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Abstract: The diagnosis, evaluation, and treatment planning of pancreatic pathologies usually
require the combined use of different imaging modalities, mainly, computed tomography (CT),
magnetic resonance imaging (MRI), and positron emission tomography (PET). Artificial intelligence
(AI) has the potential to transform the clinical practice of medical imaging and has been applied
to various radiological techniques for different purposes, such as segmentation, lesion detection,
characterization, risk stratification, or prediction of response to treatments. The aim of the present
narrative review is to assess the available literature on the role of AI applied to pancreatic imaging.
Up to now, the use of computer-aided diagnosis (CAD) and radiomics in pancreatic imaging has
proven to be useful for both non-oncological and oncological purposes and represents a promising
tool for personalized approaches to patients. Although great developments have occurred in recent
years, it is important to address the obstacles that still need to be overcome before these technologies
can be implemented into our clinical routine, mainly considering the heterogeneity among studies.

Keywords: artificial intelligence; radiomics; pancreatic imaging; MRI; CT; PET

1. Introduction

Pancreatic imaging is one of the body imaging domains that has witnessed increasing
interest from researchers due to challenging differential diagnosis and high morbidity. Both
computed tomography (CT) and magnetic resonance imaging (MRI) have been widely used
as essential tools in the early diagnosis and staging of pancreatic disease [1]. The diagnosis
of pancreatic pathologies usually requires the combined use of different morphological
and functional imaging modalities, mainly, CT, MRI, and positron emission tomography
(PET). Native CT and contrast-enhanced CT (CECT) are widely used for the diagnosis
of pancreatic pathologies but also for presurgical evaluation, as they help to determine
tumor size, evaluate vascular involvement, and identify disease spread. MRI is useful for
characterizing both cystic lesions and solid tumors as it allows noninvasive evaluation of the
pancreatic ducts, pancreatic parenchyma, adjacent soft tissues, and vascular network [2,3].
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PET utilizes many radiopharmaceuticals to characterize biological features of tumors such
as metabolic intensity and receptor expression [4,5].

Artificial intelligence (AI) has the potential to transform the clinical practice of medical
imaging due to its ability to discriminate subtle image features. For this reason, it has
recently emerged as a noninvasive tool for a better characterization of lesions, thus helping
to achieve a more “personalized” approach [5,6].

Computer-aided diagnosis (CAD) and radiomics have been applied to various radio-
logical techniques for different purposes, such as segmentation, detection, and characteri-
zation of lesions, risk stratification, and prediction of response to treatments [7,8].

However, their potential applications in pancreatic imaging are still under investiga-
tion, both for non-oncological and oncological purposes.

The aim of the present review is to critically assess the available literature on the role
of AI and radiomics applied to pancreatic imaging.

2. Materials and Methods

We performed a search of PubMed, Scopus, Embase, Web of Science, and Cochrane
library databases for articles relevant to the application of AI and radiomics in pancreatic
imaging. On the PubMed database, we used the following MeSH headings: “artificial
intelligence”, “Machine Learning”, “Deep Learning”, “neural networks, computer”. The
search algorithm was constructed using specific strings for each library, as reported in
Supplementary Material File S1.

We included original research papers based on human subjects, written and published
(including those distributed as “online first”) in the English language up to July 2021 that
focused on CT, MRI, or PET as imaging techniques.

After screening for duplicates and eligibility, we further refined the selection of
manuscripts according to our subjective assessment of their relevance and novelty. The
detailed description of the study inclusion process is reported in Figure 1.
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Figure 1. Flowchart of the study inclusion process.

3. Insights on Radiomics Applied to Pancreatic Imaging

In recent years, researchers have investigated the field of radiomics to try and improve
patient care [7]. This is even more compelling when dealing with pancreatic imaging,
as both clinicians and surgeons have been relying on imaging to improve work-up and
prognosis in a field where mortality and morbidity are still very high [2,3] (Figure 2).

3.1. Radiomics and CT

CT represents, by far, the most diffused multislice diagnostic method, with an esti-
mated 400 million examinations per year worldwide. This availability of data has made
large-scale radiomics studies possible. In pancreatic imaging, CT features both an excellent
spatial and temporal resolution, allowing for a precise assessment of small structures as
well as enabling the evaluation of multiple contrast phases. These characteristics have made
it possible for CT to be used in a variety of oncological and non-oncological settings [9–37].
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Figure 2. Summary of radiomics applications in pancreatic imaging.

3.1.1. Oncological Applications

Differentiating various lesions (from benign to different levels of malignancy) is the
foundation of patient care assessment and many authors have been extensively studying
this field. One of the most frequent differential diagnoses a radiologist can come across is
differentiating cystic lesions. While some authors have tried to create an algorithm that ties
together clinical and radiological features with radiomics signatures [11,13,14], others focus
solely on radiomics and its validity in differentiating different cystic neoplasms [9,10,12]

When investigating pancreatic lesions, pancreatic neuroendocrine tumors (pNETs)
have a peculiar enhancement pattern that differentiates them from other tumors. Neverthe-
less, when coming across very small or heterogeneous lesions, it is still quite challenging to
understand whether it is a pNET or a pancreatic ductal adenocarcinoma (PDAC); hence,
the majority of research is found in this field. We found that most authors focus on dif-
ferentiating a PDAC from pNET [19–21,23], whereas others investigated radiomics use to
predict the histological grade of a pNET [22,25–27].

On the other hand, when it comes to adenocarcinoma, the core investigation is about
prognosis prediction. Recent studies show how radiomics features could be related with
mortality, whether based on tumor analysis [32–34] or node involvement [35,36].

Cystic Lesions

Cystic findings within the pancreatic parenchyma represent a diagnostic challenge
since it might be hard to tell apart pure benign lesions from the ones with transformation
potential. However, the combined evaluation of macroscopic morphological features and
texture analysis has afforded a great improvement in the diagnostic performance when it
comes to the characterization of cystic lesions [9].

Yang et al. [9] evaluated the consistency of textural features between different slice
thicknesses extracted from CT images of 2 mm- and 5 mm-thick slices and found a good
correlation among the extracted features. They included 25 patients with mucinous cystic
neoplasms (MCNs) and 53 patients with serous cystic neoplasms (SCNs) using a prelimi-
nary model based on texture extracted from CECT images selected via LASSO regression
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and random forest classifiers. In the validation group, they achieved an accuracy of 74%
in the 2 mm slice-thickness group and 83% in the 5 mm slice-thickness group. This study
highlighted the ability of radiomics in reducing misdiagnosis and avoiding overtreatment.
In a similar study, the same authors assessed the potential of CT texture analysis in dis-
criminating pancreatic serous cystadenoma from mucinous cystadenoma and improving
the diagnostic performance by combining morphological characteristics and textural fea-
tures. They used a combination of morphological characteristics of CT images and textural
features that achieved an impressive AUC of 0.893 [10].

Shen et al. [11] analyzed the potential of CECT in the discrimination of the differ-
ent subtypes of pancreatic cystic neoplasms (PCNs), considering that only SCNs have a
lower malignant potential and need only periodic follow-up. Using a Boruta algorithm,
five radiomics features (Histogram_Entropy, Histogram_Skeweness, LLL_GLSZM_GLV,
Histogram_Uniformity, HHL_Histogram_Kurtosis) and four clinical factors (serum carbo-
hydrate antigen 19-9, sex, age, and serum carcinoembryonic antigen) were significantly
different across SCNs, MCNs and intraductal papillary mucinous neoplasms (IPMNs).
Among the three machine learning (ML) algorithms, the random forest classifier achieved
an accuracy of 79.59% in the validation cohort.

In a different study, Wei et al. [12] also used radiomics as a way to avoid overtreatment
of benign lesions, as they used it as a diagnostic model to differentiate SCNs from other
PCNs. Their results showed that texture features, including intensity T-range, wavelet
intensity T-median, and wavelet neighborhood gray-tone difference matrix (NGTDM)
busyness, and five guideline-based features (sex, location, moment difference, mean rect-
angular fitting factor, and size) were the most statistically significant in identifying SCNs.
The model achieved an accuracy of ~76% in the cross-validation cohort and ~83% in an
independent validation cohort.

Xie et al. [13] applied radiomics to differentiate atypical serous cystadenomas (ASCNs)
and MCNs and compared radiomics and radiological analysis. They trained an ML model
with radiomics features and then demonstrated that adding radiological features such as
lesion location, shape, cyst wall, and wall enhancement into this model could significantly
improve its performance. Similarly, Tobaly et al. [14] developed a radiomics model mostly
based on high-order CT radiomics features, which showed high diagnostic performance
in differentiating benign from malignant IPMNs. Their results showed that 85 radiomics
features were significantly different between patients with benign and malignant IPMNs,
reaching an AUC of 0.84.

