple machine learning challenges, which proves their
performance and efficacy [27]. We utilize the grid search approach to obtain the optimal
parameters for each decision-tree-based model in this study.

Random Forest is a decision tree-based machine learning model that aggregates
numerous findings using ensemble learning. The Random Forest model uses the bagging
approach, which creates a vast number of randomly generated individual decision trees
and uses a majority vote to determine the prediction result. Each of the randomly generated
trees is generated equally with a subset of the training data. Unlike a boosting tree, bagging
does not have a sequential relationship between the trees. The goal is to use slightly
different sets of data and create a vast number of distinct trees hoping that they all agree on
the same outcomes. The model is known for being resistant to noise, outliers, and over-
fitting. The grid search approach is applied to select the optimal parameter for each model,
as previously mentioned [28].

An artificial neural network (ANN) follows a neural network structure that replicates
human brain functions by connecting various neurons. ANN is one of the fundamental
methods of Artificial Intelligence, consisting of layers of varying numbers of neurons that
are completely linked between layers (each neuron is connected to every neuron on the
following layer).

Each neuron takes inputs and processes with corresponding weights and then passes
them through an activation function to generate their output. The weights are adjusted
based on the error value through the backpropagation, which happens continuously until
the divergence.

The ANN architecture used in this study is depicted in Figure 3 [29]. The model
includes an input layer, three hidden layers, and an output layer. The input layer accepts a
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dimension of 1 × 14 as input. The three hidden layers each consist of 64, 32, and 16 neurons.
For the hidden layers, rectified linear units (ReLU) are used as their activation functions.
Batch normalization is applied to the output of each hidden layer before feeding them
into the next layer. The output layer with one single neuron takes the output from the last
hidden layer and used a linear activation function to return a prediction result. The model
uses mean squared error as its loss function with adam optimizer.

Figure 3. ANN model structure.

A convolutional neural network (CNN) is a widely used deep learning model structure
that consists of numerous layers of convolutional and sub-sampling layers followed by the
aforementioned hidden layers of ANN. The convolutional layers are capable of extracting
features with their filters from the input data. The traditional CNN is often used for solving
image-related problems whereas 1-dimensional CNN is a subset of convolutional neural
networks, which takes one-dimensional inputs instead of two-dimensional images. 1dCNN
architecture is presented in Figure 4 [30]. The input layer accepts a dimension of 1 × 14 as
input. A total of 2 pairs of one-dimensional convolution layers are placed in the architecture.
Each convolution layer has a filter size of 64 and a kernel size of 2. Batch normalization is
applied after each convolution layer and then passed through a ReLU activation function
before entering into the next layer. The high-dimensional features from the convolution
layers are flattened before being entered into three hidden layers of ANN. The hidden layer
consists of 256, 128, and 64 neurons and also employ ReLU as their activation function.
Batch normalization is applied followed by the output of each hidden layer. At the end,
the output layer with a single neuron takes the output from the last hidden layer and is
processed with a linear activation function to produce prediction result.

Figure 4. 1dCNN model structure (Visual representation of the model architecture with two one-
dimensional CNN layers followed by three fully connected layers used in this study).
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All models are constructed based on 9:1 training and testing set splits. The decision
tree model also uses 5-fold cross-validation on the 90% of its training set and is evaluated
based on the remaining 10% testing set. The neural-network-based models are trained and
tested based on the 90% training set and 10% testing set with different random seeds 5
times and evaluated based on the best model result.

For a purpose of comparison with previous studies, the model performances are
evaluated in the form of mean-absolute error (MAE), mean-absolute-percentage error
(MAPE), root-mean-squared error (RMSE), coefficient of determination (R2), percentage
within 10% variation(±10%), and percentage of the samples within 5 or 10 min (±5 min,
±10 min).

3. Results

Initially, we compare the performance of each method among our all-inclusive models
to reveal the performance of each ML model. We show both the individual model perfor-
mance of each department and the weighted sum of all the ML approach models to show
the performance of the department-specific model. In addition, we provide the comparison
table with previous studies for a more clear understanding.

3.1. All-Inclusive Model Results

As demonstrated in Table 2, out of the all-inclusive models, the XGboost model
(Figure 5) and random forest model (Figure 6) have similar performance on every compara-
ble score, and more specifically outperform 1dCNN (Figure 7) and ANN (Figure 8) models.
The R2 value of XGBoost and the random forest is approximately 0.1 higher than 1dCNN.
1dCNN has around 10% fewer forecasted data falls within 10% variance. These results
suggest that based on our data, deep-learning ANN and 1dCNN models may not be the
best ML models for accurately predicting OR room usage time. The two approaches were
not further studied using department-specific models due to the poor performance.

Table 2. Results of all-inclusive models.

Method RMSE MAPE MAE R2 ±10%
(min) (%) (min) (%)

XGBoost 37.2 31 21.05 0.72 25
Random Forest 36.0 29 20.49 0.76 26
ANN 47.6 45 20.14 0.64 26

1-d CNN 48.6 47 27.57 0.63 19

Figure 5. All-inclusive model with XGBoost (The visualization of training and testing data for
all-inclusive model with XGBoost).
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Figure 6. All-inclusive model with Random Forest (The visualization of training and testing data for
all-inclusive model with random forest).

Figure 7. All-inclusive model with 1dCNN (The visualization of training and testing data for all-
inclusive model with 1dCNN).

Figure 8. All-inclusive model with ANN (The visualization of training and testing data for all-
inclusive model with ANN).
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3.2. Department-Specific Model Results

Only 11 departments out of 17 are utilized to build the department-specific mod-
els, each containing over a thousand records of OR room utilization data. A dedicated
model is constructed with each model for each department. Random Forest and XGBoost
based department-specific model results are described in Table 3. The tables include de-
tailed model performance for each department with a weighted average (denoted with
(weighted)). The scatter plot visualizes the detailed training and testing performance
of every individual department’s model of XGBoost and Random Forest, which can be
demonstrated in Appendix A.

Table 3. Department-Specific Model Result.

(a) Random Forest Model Results

Dept. RMSE MAE MAPE R2 ±10% * ±10 min∗ ±5 min * <10 min ** <5 min ** Sample_Count
(min) (min) (%) (%) (%) (%) (%) (%)

16 26.58 14.51 30 0.72 24 59 33 77 60 21,968
29 11.74 6.81 29 0.87 27 80 60 91 77 20,476
14 38.00 21.63 31 0.64 24 44 24 67 55 14,763
17 42.51 26.80 24 0.66 28 34 18 63 53 13,566
22 38.42 24.84 26 0.48 29 34 19 62 52 13,338
24 20.43 13.72 19 0.79 34 52 28 73 58 12,410
11 32.33 18.81 30 0.85 27 48 28 68 55 9874
28 47.86 25.88 31 0.68 26 40 22 66 56 7670
13 74.73 49.76 24 0.47 33 17 09 52 48 4017
15 35.63 15.11 21 −0.26 32 54 28 76 61 1965
12 62.21 43.15 28 0.67 24 22 10 53 45 1800

Average
(weighted)

31.98 19.15 27 0.69 27 50 30 72 59 121,847

(b) XGB Model Results

Dept. RMSE MAE MAPE R2 ±10% * ±10 min∗ ±5 min * <10 min ** <5 min ** Sample_Count
(min) (min) (%) (%) (%) (%) (%) (%)

16 29.94 14.65 30 0.66 23 60 35 79 62 21,968
29 13.20 7.42 32 0.85 27 78 56 90 76 20,476
14 32.30 19.98 30 0.68 23 43 23 68 56 14,763
17 39.77 24.55 24 0.70 30 37 19 64 54 13,566
22 35.32 23.70 25 0.62 30 33 18 62 54 13,338
24 22.34 14.01 19 0.76 36 54 28 74 58 12,410
11 33.48 19.10 28 0.87 25 46 25 71 58 9874
28 51.31 28.14 33 0.71 22 36 18 64 54 7670
13 65.05 45.95 23 0.64 30 21 12 55 51 4017
15 35.50 15.55 22 −0.24 30 52 24 73 59 1965
12 56.67 38.27 26 0.73 31 25 09 56 47 1800

Average
(weighted)

31.60 18.71 28 0.71 27 50 30 73 60 121,847

* proportion of samples within the ± variation; ** proportion of predicted samples within acceptable overtime
in minutes.