Recently, Chen et al. [15] also developed and validated a CT-based radiomics nomo-
gram for differentiating SCNs from mucin-producing PCNs in a preoperative setting. They
included a total of 89 patients (31 SCNs, 30 IPMNs, and 28 MCNs) who underwent preop-
erative CT. The authors used a comprehensive nomogram incorporating clinical features
and a fusion radiomics signature. The fusion radiomics signature used was obtained by
the combination of the radiomics features extracted in the plain, late arterial, and venous
phases. This nomogram obtained an AUC of 0.960 in the training cohort and 0.817 in the
validation cohort.

Other studies focused on the prediction of the malignant potential of the IPMN whose
management is challenging, owing to the low reliability of conventional imaging techniques
in the identification of suspicious lesions. Hanania et al. [16] correlated the histopatho-
logical grade of an IPMN with a cross-validated panel of 10 radiomics markers within
the cyst contours, reaching an AUC of 0.96 at a sensitivity of 97% and specificity of 88%.
Permuth et al. [17] tested a combined model of radiomics features and miRNA genomic
classifier (MGC) data, considered as potential biomarkers of pancreatic tumorigenesis, to
achieve an AUC of 0.95, higher than those of the single variables (AUC of 0.77 for radiomics
features and AUC of 0.83 for MGC data). Attiyeh et al. [18] focused only on a branch-duct
IPMN (BD-IPMN) on a preoperative CT scan to create a combined model of quantitative
and clinical features. It reached an AUC of 0.79, outperforming the single models (AUC
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of 0.67 for radiomics and AUC of 0.76 for clinical parameters), and the quantitative mural
nodularity feature demonstrated a significant role in the prediction of high-risk disease.

pNET

For pNETs, the use of radiomics and CT has been studied for differentiating and
classifying pancreatic tumors. He et al. [19] developed three models to differentiate non-
functional pNETs and PDACs. Their model combined a radiomics signature and clinical-
radiological features, reaching an AUC of 0.960 and 0.884 in the primary and validation
cohort, respectively.

In relation to pNETs, Li et al. [20] examined the use of volumetric CT texture analysis
in differentiating atypical pNETs from PDACs. The authors retrospectively analyzed
127 patients with 50 PDACs and 77 pNETs. They found that the fifth percentile and
fifth+skewness were optimal parameters for alone and combined diagnosis with an AUC
of 0.811 and 0.792, respectively, compared to the mean CT value (AUC = 0.678).

In another study by Yu et al. [21], radiomics was used to differentiate non-hypervascular
pNETs from PDACs in 120 patients. Specifically, the authors compared the performances
of significant features on conventional imaging techniques (maximum diameter on axial
section, margins, calcification, tumor vascularity, and heterogeneity) and texture analysis
both in the arterial phase and portal vein phase, achieving an AUC of 0.780, 0.855, and
0.929, respectively, on logistic regression.

Canellas et al. [22] also assessed whether CT texture and CT features are predictive
of pNETs. Preoperative contrast-enhanced CT images of 101 patients with pNETs were
assessed. The images were evaluated for tumor location, tumor size, tumor pattern, pre-
dominantly solid or cystic composition, presence of calcification, presence of heterogeneous
enhancement on contrast-enhanced images, presence of pancreatic duct dilatation, presence
of pancreatic atrophy, presence of vascular involvement by the tumor, and presence of lym-
phadenopathy. Their results showed that a size larger than 2.0 cm is useful for predicting
aggressive tumors (grades 2 and 3). The only texture parameter predictive of tumor grade
was entropy with a spatial scale filter 2 (AUC of 0.65).

Reinert et al. [23] also assessed the role of CT texture analysis for differentiation of
PDACs from pNETs in the portal venous phase, comparing this data with visual assessment
and tumor-to-pancreas attenuation ratios obtained by placing large hand-drawn ROIs in
18F-FDG PET/CT, 68Ga-DOMITATE-PET/CT, dual-phase CT (including an arterial phase),
and contrast-enhanced MRI of the pancreas. They obtained highly significant (p < 0.005)
discriminatory textural features between PDACs and pNETs, and their model correctly
classified PDACs or pNETs in 75.8% of patients. Specifically, 42/53 patients were predicted
correctly as PDACs (sensitivity 79.2%) and 12/42 patients were predicted correctly as
pNETs (sensitivity 71.4%).

Multiple studies have evaluated the possibility of predicting the histological grade of a
pNET with CT-based texture analysis [24]. Some authors focused on the distinction between
grade 1 and grade 2/3 pNETs, according to the different degrees of surgical resection needed
(parenchyma-sparing vs. radical) and reported the performance of the tested nomogram
(radiomics + clinical features) with an AUC of 0.894-0.902, which was higher than those
of the single variables [25]. Moreover, Liang et al. [26] described a significant association
between the Ki67 level and the rate of nuclear mitosis as an expression of cell proliferation,
and a significant difference in overall survival between the G1 and G2/3 groups, predicted
by the nomogram, as further confirmation of its prognostic value. As opposed to the
previous studies, Guo et al. [27] tested radiomics features to distinguish pNETs with
grade 1/2 or grade 3 with histopathological analysis, because the latter usually need
chemotherapy or radiotherapy in addition to surgery. They found that, among conventional
imaging features, arterial and portal enhancement ratios have the best sensitivity (86–94%)
and specificity (92–100%), whereas among radiomics imaging features, mean gray-level
intensity, entropy, and uniformity demonstrated good sensitivity (73–91%) and specificity
(85–100%); when incorporating all these features together, the resulting AUC was ≥0.90.
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Adenocarcinoma

For adenocarcinoma, radiomics and CT have been studied for differential diagnosis
and survival prediction. Ren et al. [28] used CT and radiomics to assess their predictive
ability in the differential diagnosis between pancreatic adenosquamous carcinoma (PASC)
and PDAC. For this purpose, 81 patients with PDAC and 31 patients with PASC who
underwent preoperative CECT were included. The authors selected seven radiomics
features from late arterial phase images and three from the portal venous phase out of
792 radiomics features by using the random forest method extracted from the late arterial
phase and portal venous phase. They validated their radiomics signature by using the
10-times leave-group-out cross-validation (LGOCV) method. Their signature showed
promising results as a noninvasive method in the differential diagnosis between PASC and
PDAC with 94.5% accuracy, 98.3% sensitivity, 90.1% specificity, 91.9% positive predictive
value (PPV), and 97.8% negative predictive value (NPV).

Radiomics could be a supportive tool for the distinction of molecular phenotypes of
PDAC that have different behaviors in terms of response to treatment and survival. A
random forest (RF) ML algorithm by Kaissis et al. [29] was tested to distinguish between
quasi-mesenchymal (QM − KRT81+) and non-quasi-mesenchymal (non-QM − HNF1a+)
subtypes from radiomics features, reaching an AUC of 0.93, a sensitivity of 0.84, and a
specificity of 0.92. Moreover, differences were reported in the median OS for identified QM
and non-QM tumors at 16.1 and 20.9 months, respectively (HR 1.59).

Considering the poor outcome of PDAC, multiple studies have tested the application of
radiomics in prognosis prediction, especially in patients that underwent curative surgery at
risk for postoperative recurrence [30,31]. According to Xie et al. [32], a CT-based Rad-score
with five features resulted in an independent prognostic factor for disease-free survival
(DFS, HR 2.556) and overall survival (OS, HR 3.741) and patients with a higher Rad-
score demonstrated a significantly poorer prognosis. No significant correlation was found
between Rad-score and tumor recurrence. The combination of texture parameters with
clinical data (differentiation grade, CA19-9, and TNM stage) into a radiomics nomogram
could be a good survival estimator, also outperforming the clinical model and the TNM
staging, with a C-index of 0.697 in the DFS analysis and 0.726 in the OS analysis.

Other authors focused on specific radiomics features, especially related to tumor
heterogeneity and its prognostic role. Kim et al. [33] evaluated the differences in gray-level
non-uniformity (GLN) as a texture parameter, and also created a Kaplan–Meier survival
curve. After ROI placement on arterial CT images, significantly higher GLN values were
found in tumors compared to normal pancreatic tissue and in cases with T3 diseases
or poorly differentiated tumors. After multivariate analysis, a high GLN135 value, i.e.,
increased tissue heterogeneity, was statistically associated with a poor prognosis, and
consequently, with short recurrence-free survival. Moreover, the presence of a non-uniform
texture reflected an increased biological aggressiveness of the tumor, considering the
nodal stage and the tumor differentiation. Authors further highlighted the prognostic role
of texture analysis through the identification of histopathological features of the tumor,
correlating the lower uniformity of pixel values and the higher level of hypoxia markers.
Eilaghi et al. [34] described that uniformity, entropy, and correlation are significantly
different in healthy and diseased parenchyma, but they are not associated with survival.
On the contrary, the dissimilarity and inverse difference normalized were significantly
related to OS, both with an AUC of 0.716, overcoming tumor intensity and tumor size.