The results illustrate the significant performance difference between departments.
The large difference between departments shows the single all-inclusive model is not a
best way to handle all the cases. Figure 9 shows the box plots of their top five commonly
performed procedures to explore the difference in detail. The box plots demonstrate the
variation of common procedures belonging to the same department. The variation of these
plots delivers the idea behind the challenges of the department-specific model.
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(a) Top 5 common procedures for Dept. 11 (b) Top 5 common procedures for Dept. 12

(c) Top 5 common procedures for Dept. 13 (d) Top 5 common procedures for Dept. 14

(e) Top 5 common procedures for Dept. 15 (f) Top 5 common procedures for Dept. 16

(g) Top 5 common procedures for Dept. 17 (h) Top 5 common procedures for Dept. 22
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(i) Top 5 common procedures for Dept. 24 (j) Top 5 common procedures for Dept. 28

(k) Top 5 common procedures for Dept. 29

Figure 9. Total time distribution of the top 5 commonly performed procedures for each department.

4. Discussion
4.1. Comparative Study

Table 4 illustrates the results of prior research and our method with mutually available
parameters for comparison.

Table 4. Comparison with previous studies.

Approach RMSE MAPE MAE R2 ±10%
(min) (%) (min) (%)

Linear Regression [18] 48.64 n/a 31.3 n/a n/a
Ref. XGBoost [20] n/a 27 n/a 0.77 32
Ref. Random Forest [20] n/a 39 n/a 0.93 23
XGBoost-HY [21] 36.64 35.16 21.52 n/a n/a
XGBoost-SH [21] 40.26 35.11 25.23 n/a n/a
XGBoost - Department Specific (w) 31.60 28 18.71 0.71 27
Random Forest - Department Specific (w) 31.98 27 19.15 0.69 27
ANN - All inclusive 47.6 45 20.14 0.64 26
1-d CNN - All inclusive 48.6 47 28.77 0.65 17

In terms of MAPE, our department-specific model and Bartek et al.’s [20] service-
specific model seems similar; however, our model has a relatively low percentage of
samples according to ±10% and R2 value. These three evaluation metrics are insufficient
to judge a model which outperforms based upon the percentage of samples within ±10%
which is heavily influenced by data distribution. We have discovered that evaluating
a model’s performance by its ±10% variation is not optimal, especially on short time
procedures. A shorter procedure can surpass the 10% range by having any minor delay far
easier than a long procedure. The time cost of any extra human action or deviation does not
scale up or down based on the duration of the operation. For instance, department 13 has a
poor RMSE, MAE, and R2 score but achieves a high percentage of predicted results within
±10% variance. Without knowing the data distribution, it is hard to compare previous
research models with an objective view.
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4.2. Prediction Result’s Impact

Many research studies focus on achieving good surgery room usage time estimation
but there are few discussions about considering a good or clinically acceptable performance.
According to hospital management, efficiency leads to gaining high profit. Over estimation
gives rise to more cost than under-estimation.

Clarke’s error grid (CEG) analysis is extensively used in blood glucose level estima-
tion and acknowledged as the golden standard for evaluating model performance. We
believe that Clarke’s error grid-like analysis method is useful for surgery room usage time
estimation. CEG separates the scatter plot of prediction result versus reference value into
different regions based on their implication [31]. The prediction result that falls in zone B
does not lead to harmful decisions, and the false predictions in zone C, D, and E will lead
to a potentially harmful outcome. In recent years, some studies have started to explore
the impacts of prediction results. For example, Albert Wu et al. discussed the impact of
overestimating surgical time on the medical system [32]. Based on the literature, the effect
of different degrees of overestimations or underestimations, we have no doubt that there
can also be CEG such as the golden standard for evaluating the OR room usage time
estimation models performance based on the prediction’s impact.

4.3. Commonly Performed Procedures

From Figure 9c, we infer that the top five commonly performed procedures for poor-
performing department 13 not only take longer procedures but also have larger variations
when compared to other departments such as department 14. It is reasonable to assume
that more complex procedures have more variables and take a long duration to complete
the process which may require additional information to produce an accurate prediction
result. This indicates that some departments with more complex procedures need more
in-depth analysis of additional information that is in need to further improve the prediction
performance on specific procedures. It seems that a more complex procedure would benefit
from having its own model when sufficient data are available.

4.4. Practical Usage

In practical applications, the users would care about the schedule’s accuracy pre-
diction and possible deviation in minutes. Hence, we suggest using the proportion of
predicted results within a margin of minutes instead of the percentage of minutes for model
evaluation. In this study, we demonstrate it with 5 and 10 minutes margin as shown in
Table 3. From the table, we observe how each model performs in terms of the number
of predictions, we expect it to be in the 5 or 10 minutes variation. Furthermore, we also
presented the percentage of records that do not go overtime with the threshold of 5 (<5 min)
and 10 (<10 min) minutes from the prediction result. With these two pieces of information,
the user can more objectively assess the probability of surgery delay.