The presence of nodal metastases is another indicator of poor prognosis after surgery
that, according to Fang et al. [35], could be predicted with a texture analysis of a preoper-
ative CT scan. In their cohort of 155 operable patients (73 with and 82 patients without
nodal involvement), 10 texture features were significantly different in the two groups. The
SumAverage, i.e., the measure of overall image brightness, resulted in being the most
common co-occurrence matrix-based feature on portal venous images that indicated the
overall density of the CT image, either at 1.25 mm or 5 mm. Differently, Li et al. [36]
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developed a combined prediction nomogram, based on the pathological grade, CT-based
node status and a radiomics signature of 15 features that yielded an AUC of 0.912.

3.1.2. Non-Oncological Applications

As for non-oncological application, there is still little evidence about CT radiomics
and its implications with pancreatitis. While some authors have looked into the prediction
of recurrence [37], others tried to evaluate whether a radiomics model could differentiate
between acute and chronic pancreatitis [38].

Pancreatitis

Radiomics has been also tested in the support of non-oncological diagnosis, mainly in
the identification of recurrent acute pancreatitis (AcP). Chen et al. [37] evaluated texture
features on CT images at the first AcP episode to build a radiomics model of 10 features.
This radiomics predictive model reached an AUC of 0.929, an accuracy of 89%, a sensitivity
of 83.8%, and a specificity of 97.7%, outperforming the clinical model (an AUC of 0.671, an
accuracy of 61%, a sensitivity of 60.5% and a specificity of 62.2%). Mashayekhi et al. [38]
also included functional abdominal pain and chronic pancreatitis (CP) in the differential
diagnosis with recurrent AcP. Their radiomics model included 11 features, 10 of which
belonged to the gray-level co-occurrence matrix (GLCM) category and demonstrated high
performance in the distinction of recurrent AP from nonspecific abdominal pain with
AUC values of 0.77–0.95 and from CP with AUC values of 0.73–0.92. Then, an overall
predictive accuracy of 82.1 % was found for the three diagnoses with an IsoSVM classifier,
and recurrent AcP had the lowest rate of misclassification (5% vs. 21% for abdominal pain
and 25% for CP).

Table 1 provides a summary of the papers included in the review, focused on the
application of radiomics in CT images.

3.2. Radiomics and PET-CT
3.2.1. Oncological Applications

Some PET-based radiomics studies have also been proposed [3,4,39–46]. PET images
help in the characterization of biological features of tumors, which are usually associated
with their sensitivity and/or aggressiveness [4]. Moreover, [18F]F-fluorodeoxyglucose
(FDG) positron emission tomography/computed tomography (PET/CT) combines func-
tional information and anatomic information [3].

Tumor delineation is one of the factors that may affect radiomics features. PET images
are considered to be difficult to delineate as edge contours of uptake regions are not sharp
and clear. Belli et al. [4] investigated the impact of delineation variability on PET radiomics
features. For this purpose, they included 25 pancreatic cancer patients previously treated
with FDG PET/CT. The authors found that PET_edge was sufficiently robust against
manual delineation, which suggests the possibility of replacing manual with semiautomatic
delineation of pancreatic tumors. In a different study, Zhang et al. [39] concluded that the
quantified radiomics model is significantly superior to both human doctors and clinical
factor-based prediction models in terms of accuracy and specificity for the differentiation of
autoimmune pancreatitis and PDAC in F-FDG PET/CT images. According to their results,
the combination of the SVM-RFE feature selection strategy and linear SVM classifier had
the highest diagnostic performance, with an AUC of 0.93.
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Table 1. Applications of radiomics in pancreatic CT images.

Author Year Radiomics
Analysis Task N Pts Data Split Ref Standard CT Phase Results

Yang 2019 LIFEx software
Differential

diagnosis (MCN
vs. SCN)

78 (25 MCNs,
53 SCNs) RW (TS:DS = 4:1) Histopathology AP, PVP

Radiomics features, 2 mm: AUC 0.66, Acc 74%,
Sen 86%, Spe 71%

Radiomics features, 5 mm: AUC 0.75, Acc 83%,
Sen 85%, Spe 83%

Yang (1) 2019 LIFEx software
Differential

diagnosis (MCN
vs. SCN)

91 (32 MCNs,
59 SCNs) SW Histopathology PAP

Textural features: AUC 0.777
Textural features + morphological

characteristics: AUC 0.893

Xie 2019
In-house
algorithm

(MATLAB R2017a)

Differential
diagnosis (MCN

vs. SCN)

57 (31 MCNs,
26 SCNs) SW Radiologist AP, PVP, DP

Radiomics model: AUC 0.989, Acc 94.7%, Sen
93.6%, Spe 96.2%

Combined model (radiomics + radiological
features): AUC 0.994, Acc 98.2%, Sen 96.8%,

Spe 100%

Chen 2021
Analysis Kit

Software
(v 3.0.0.R)

Differential
diagnosis (PCN

vs. SCN)

89 (31 SCNs,
30 IPMNs,
28 MCNs)

RW (63 TS, 26 VS) Radiologist NECT, AP,
PVP

Radiomics signature NECT + AP + PVP:
AUC 0.817

Wei 2019 NS
Differential

diagnosis (PCN
vs. SCN)

260 (102 SCNs,
158 non-SCNs) SW (200 TS, 60 VS) Radiologist AP, PVP Radiomics method: AUC 0.837, Sen 66.7%,

Spe 81.8%

Shen 2020 ANN, RF, SVM
(MATLAB 2017b)

Differential
diagnosis (PCN)

164 (76 SCAs, 40
MCNs, 48 IPMNs) SW (115 TS, 41 VS) Histopathology AP Radiomics model (nine features) Acc 71.43%

(SVM, ANN), 79.59% (RF)

He 2019 Pyradiomics
Differential

diagnosis (PDAC
vs. pNET)

147 (80 PDACs,
67 pNETs) SW (100 TS, 47 VS) Radiologist PAP, PVP

Radiomics signature: AUC 0.873, Acc 76.6%,
Sen 92.3%, Spe 70.6%

Integrated model (radiomics + clinical
features): AUC 0.884, Acc 80.4%, Sen 80.0%,

Spe 80.8%

Li 2018 FireVoxel Software
Differential

diagnosis (PDAC
vs. pNET)

75 (50 PDACs,
25 pNETs) SW Radiologist AP, PVP Combined fifth + skewness as the best

parameters: AUC 0.887, Sen 90%, Spe 80%

Reinert 2020 Pyradiomics
Differential

diagnosis (PDAC
vs. pNET)

95 (53 PDACs,
42 pNETs) SW Radiologist PVP

Significant discriminatory features: first-order
features, i.e., median, total energy, energy,
10th percentile, 90th percentile, minimum,

maximum; second-order feature, i.e.,
gray-level co-occurrence matrix informational

measure of correlation (Sen 79%, Spe 71%)
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Table 1. Cont.

Author Year Radiomics
Analysis Task N Pts Data Split Ref Standard CT Phase Results

Yu 2020 Analysis Kit
Software

Differential
diagnosis (PDAC

vs. pNET)

120 (80 PDACs,
40 pNETs) RW Radiologist AP, PVP AP texture model: AUC 0.855

PVP texture model: AUC 0.929

Ren 2020
Analysis Kit

Software
(v 3.0.0.R)

Differential
diagnosis (PDAC

vs. PASC)

112 (81 PDACs,
31 PASCs) RW (TS:DS = 2:1) Histopathology PAP, PVP Acc 94.5%, Sen 98.3%, Spe 90.1%, PPV 91.9%,

NPV 97.8%

Tobaly 2020 Pyradiomics
(v 2.2.0) IPMN grading 408 (181 benign,

227 malignant)
SW (296 TS,

112 VS) Histopathology PAP, PVP

Benign vs. malignant IPMN radiomics model:
AUC 0.71, Acc 64%, Sen 69%, Spe 57%

Radiomics + surgical indication: AUC 0.75,
Acc 67%, Sen 69%, Spe 65%

Hanania 2016 IBEX Prediction of
IPMN malignancy

53 (34 high-grade,
19 low-grade) SW(TS:DS = 7:3) Histopathology AP Radiomics panel (10 features): AUC 0.96, Sen

97%, Spe 88%

Permuth 2016

In-house
algorithm
(Definiens
Platform)

Prediction of
IPMN malignancy

38 (20 benign,
18 malignant) SW(TS:DS = 9:1) Histopathology AP, PVP

Radiomics signature (14 features): AUC 0.77,
Sen 83%, Spe 74%

Integrated model 1 (radiomics + genomic
data): AUC 0.92, Sen 83%, Spe 89%

Integrated model 2 (radiomics + standard
imaging + genomic data): AUC 0.93, Sen 89%,

Spe 89%

Canellas 2018 TexRAD (v 3.1) pNET grading
101 (63 grade 1,

35 grade 2,
3 grade 3)

SW Histopathology PVP
Entropy as an independent predictor: OR 3.7,
AUC 0.65, values > 4.65 with differences in

DFS (G1 vs. G2/G3)

Gu 2019 Pyradiomics
(v 1.3.0)

pNET grading (G1
vs. G2/G3)

138 (57 grade 1,
69 grade 2,
12 grade 3)

RW (104 TS, 34 VS) Histopathology AP, PVP Nomogram (radiomics features + clinical risk
factor tumor margin): AUC 0.902

Guo 2019 MATLAB R2014a pNET grading
(G1/G2 vs. G3)

37 (13 grade 1,
11 grade 2,
13 grade 3)

RW Histopathology NECT, AP,
PVP

Texture features
AUC 0.93, Sen 91.7%, Spe 84.6%
Size/margin + texture features

AUC 0.958, Sen 91.6%, Spe 87.5%

Liang 2019
In-house
algorithm

(MATLAB R2016a)

pNET grading (G1
vs. G2/G3)

137 (70 grade 1,
67 grade 2/3) RW (86 TS, 51 VS) Histopathology AP Nomogram (eight radiomics features + clinical

stage): AUC 0.891
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Table 1. Cont.

Author Year Radiomics
Analysis Task N Pts Data Split Ref Standard CT Phase Results

D’Onofrio 2019 MaZda Software
(v 4.6) pNET grading

100 (31 grade 1,
52 grade 2,
17 grade 3)

RW Radiologist AP, PVP

Kurtosis is different among three G groups:
AUC 0.924, Sen 82%, Spe 85% for G3 diagnosis
Entropy different between G1 and G3 and G2
and G3 groups: AUC 0.732, Sen 82%, Spe 64%

for G3 diagnosis

Kaissis 2020 Pyradiomics PDAC
classification

207 (45 QM,
136 non-QM,

26 unclassifiable)
SW (181 TS, 26 VS) Histopathology PVP AUC 0.93, Sen 0.84, Spe 0.92

Attiyeh 2018 MATLAB R2015a PDAC prognosis 161 SW (113 TS, 48 VS) Radiologist PVP

Model A, preoperative CA19-9 and image
features: c-index 0.69

Model B, preoperative CA19-9, Brennan score
(postresection pathological variables), and

image features: c-index 0.74

Khalvati 2019 Pyradiomics PDAC prognosis 98 SW (30 TS, 68 VS) Radiologist PAP, PVP Radiomics signature: HR 1.35 (Reader 2),
1.56 (Reader 1)

Yun 2018 NS PDAC prognosis 88 (70 recurrence,
18 non-recurrence) SW Radiologist PAP, PVP

Correlation of recurrence with texture features
Average: AUC 0.736, standard deviation: AUC
0.709, contrast: AUC 0.692, correlation: AUC
0.698 Survival analysis nodal metastasis: HR

2.0375, average: HR 0.5599, standard deviation
HR 0.5745

Xie 2020 NS PDAC prognosis 220 SW (147 TS, 73 VS) NS PAP
Rad-score: low-RS correlated with better

prognosis (AUC 0.715), HR 2.556 for DFS, HR
3.741 for OS

Kim 2019 NS PDAC prognosis 116 SW Radiologist AP GLN135: higher levels correlated with shorter
DFS (HR 6.030)

Eilaghi 2017 MATLAB R2015a PDAC prognosis 30 SW Radiologist PAP, PVP
Prediction of OS

Tumor dissimilarity: AUC 0.716
Inverse difference normalized: AUC 0.716

Fang 2020 MaZda Software
(v 4.6)

Prediction of LN
metastasis

155 (73 nodal
matastases, 82
without nodal

metastases)

RW Histopathology AP, PVP
Ten texture features with significance in ROC
analysis: biggest AUC 0.630 for wavelet-based

feature WavEnLH_s-2
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Table 1. Cont.

Author Year Radiomics
Analysis Task N Pts Data Split Ref Standard CT Phase Results

Li 2020 Pyradiomics Prediction of LN
metastasis

159 (59 nodal
matastases,
100 without

nodal metastases)

SW (118 TS, 41 VS) Histopathology AP, PVP Radiomics signature (15 features): AUC 0.912

Chen 2019 IBEX AcP prognosis 389
(181 recurrent AcP)

RW (271 TS, 118
VS) Radiologist AP, PVP Recurrence prediction: AUC 0.929, Acc 89.0%

Mashayekhi 2020
In-house
algorithm

(MATLAB)

Differential
diagnosis

(recurrent AcP
vs. CP)

56 (20 recurrent
AcP, 19 functional
abdominal pain,

17 CP)

SW Radiologist PVP Acc 82.1%; recurrent AP: AUC 0.88, Sen 95%,
Spe 78%; CP: AUC 0.90, Sen 71%, Spe 95%

Acc—accuracy, ANN—artificial neural network, AP—arterial phase, AcP—acute pancreatitis, AUC—area under the curve, CECT—contrast-enhanced computed tomography, CNN
—convolutional neural network, CP—chronic pancreatitis, CT—computed tomography, DFS—disease-free survival, DP—delayed phase, HR—hazard ratio, IPMN—intraductal papillary
mucinous neoplasm, MCN—mucinous cystic neoplasm, NECT—non-enhanced computed tomography, NS—not specified, OR—odds ratio, OS—overall Survival, PAP—pancreatic phase,
PASC—pancreatic adenosquamous carcinoma, PDAC—pancreatic ductal adenocarcinoma, PCN—pancreatic cystic neoplasm, pNET—pancreatic neuroendocrine tumor, PVP—portal
venous phase, RF—random forest, RW—record-wise, SCA—serous cystic adenoma, SCN—serous cystic neoplasm, SVM—support vector machine, Sen—sensitivity, Spe—specificity,
SW—subject-wise, TS—training set, VS—validation set.
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pNET

Other studies have assessed the potentiality of radiomics analysis extracted by [68Ga]Ga-
DOTATOC PET/CT [40,41]. Mapelli et al. [40] found that specific texture features de-
rived from preoperative [68Ga]Ga-DOTATOC and 18F-FDG PET/CT could noninvasively
predict specific tumor characteristics and outcomes of patients with NETs. Meanwhile,
Liberini et al. [41] carried out a pilot study on two NET patients. Their preliminary results
suggested the use of RFs and TLSREwb-50 and SRETVwb-50 as parameters to evaluate the
response to peptide receptor radionuclide therapy (PRRT) in their patients.

Adenocarcinoma

Lim et al. [42] investigated FDG PET/CT images of 48 patients with PDAC. Their
results showed that genetic alterations of KRAS (correlated with reduced low-intensity
textural signatures) and SMAD4 (correlated with reduced high-intensity textural signatures)
had significant associations with FDG PET-based radiomics features in PDAC.

Moreover, Xing et al. [3] developed and validated a model based on radiomics features
derived from [18F]F-fluorodeoxyglucose PET/CT images to preoperatively predict the
pathological grade of PDACs. Their model, based on a twelve-feature-combined radiomics
signature, could stratify PDAC patients into grade 1 and grade 2/3 groups with an AUC of
0.994 in the training set and 0.921 in the validation set.

Other studies focused on the identification of prognostic features in FDG PET/CT
images in patients treated with stereotactic body radiation therapy. Cui et al. [43] included
139 patients with locally advanced pancreatic cancer that underwent the PET/CT study
for the planning of the radiation treatment, and they identified a prognostic signature
of seven features, including texture feature, shape complexity, and SUV intensity distri-
bution. Through multivariate analysis, the proposed model was significantly associated
with overall survival with a hazard ratio of 3.72 and outperformed conventional imaging
parameters, i.e., gross tumor volume and maximum standardized uptake value (SUVmax).
Yue et al. [44] identified five significant prognostic variables with multivariate Cox analysis
(age, node stage, variations of homogeneity, variance, and cluster tendency) that are able to
predict therapy response using both pre- and post-treatment FDG PET/CT. Specifically,
they evaluated the texture variation between the two examinations as an index of locore-
gional metabolic response: a lower texture variation (<15%) was found in the high-risk
group with a shorter mean overall survival (17.7 months).

Liu et al. [45] developed a radiomics-based prediction model using dual-time PET/CT
imaging for the noninvasive classification of PDAC and autoimmune pancreatitis (AIP)
lesions. In their series, they included 112 patients (48 patients with AIP and 64 patients with
PDAC). Their model was developed from a combination of the SVM-RFE and linear SVM
with the required quantitative features. The multimodal and multidimensional features
obtained an average AUC of 0.9668, an accuracy of 89.91%, a sensitivity of 85.31%, and a
specificity of 96.04%.

Toyama et al. [46] evaluated the prognostic value of FDG PET radiomics and found
that the gray-level zone length matrix (GLZLM) gray-level non-uniformity (GLNU) PET
parameter was the most relevant factor for predicting 1-year survival, followed by total
lesion glycolysis (TLG). The combination of GLZLM, GLNU, and TLG stratified patients
into three groups according to the risk of poor prognosis.