Our models only use features that are available before the surgery and avoid any
ID-like features. Using these ID-like features such as doctor’s or nurse’s ID as a feature
would significantly limit the universal usability of the model. The model needs to be
retrained or modified when there is a new joining of an employee in certain unavoidable
situations. Adding physiological information along with our features can increase the
accuracy, however, this information may not always be available in the reality.

5. Conclusions and Future Work

In this study, we demonstrate different machine learning models that perform with
only a little more than a dozen features that exclude any patient’s physiological information.
In accordance with the previous literature, our XGBoost machine learning models outper-
form the other models that were tested for this study. This study finds the results of our
best performing department-specific XGBoost model with the values 31.6 min, 18.71 min,
0.71, 28% and 27% for the metrics of root-mean-square error (RMSE), mean absolute error
(MAE), coefficient of determination (R2), mean absolute percentage error (MAPE) and
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proportion of estimated result within 10% variation, respectively. The aforementioned
department-specific models also have 50% of their estimated time fall within 10 min vari-
ation from the actual value. However, there is 27% of the actual procedure time which
exceeds the estimated time which is more than 10 min. While using fewer features for
better universal usability, our model shows comparable performance with previous studies
by using machine learning methods. We believe this result can bring improvements for OR
room usage time estimation and benefit the current scheduling process positively.

Despite the neural-network-based models being outperformed by the decision-tree-
based method, it does not show decision tree-based models are assured to be better. Our
comparison between the two methods merely suggests that in this particular setting,
the well fine-tuned decision tree algorithm surpasses the basic and most commonly used
neural network structure. There are various different aspects of reasons and possibilities for
the improvement of the neural network. One of the major difficulties of a neural-network-
based model is high cardinality. Columns of procedure id has multiple unique values. Too
many unique values in the categorical feature lead to high cardinality. We confer that with
a more complex and well-designed architecture in combination with better organization
and representation of the input data, the neural network can match or even outperform the
decision tree models.

There are significant discrepancies in the performance between different department
models. The discrepancies between them are affected by the time variation of the procedure.
Other complex procedures have larger variations across a wide time frame and the lack
of variables hinders determining the root cause. Further in-depth studies are required
on the procedures with large variations to analyze the required information to improve
estimation accuracy. It is reasonable to assume a more complex procedure would require
more operation (OP) related features in order to produce accurate time estimation. We
recommend building a procedure-specific model for each unique procedure with sufficient
data to acquire the best possible performance. It will also help to determine the complex
procedures that need more information to improve the prediction accuracy.
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Appendix A

Table A1. Raw data feature columns with descriptions.

Column Namea Descriptions

ODR_LOGN Surgery serial number
ODR_CHRT Chart Number
ODR_TXDT Date
ODR_OPRM Operating Room ID
ODR_DEPT Department

ODR_PSRC Patient Source (O: Outpatient , I: Inpatient , E: Emergency
room)

ODR_BDNO Bed number
ODR_EFLG Emergency Surgery
ODR_IPNO Inpatient Number
ODR_AS_D Anesthesia Start (date)
ODR_AS_T Anesthesia Start (time)
ODR_AE_D Anesthesia End(date)
ODR_AE_T Anesthesia End(time)
ODR_IN_D Enter OR room (date)
ODR_IN_T Enter OR room (time)
ODR_OS_D Operation Start (date)
ODR_OS_T Operation Start (time)
ODR_OE_D Operation End (date)
ODR_OE_T Operation End (time)
ODR_OT_D Exit OR room (date)
ODR_OT_T Exit OR room (time)

ODR_OP_1 ∼ODR_OP_4 Operating procedure type’s IDs
ODR_KF_2 ∼ODR_KF_4 N/A
ODR_SK_2 ∼ODR_SK_4 N/A

ODR_M_DR Main Doctor
ODR_DN_1 scrub nurse 1
ODR_DN_2 scrub nurse 2
ODR_WN_1 circulation nurse 1
ODR_WN_2 circulation nurse 2

ODR_AD_1 ∼ODR_AD_4 N/A
ODR_PAYK Payment category ( 01- Self-Pay, 30-Health insurance )
ODR_OPID Operation ID