Table 2 provides a summary of the papers included in the review, focused on the
application of radiomics in PET-CT images.
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Table 2. Applications of radiomics in pancreatic PET-CT images.

Author Year Radiomics
Analysis Task N Pts Data Split Reference

Standard Radiotracer CT Phase Results

Liu 2021 SVM (MATLAB
R2018a)

Differential
diagnosis
(PDAC vs.

autoimmune
pancreatitis)

112 (64 PDACs,
48 autoimmune

pancreatitis)
RW Radiologist FDG NECT AUC 0.9668, Acc 89.91%, Sen 85.31%,

Spe 96.04%

Zhang 2019 SVM (MATLAB
R2017a)

Differential
diagnosis
(PDAC vs.

autoimmune
pancreatitis)

111 (66 PDACs,
45 autoimmune

pancreatitis)
RW Radiologist FDG NECT AUC 0.93, Acc 85%, Sen 86%, Spe 84%

Lim 2020 MIM (v 6.4) PDAC
classification 48 SW Radiologist FDG NECT

KRAS gene mutation: significant association
with long-run emphasis (AUC 0.806), zone

emphasis (AUC 0.794), large-zone emphasis
(AUC 0.829);

SMAD4 gene mutation: significant association
with standardized uptake value skewness

(AUC 0.727), long-run emphasis (AUC 0.692),
high-intensity textural features such as run
emphasis (AUC 0.775), short-run emphasis

(AUC 0.736), zone emphasis (AUC 0.750), and
short-zone emphasis (AUC 0.725)

Xing 2021 Pyradiomics PDAC grading 149 RW (99 TS,
50 VS)

Nuclear
medicine
physician

FDG NECT Prediction model (12 features): AUC 0.921 for
G1 vs. G2/3

Mapelli 2020

Chang-Gung
Image Texture

Analysis
software

package (v 1.3)

pNET prognosis 61 RW NS DOTADOC,
FDG NECT

DOTATOC PET:
SZV, entropy, intensity variability, and SRD

were predictive of tumor dimension;
FDG PET:

intensity variability, SZV, homogeneity,
SUVmax, and MTV were predictive for

tumor dimension

Liberini 2020 LIFEx software
(v 5.10) pNET prognosis 2 SW NS DOTADOC NECT A significant difference of 28 radiomics

features in pre- and post-treatment studies
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Table 2. Cont.

Author Year Radiomics
Analysis Task N Pts Data Split Reference

Standard Radiotracer CT Phase Results

Toyama 2020 LIFEx software PDAC
prognosis 161 SW Histopathology FDG NECT GLZLM GLNU as an independent predictor

factor for poor prognosis (HR 2.0)

Cui 2016 MITK software
(v 3.1.0.A)

PDAC
prognosis 139 SW (90 TS,

49 VS) NS FDG NECT Prognostic signature (seven features): HR 3.72

Yue 2017 3D kernel-based
approach

PDAC
prognosis 26 SW NS FDG NECT

Low-risk group: higher texture variation
(>30%) and longer mean OS (29.3 months);

high-risk group: lower texture variation
(<15%) and shorter mean OS (17.7 months)

Belli 2018 CGITA software
(v 1.4)

Tumor
segmentation 25 SW Radiologist FDG NECT DSC 0.73

Acc—accuracy, AUC—area under the curve, CT—computed tomography, DOTADOC—DOTA-Tyr-octreotide, FDG—fluorodeoxyglucose, HR—hazard ratio, NECT—non-enhanced com-
puted tomography, NS—not specified, OS—overall survival, PET—positron emission tomography, pNET—pancreatic neuroendocrine tumor, PDAC—pancreatic ductal adenocarcinoma,
RW—record-wise, Sen—sensitivity, Spe—specificity, SW—subject-wise, TS—training set, VS—validation set.
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3.3. Radiomics and MRI
3.3.1. Oncological Applications

MRIs offer several advantages in the diagnosis of pancreatic tumors, such as contrast
resolution and a better examination of the pancreaticobiliary system [47].

When evaluating cystic lesions with MRI, one of the daily challenges of a radiologist
is examining IPMNs and expressing the likelihood of malignant degeneration. On this
note, some authors investigated the use of MR radiomics signatures to predict the risk
of malignancy of IPMNs through texture analysis alone [48] or combining both clinical
characteristics and radiological characteristics [49].

As previously stated, the radiomics of pNETs has been studied thoroughly for their
immediate clinical implications. When it comes to MRI findings, some authors [50] have
investigated radiomics models that could predict the histopathologic grade of pNETs. On
the other hand, other authors have focused mainly on differentiating pNETs from SPNs,
either with T1WI and postcontrast phases [51] or with the use of DWI sequences together
with other standard phases [52].

As for adenocarcinoma, most studies about the radiomics of MRI rely on ADC metrics
either to differentiate normal parenchyma from pancreatic neoplasm [53] or for outcome
prediction and overall survival [54].

Cystic Lesions

Jeon et al. [48] studied the utility of MR findings and texture analysis for predicting
the malignant potential of pancreatic IPMNs. The authors found seven significant pre-
dictors of malignancy: effective diameter, surface area, sphericity, compactness, entropy,
and gray-level co-occurrence matrix entropy (p < 0.05). They calculated the diagnostic
performance by using Cohen’s κ for predicting malignant IPMNs, which was 0.80 (good
agreement). Recently, Cui et al. [49] assessed the use of a nomogram combining clinical
characteristics and radiomics features, including histograms, texture parameters, the RLM
(run-length matrix), and the GLCM (gray-level co-occurrence matrix), for the diagnosis
of high-grade branching-type IPMNs in 202 patients from three medical centers. Their
radiomics signature obtained AUC values of 0.836 in the training cohort, 0.811 in the first
external validation cohort, and 0.822 in the second external validation cohort, whereas
using the radiomics nomogram, the high-grade disease-associated AUC values were 0.903
(training cohort), 0.884 (external validation cohort 1), and 0.876 (external validation cohort
2). Their radiomics nomogram model could effectively distinguish high-grade patients
with IPMN preoperatively, resulting in better treatment methods and tailored therapy in
patients with IPMN.

pNET

Regarding pNETs, Guo et al. [50] proved that MRI findings, including tumor margin,
texture, local invasion or metastases, tumor enhancement, and diffusion restriction, as well
as texture parameters, can aid in the prediction of pNET grading. For this purpose, they
evaluated the performance of MRI findings and texture parameters for the prediction of the
histopathologic grade of a pNET with 3-T magnetic resonance. They included 31 G1, 29 G2,
and 17 G3 patients. G2/G3 tumors showed higher frequencies of an ill-defined margin, a
predominantly solid tumor type, local invasion or metastases, hypoenhancement in the
arterial phase, and restriction diffusion. The AUCs of six predicting models on T2WI and
DWI ranged from 0.703 to 0.989. Song et al. [51] assessed the value of radiomics param-
eters derived from MRI in the differentiation of hypovascular nonfunctional pancreatic
neuroendocrine tumors (hypo-NF-pNETs) and solid pseudopapillary neoplasms of the
pancreas (SPNs) by including fifty-seven SPN patients and twenty-two hypo-NF-pNET
patients. They extracted radiomics features from the T1WI, arterial, portal, and delayed
phases of MR images. The radiomics signature of the arterial phase was picked to build
a clinic-radiomics nomogram. The nomogram, composed of the age and radiomics sig-



Healthcare 2022, 10, 1511 17 of 30

nature of the arterial phase, showed sufficient performance for discriminating SPNs and
hypo-NF-pNETs with AUC values of 0.965 and 0.920 in the training and validation cohorts,
respectively. Similarly, Li et al. [52] tested preoperative MRI-based texture analysis to
differentiate NF-pNETs (201 patients) and SPNs (101 patients). Nonlinear discriminant
analysis (NDA) had a lower value of misclassification rate, especially with DWI sequences
(7.92%) than radiologists (34.65%), and the postcontrast DCE-T1WI+fs sequence appeared
to provide more information for the distinction with mean and percentile as the most
discriminative features.

Adenocarcinoma

In adenocarcinoma, MR and radiomics have shown great results in differentiating nor-
mal pancreatic parenchyma from pancreatic neoplasm. In 2019, Taffel et al. [53] evaluated
whole-lesion 3D histogram apparent diffusion coefficient (ADC) metrics for the assessment
of pancreatic malignancy. For this purpose, forty-two patients with pancreatic malignancies
(36 PDACs, 6 PanNETs) had undergone abdominal MRI with diffusion-weighted imaging
before endoscopic ultrasound biopsy or surgical resection. The volumetric ADC histogram
metrics showed to be effective as a noninvasive biomarker of pancreatic malignancy with
an AUC = 0.787–0.792.

The identification of the specific PDAC subtypes could have an important prognostic
role in a different rate of treatment response and changes in the overall survival. PDAC
has a high heterogeneity on a genetic, proteomic, and transcriptomic level that cannot
be appreciated on conventional imaging techniques. Kaissis et al. [54] developed an ML
model for the extraction of radiomics features from the diffusion-weighted imaging (DWI)-
derived ADC maps for a prognostic evaluation of the tumor. Their algorithm achieved high
performances in the outcome prediction with 87% sensitivity, 80% specificity, and 90% AUC
in the distinction of above- versus below-median overall survival and the main indicative
imaging features belonged to the heterogeneity-related group. Moreover, according to
the histopathological classification, almost all the patients with a quasi-mesenchymal
tumor subtype (8/9) demonstrated a below-median overall survival. The same research
group performed a similar study, focusing on molecular PDAC subtypes and response
to chemotherapy. Specifically, KRT81+ patients had a significantly lower median overall
survival than KRT81- patients (7.0 vs. 22.6 months, HR 4.03) and a better response to
gemcitabine-based chemotherapy over FOLFIRINOX (10.14 vs. 3.8 months median overall
survival, HR 2.33). On the contrary, FOLFIRINOX was more effective in KRT81- patients
than the gemcitabine-based treatment (30.8 vs. 13.4 months median overall survival, HR
2.41) [55].

3.3.2. Non-Oncological Applications

In 2016, Becker et al. [56] demonstrated that b-values significantly affect texture
analysis on DWI images. To this purpose, echo-planar DWI sequences at 16 b-values
ranging between 0 and 1000 s/mm2 were acquired at 3-T in 8 healthy male volunteers.
According to the authors, several texture features vary systematically in healthy tissues at
different b-values, which needs to be taken into account if DWI data with different b-values
are analyzed.

Pancreatitis

Radiomics models have been applied to the study of pancreatitis whose diagnosis is
mainly based on morphological changes in the pancreas using conventional imaging tech-
niques [57,58]. In the very early phases of acute pancreatitis, those pancreatic abnormalities
are not easy to evaluate and could lead to underestimating the incidence of the disease.
Starting from this idea, Lin et al. [57] developed a radiomics model using contrast-enhanced
MRI (CE-MRI), specifically on the portal venous phase images, for the prediction of the
AcP severity also in the early stages of the disease. Their model had an AUC of 0.848 in the
training cohort and outperformed the conventional scoring systems, i.e., the MR severity
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index (MRSI; AUC 0.719), Acute Physiology and Chronic Health Evaluation (APACHE II;
0.725), and bedside index for severity in AcP (BISAP; AUC 0.708).

In 2020, Frokjaer et al. [58] assessed the texture analysis in MRI examinations from
77 patients with CP and 22 controls and obtained a 97% sensitivity, 100% specificity, and
98% accuracy in the classification of chronic pancreatitis vs. healthy controls.

Table 3 provides a summary of the papers included in the review, focused on the
application of radiomics in MRI images.

3.4. Radiomics and PET-MRI
Oncological Applications

A study by Gao et al. [59] assessed the use of PET-MRI and radiomics for onco-
logic treatment prediction outcomes. Specifically, they focused on the imaging biomark-
ers of glucose metabolic activity and DWI derived from pretreatment integrated 18F-
fluorodeoxyglucose PET-MRI imaging as potential predictive factors of metastasis in pa-
tients with PDAC. The AUC was 0.939, 0.894, 0.924, and 0.909 for PET-GLRLM_LRHGE,
ADC-GLRLM_LRHGE, ADCGLRLM_GLNU, and ADC-GLRLM_RLNU, respectively,
whereas the logistic regression model with proposed features obtained an AUC of 1.000.

Table 4 provides a summary of the papers included in the review, focused on the
application of radiomics in PET-MRI images.

3.5. Radiomics in Combined CT and MRI Studies
Oncological Applications

Other studies included radiomics applied to both CT and MRI. In 2019, Azoulay et al. [60]
compared morphological imaging features and CT texture histogram parameters between
grade 3 pancreatic neuroendocrine tumors (G3-pNETs) and neuroendocrine carcinomas
(NECs). For this purpose, they included patients with pathologically proven G3-pNETs
and NECs who had CT and MRI examinations between 2006–2017 and were retrospectively
included. Two radiologists reviewed both CT and MRI for tumor size, enhancement
patterns, hemorrhagic content, liver metastases, and lymphadenopathies, and a texture
histogram analysis of tumors was performed on arterial and portal phase CT images. The
authors found that pancreatic NECs are larger, more frequently hypoattenuating, and more
heterogeneous with hemorrhagic content than G3-pNETs on CT and MRI with an AUC of
0.694, 78% sensitivity, and 58% specificity. Recently, Ohki et al. [61] used ADC values in
the differential diagnosis of malignant pancreatic disease. They found that texture analysis
may aid in differentiating between G1 and G2–3-pNETs.

Table 5 provides a summary of the papers included in the review, focused on the
application of radiomics in CT and MRI images.
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Table 3. Applications of radiomics in pancreatic MRI images.

Author Year Radiomics
Analysis Task N Pts Data Split Reference

Standard MRI Phase Results

Song 2021 Pyradiomics

Differential
diagnosis

(NF-pNET vs.
SPN)

79 (22 NF-pNETs,
57 SPNs) RW (TS:DS = 7:3) Histopathology T2WI, DWI, T1WI,

CE-T1WI

Precontrast T1WI: AUC 0.853
AP: AUC 0.907

PVP: AUC 0.773
DP: AUC 0.773

Clinic-radiomics nomogram: AUC 0.920,
Acc 90.0%, Sen 100.0%, Spec 71.4%

Li 2019 MaZda (v 4.6)

Differential
diagnosis

(NF-pNET vs.
SPN)

119 (61 NF-pNETs,
58 SPNs)

RW (101 TS,
18 DS) Histopathology T2WI, DWI, T1WI,

CE-T1WI
AP: AUC 0.925
DP: AUC 0.950

Cui 2021 MITK Software
(v 3.1.0.A) IPMN grading

202 (152
low-grade,

50 high-grade)

RW (103 TS,
48 VS1, 51 VS2) Histopathology T2WI, T1WI,

CE-T1WI

SET 1
Radiomics signature: AUC 0.811;

Nomogram: AUC 0.884, Sen 90.0%,
Spe 79.0%

SET 2
Radiomics signature: AUC 0.822;

Nomogram: AUC 0.876, Sen 85.7%,
Spe 83.7%

Jeon 2021 MEDIP Prediction of
IPMN malignancy

248 (142 Benign,
106 Malignant) SW Histopathology MRCP

AUC 0.85
(Greater entropy and smaller

compactness as independent predictors)

Guo 2019 Omni-Kinetics
software (v 2.0.10) pNET grading

77 (31 grade 1,
29 grade 2,
17 grade 3)

RW Histopathology T2WI, DWI, T1WI,
CE-T1WI

Independent predictors of T2WI: inverse
difference moment for G1 vs. G2 (AUC
0.833), energy+correlation+difference

entropy for G1 vs. G3 (AUC 0.989),
difference entropy for G2 vs. G3

(AUC 0.813);
Independent predictors of DWI:

correlation+contrast+inverse difference
moment for G1 vs. G2 (AUC 0.841),

maxintensity+entropy+inverse
difference moment for G1 vs. G3 (AUC

0.962), maxintensity for G2 vs. G3
(AUC 0.703)
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Table 3. Cont.

Author Year Radiomics
Analysis Task N Pts Data Split Reference

Standard MRI Phase Results

Kaissis 2019 Pyradiomics PDAC prognosis 132 SW (100 TS, 32 VS) Histopathology T2WI, DWI, T1WI,
CE-T1WI AUC 0.90, Sen 87%, Spe 80%

Kaissis (1) 2019 Pyradiomics PDAC
classification

55 (27 KRT81+,
28 KRT81-) SW Histopathology T2WI, DWI, T1WI,

CE-T1WI AUC 0.93, Sen 90%, Spe 92%

Taffel 2019 In-house software
FireVoxel Tumor diagnosis 42 (36 PDACs,

6 pNETs) SW Histopathology T2WI, DWI, T1WI,
CE-T1WI

ADC histogram differentiation
NET-PDAC: AUC 0.88-0.92, Sen 94–97%,

Spe 83–88%;
Differentiation nodal status: AUC

0.80–0.82, Sen 87%, Spe 67–83%

Becker 2017
In-house
algorithm

(MATLAB R2015b)
Impact of b-values 8 controls RW Radiologist DWI

Significant positive correlations with
b-value: skewness, contrast, correlation,

energy, LRE, GLN, RP;
Significant negative correlations with

b-value: kurtosis, entropy, homogeneity,
LGRE, SRLGE, LRLGE

Lin 2019 IBEX AcP classification 259 (142 mild AcP,
117 severe AcP) SW (180 TS, 79 VS) Radiologist CE-T1WI AUC 0.848, Acc 81.0%, Sen 75.0%,

Spe 86.0%

Frokjaer 2020
SlicerRadiomics

extension
(v 4.10.1)

CP classification 99 (77 CP,
22 controls) SW Radiologist T2WI, DWI,

MRCP Acc 98%, Sen 97%, Spe 100%

Acc—accuracy, ADC—apparent diffusion coefficient, AP—arterial phase, AcP—acute pancreatitis, AUC—area under the curve, CE—contrast-enhanced, CP—chronic pancreatitis,
DP—delayed phase, DWI—diffusion-weighted imaging, IPMN—intraductal papillary mucinous neoplasm, MRCP—magnetic resonance cholangiopancreatography, MRI—magnetic
resonance imaging, PDAC—pancreatic ductal adenocarcinoma, pNET—pancreatic neuroendocrine tumor, NF-pNET—nonfunctioning pancreatic neuroendocrine tumor, PVP—portal
venous phase, RW—record-wise, Sen—sensitivity, Spe—specificity, SPN—solid pseudopapillary neoplasm, SW—subject-wise, T1WI—T1-weighted imaging, T2WI—T2-weighted
imaging, TS—training set, VS—validation set.
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Table 4. Applications of radiomics in pancreatic PET-MRI images.