ODR_ANAM Anesthesia methods
ODR_AN_D Anesthesiologist (Doctor)
ODR_INDR Anesthesia assessment Doctor
ODR_ASA Anesthesia risk1∼5 (low∼high)
ODR_IRFG N/A
ODR_IDFC N/A
ODR_OPAG N/A
ODR_FAID N/A

ODR_DEAD N/A
ODR_SAT1 ∼ODR_SAT5 N/A

ODR_ANS1 ∼ODR_ANS5 N/A
ODR_M_D2 Assistant Doctors 2 ∼4

ODR_PKN1 ∼ODR_PKN5 N/A
ODR_TIM1 ∼ODR_TIM5 N/A

ODR_CHRF N/A
ODR_SPKD N/A
ODR_ORMT N/A
ODR_ANMT N/A

ODR_ANT1 ∼ODR_ANT3 Anesthesia method’s notes

ODR_WOUD Wound cleanness :1: clean 2: cleaned contaminated 3:
contaminated 4: dirty

ODR_ITE1 ∼ODR_ITE4 N/A
ODR_NPRO N/A

ODR_PC01 ∼ODR_PC20 N/A
ODR_PRDG Operating procedure name
ODR_FIND Finding
ODR_OPF Finding during procedure
ODR_OPP Operating procedure

ODR_PODG Post-operation diagnosis
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Figure A1. Model Performance of RandomForest on Dept.16. The visualization of training and
testing data for department specific model on department 16 with Random Forest.

Figure A2. Model Performance of RandomForest on Dept.29. The visualization of training and
testing data for department specific model on department 29 with Random Forest.

Figure A3. Model Performance of RandomForest on Dept.14. The visualization of training and
testing data for department specific model on department 14 with Random Forest.



Healthcare 2022, 10, 1518 17 of 24

Figure A4. Model Performance of RandomForest on Dept.17. The visualization of training and
testing data for department specific model on department 17 with Random Forest.

Figure A5. Model Performance of RandomForest on Dept.22. The visualization of training and
testing data for department specific model on department 22 with Random Forest.

Figure A6. Model Performance of RandomForest on Dept.24. The visualization of training and
testing data for department specific model on department 24 with Random Forest.
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Figure A7. Model Performance of RandomForest on Dept.11. The visualization of training and
testing data for department specific model on department 11 with Random Forest.

Figure A8. Model Performance of RandomForest on Dept.28. The visualization of training and
testing data for department specific model on department 28 with Random Forest.

Figure A9. Model Performance of RandomForest on Dept.13. The visualization of training and
testing data for department specific model on department 13 with Random Forest.
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Figure A10. Model Performance of RandomForest on Dept.15. The visualization of training and
testing data for department specific model on department 15 with Random Forest.

Figure A11. Model Performance of RandomForest on Dept.12. The visualization of training and
testing data for department specific model on department 12 with Random Forest.

Figure A12. Model Performance of XGBoost on Dept.16. The visualization of training and testing
data for department specific model on department 16 with XGBoost.
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Figure A13. Model Performance of XGBoost on Dept.29. The visualization of training and testing
data for department specific model on department 29 with XGBoost.

Figure A14. Model Performance of XGBoost on Dept.14. The visualization of training and testing
data for department specific model on department 14 with XGBoost.

Figure A15. Model Performance of XGBoost on Dept.17. The visualization of training and testing
data for department specific model on department 17 with XGBoost.
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Figure A16. Model Performance of XGBoost on Dept.22. The visualization of training and testing
data for department specific model on department 22 with XGBoost.

Figure A17. Model Performance of XGBoost on Dept.24. The visualization of training and testing
data for department specific model on department 24 with XGBoost.

Figure A18. Model Performance of XGBoost on Dept.11. The visualization of training and testing
data for department specific model on department 11 with XGBoost.
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Figure A19. Model Performance of XGBoost on Dept.28. The visualization of training and testing
data for department specific model on department 28 with XGBoost.

Figure A20. Model Performance of XGBoost on Dept.13. The visualization of training and testing
data for department specific model on department 13 with XGBoost.

Figure A21. Model Performance of XGBoost on Dept.15. The visualization of training and testing
data for department specific model on department 15 with XGBoost.
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Figure A22. Model Performance of XGBoost on Dept.12. The visualization of training and testing
data for department specific model on department 12 with XGBoost.
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