Author Year Radiomics
Analysis Task N Pts Data

Split
Reference
Standard Radiotracer MRI

Phase Results

Gao 2020 LIFEx
software

Prediction of
metastatic

disease

17 (11
metastatic

PDACs,
6 non-

metastatic
PDACs)

RW

Radiologist
and

nuclear
medicine
physician

FDG

T2W
HASTE,

DWI,
T1WI

DIXON

SUV: AUC 0.818,
Sen 72.7%, Spe

100%MTV: AUC
0.818, Sen 63.6%,
Spe 100%TLG:

AUC 0.848, Sen
72.7%, Spe 100%

AUC—area under the curve, DWI—diffusion-weighted imaging, FDG—fluorodeoxyglucose, HASTE—half-
Fourier acquisition single-shot turbo spin-echo sequence, MRI—magnetic resonance imaging, MTV—metabolic
tumor volume, PDAC—pancreatic ductal adenocarcinoma, RW—record-wise, Sen—sensitivity, Spe—specificity,
SUV—standardized uptake value, T1WI—T1-weighted imaging, T2WI—T2-weighted imaging, TLG—total
lesion glycolysis.

Table 5. Applications of radiomics in pancreatic CT and MRI images.

Author Year Radiomics
Analysis Task N Pts Data Split Reference

Standard
CT/MRI

Phase Results

Azoulay 2019 TexRAD

Differential
diagnosis
(G3-pNET
vs. NEC)

37
(14 G3-pNETs,

23 NECs)
RW Radiologist

CT: NECT,
AP, PVP

MRI: T1WI,
T2WI, DWI,

AP, PVP

CT histogram
analysis

AP skewness filter 4:
AUC 0.736

AP skewness filter 5:
AUC 0.758

PVP mean filter
0:AUC 0.712

PVP MPP filter 0:
AUC 0.712

PVP entropy filter 0:
AUC 0.719

Ohki 2021 NS

pNET
Grading
(G1 vs.
G2–G3)

33 (22
grade 1, 11
grade 2/3)

RW Radiologist

CT: AP,
PVP

MRI: ADC
map

AP log-sigma 1.0
joint-energy:
AUC 0.855

PVP log-sigma 1.5
kurtosis: AUC 0.860

ADC log-sigma
1.0 correlation:

AUC 0.847

AP—arterial phase, AUC—area under the curve, CT—computed tomography, DWI—diffusion-weighted imaging,
MPP—mean of positive pixels, MRI—magnetic resonance imaging, NEC—neuroendocrine carcinoma, NECT
—non-enhanced CT, NS—not specified, pNET—pancreatic neuroendocrine tumor, PVP—portal venous phase,
RW—record-wise, T1WI—T1-weighted imaging, T2WI—T2-weighted imaging.

4. Insights on CAD Applied to Pancreatic Imaging

In the last few years, multiple CAD software approaches have been developed and
tested on pancreatic imaging to improve the accuracy of examinations and the
clinical decision-making process [62–77]. They have shown promising results for
segmentation [65–72,77], tumor diagnosis, and classification [63,64,73–75] (Figure 3).

4.1. CAD and CT

The use of CT is routine for the diagnosis and follow-up of patients with pancreatic can-
cer. The use of CAD can help doctors improve diagnostic efficiency and accuracy [63–65],
which does not depend directly on the subjective judgment and experience of the single
physician. Even so, the application of CAD in pancreatic CT imaging may be difficult due
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to a lack of contrast between pancreatic parenchyma and bowel, large variations in the size
of the pancreatic volume, and large variations in peripancreatic fat tissue [62].
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4.1.1. Oncological Applications

Liu et al. [63] aimed to diagnose pancreatic cancer using a convolutional neural
network (CNN) classifier for CECT images. For this purpose, they used three different
datasets. The first dataset had 295 patients with pancreatic cancer and 256 controls for
training, and 75 patients with pancreatic cancer and 64 controls for validation. The second
dataset consisted of 101 patients with pancreatic cancer and 88 controls, whereas the
third dataset had 281 pancreatic cancer subjects and 82 controls. In all three sets, their
model obtained an accuracy of more than 80%. The authors compared the use of the
CNN in distinguishing pancreatic cancer from noncancerous tissue in CT to radiologist
interpretation. Their CNN-based analysis achieved higher sensitivity than radiologists did
(0.983 vs. 0.929, difference 0.054, p = 0.014). The CNN missed 3 (1.7%) of 176 pancreatic
cancers (1.1–1.2 cm). Radiologists missed 12 (7%) of 168 pancreatic cancers (1.0–3.3 cm), of
which 11 (92%) were correctly classified using the CNN. Finally, their CNN model obtained
a sensibility of 92.1% for tumors smaller than 2 cm.

Cystic Lesions

Li et al. [64] assessed the effectiveness of a CAD scheme including tumor size, contour,
location, and low-energy CT values in the differential diagnosis of pancreatic serous
oligocystic adenomas (SOAs) from MCNs of PCNs using conventional and additional
quantitative spectral CT features. The authors concluded that by combining conventional
features with additional spectral CT features, the CAD scheme improved the overall
accuracy from 88.37% to 93.02%. Reena Roy et al. [65] used a model for both an automated
whole pancreas and PCN segmentation of CT images in oncologic patients using inter-
/intraslice circumstantial instruction with preprocessing, segmentation, feature extraction,
and classification. The authors found that the combination of various algorithms such as
K-means, feature extraction using GLCM, and segmentation and classification using an
artificial neural network (ANN) provides better results with increased efficiency, resulting
in better classification of the pancreatic cysts.

4.1.2. Non-Oncological Studies

The main application of DL algorithms for non-oncological studies was the auto-
matic segmentation of pancreas and pancreatic lesions, which can support diagnosis
and treatment planning and reduce the workload. [66–72] Gibson et al. [66] used a deep
learning-based segmentation algorithm for eight organs including the pancreas. Their
model achieved a Dice similarity coefficient (DSC) of 0.78 vs. 0.71, 0.74, and 0.74. Similarly,
Xue et al. [67] also worked on automated pancreas segmentation by using a cascaded mul-
titask 3D fully convolutional network (FCN). Their method achieved a Dice score of 86.9.
Zheng et al. [68] designed a 2.5D CNN in an automatic pancreas segmentation framework
using 3D CT scans. Their method obtained a Dice similarity coefficient, sensitivity, and
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specificity of 86.21%, 87.49%, and 85.11%, respectively. However, some of the problems
of automated DL segmentation performance in pancreas CT are poor gray-value contrast
and the complex anatomy of the pancreas. To correct this situation, Boers et al. [62] de-
veloped a UNet they called iUnet to improve the quality of the colors. The performance
for manual segmentation by a radiologist was 87% in 15 min, whereas the semiautomatic
(radiologist + UNet) segmentation performance was 86% in 8 min.

Suman et al. [69] used the CTNVIDIA 3D slicer segmentation module, a DL model, for
obtaining pancreatic segmentation. They used CECT scans that were previously reported
as negative or unremarkable in the pancreatic region and obtained a DSC of 63%. Similarly,
Nishio et al. [70] used CT images and a combination of DL and data augmentation to
automatically segment the pancreas. The data augmentation method used included a
mix-up, and random image cropping and patching (RICAP). Four-fold cross-validation
was performed to train and evaluate these models with data augmentation methods and
obtained a DSC of 0.703–0.789.

The interclass indistinction problem occurs as the density of the surrounding tissue
is similar to that of the pancreas, resulting in the surrounding tissue being grouped with
the pancreas, whereas the intraclass inconsistency occurs when the middle part of the
pancreas is mistaken for the background, resulting in incomplete pancreas segmentation.
Recently, Li et al. [71] focused on solving the issues of intraclass inconsistency and interclass
indistinction in pancreas segmentation. To do this, they improved the contextual and
semantic feature information acquisition method of the biomedical image segmentation
model (UNet) based on a convolutional network and proposed an improved segmentation
model called the multiscale attention dense residual U-shaped network (MAD-UNet).
By using this new approach, the authors were able to reduce the effects of intraclass
inconsistency and obtained a DSC of 86.10%.

Panda et al. [72] developed two-stage 3D CNNs for fully automated volumetric
segmentation of the pancreas on CT. They also evaluated its performance in the context of
intra-reader and inter-reader reliability at 1917 abdomen full-dose and reduced-radiation-
dose CTs on a public dataset. Their 3D CNN obtained a DSC of 0.91 (0.03); they also
obtained good reliability between model and R1 in both full- and reduced-dose CT (full-
dose DSC: 0.81 (0.07), CCC: 0.83; reduced-dose DSC: 0.81 (0.08)).

Table 6 provides a summary of the papers included in the review, focused on the
application of CAD in CT images.

Table 6. Applications of CAD in pancreatic CT images.

Author Year AI Model Task N Pts Data Split Reference
Standard CT Phase Results

Li 2016 SVM

Differential
diagnosis
(SOA vs.
MCN)

42 (23 SOAs,
19 MCNs) RW Radiologist NECT, AP,

PVP Acc 93.2%

Liu 2020 CNN Tumor
diagnosis

690 local set
1(370 cases,

320 controls),
189 local set 2

(101 cases,
88 controls),

363
US test set
(281 cases,

82 controls)

SW (412 TS,
139 VS,

139 test set 1,
189 test set 2)

Pathology PVP

Local set 1: AUC 0.997,
Acc 98.6%, Sen 97.3%,

Spe 100%
Local set 2: AUC 0.999,

Acc 98.9%, Sen 99.0%, Spe
98.9%

US set: AUC 0.920, Acc
83.2%, Sen 79.0%,

Spe 97.6%

Roy 2020 ANN Tumor
segmentation NS NS NS NS NS

Gibson 2018
Dense

V-Network
FCN

Pancreas
segmentation

90 (43 public
dataset 1,
47 public
dataset 2)

SW Radiologist CECT DSC 78%

Xue 2021 3D FCN Pancreas
segmentation 59 SW Radiologist CECT DSC 86.9%

JC 77.3%

Zheng 2020 VNet Pancreas
segmentation 82 RW Radiologist CECT

DSC 86.21%
Sen 87.49%
Spe 85.11%
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Table 6. Cont.

Author Year AI Model Task N Pts Data Split Reference
Standard CT Phase Results

Boers 2020 Interactive
3D UNet

Pancreas
segmentation 100 RW (90 TS,

10 VS) Radiologist PVP

DSC 78.1%, average
automated baseline
performance 78%,

semiautomatic
segmentation performance

in 8 min 86%

Suman 2021 NVIDIA Pancreas
segmentation

188 first
batch, 159

second batch
SW Radiologist PVP DSC 63%, JC 48%, FP 21%,

FN 43%

Nishio 2020 Deep UNet Pancreas
segmentation 80 RW Radiologist CECT

DSC 70.3–78.9%, JC
0.563–0.658, Sen

64.5–76.2%, Spe 100%

Panda 2021 3D CNN Pancreas
segmentation

1917 internal
dataset,

41 external
dataset 1, 80

external
dataset 2

RW (1380 TS,
248 VS, 289
internal test

set,
50 external
test set 1,

82 external
test set 2)

Radiologist PVP

Internal dataset: DSC 91%
External dataset 1: DSC

83–84%
External dataset 2:

DSC 89%

Li 2021 MAD-UNet Pancreas
segmentation

363 (82 public
dataset 1,
281 public
dataset 2)

RW
UNet, VNet,

Attention
UNet, SegNet

CECT
DSC 86.10%
JC 75.55%

Sen 86.43%
Spe 84.97%

Acc—accuracy, ANN—artificial neural network, AP—arterial phase, AUC—area under the curve, CECT—contrast-
enhanced computed tomography, CNN—convolutional neural network, CT—computed tomography, DSC —Dice
similarity coefficient, FCN—fully convolutional network, FN—false negative, FP—false positive, JC —Jaccard
coefficient, MCN—mucinous cystic neoplasm, NECT—non-enhanced computed tomography, NS—not speci-
fied, PVP—portal venous phase, RW—record-wise, Sen—sensitivity, SOA—serous oligocystic adenoma, Spe
—specificity, SW—subject-wise, TS—training set, VS—validation set.

4.2. CAD and PET-CT

Li et al. [73] extracted major structure and location information from the ROI on CT
and PET images using a shape model-based algorithm. The algorithm used a collection of
pancreas-shaped models. Li et al. achieved a 96.47% accuracy for PDAC classification in
80 cases with a 95.23% sensitivity and 97.51% specificity.

Table 7 provides a summary of the papers included in the review, focused on the
application of CAD in PET-CT images.

Table 7. Applications of CAD in pancreatic PET-CT images.

Author Year AI Model Task N Pts Data
Split

Reference
Standard Radiotracer CT Phase Results

Li 2018 HFB-
SVM-RF

Tumor
Diagnosis

80 (40
cancer

patients,
40 controls)

RW Radiologist FDG NECT
Acc 96.47%, Sen

95.23%, Spe
97.51%

Acc—accuracy, AI—artificial intelligence, CT—computed tomography, FDG—fluorodeoxyglucose, HFB-SVM-
RF—hybrid feedback-support vector machine-random forest, NECT—non-enhanced computed tomography,
RW—record-wise, Sen—sensitivity, Spe—specificity.

4.3. CAD and MRI

The use of MRI as a soft-tissue contrast and noninvasive method is of great importance
in the medical field, and even more now thanks to the use of CAD applied to oncological
imaging [74,75].

4.3.1. Oncological Applications

Balasubramanian et al. [74] combined the response of ANN and support vector ma-
chine (SVM) techniques for pancreatic tumor classification. They used GLCM for extracting
features from MR images of the pancreas and selected the best features using the JAFER
algorithm. These features then were analyzed by five classification techniques: ANN BP,
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ANN RBF, SVM Linear, SVM Poly, and SVM RBF. Their results showed that the ANN BP
technique has a 98% classification accuracy.

Cystic Lesions

In a more recent study, Donofrio et al. [75] evaluated the diagnostic accuracy of
dynamic MRI with DWI sequences in the identification of mural nodules of pancreatic
IPMN by using pathological analysis as the gold standard. They performed a histogram
analysis of the distribution of ADC and their results showed that entropy corresponded
to the best J Youden index of 0.48 with a sensitivity of 68.75%, and a specificity of 79.25%
in the distinction between a lesion with low-grade dysplasia and one with high-grade
dysplasia. They also found that MRI with dynamic and DWI sequences was an accurate
method for the identification of 5mm solid nodules of the IPMN, which correlated with the
lesion malignancy.

4.3.2. Non-Oncological Applications

Barbieri et al. [76] prospectively assessed the feasibility of training a DNN for an
intravoxel incoherent motion (IVIM) model fitting to diffusion-weighted MRI (DW-MRI)
data. Two independent readers delineated regions of interest in the pancreas. DNNs were
trained for IVIM model fitting using these data; results were compared to least-squares
and Bayesian approaches to IVIM fitting. Their approach had high consistency between
two readers (ICCs between 50% and 97%).

Chen et al. [77] developed a DL technique for fully automated pancreas segmentation.
Their model took in multislice MR images and generated the output of the segmentation
results, obtaining a DSC of 0.88. Their DL-based technique named ALAMO was found
useful for fully automated multiorgan segmentation on abdominal MRI.

Table 8 provides a summary of the papers included in the review, focused on the
application of CAD in MRI images.

Table 8. Applications of CAD in pancreatic MRI images.

Author Year AI
Model Task N Pts Data Split Reference

Standard MRI Phase Results

D’Onofrio 2021 NS
Prediction of

IPMN
malignancy

91 SW Histopathology T2WI, T1WI,
DWI, MRCP

ADC map:
entropy = 10.32, J

Youden index
0.48, AUC 0.7288,

Sen 68.75%,
Spe 79.25%

Balasubramanian 2019 ANN,
SVM

Tumor
diagnosis

168 (68 with
lesion,

100 controls)
RW

(TS:VS = 7:3) NS NS
ANN BP 2

features (HOMO,
CP): Acc 98%, Sen

100%, Spe 95%

Barbieri 2020 DNN
Evaluation of

IVIM
performance

10 SW Radiologist DWI
Dt: ICC 94–97%

Fp: ICC 66%
Dp: 50–51%

Chen 2020
UNet-
based

ALAMO
Pancreas

segmentation 102
SW (66 TS, 16

VS, 20 test
set)

Radiologist T1WI-VIBE

Single slice:
DSC 0.871
20 slices:

DSC 0.880
40 slices:

DSC 0.871

Acc—accuracy, ADC—apparent diffusion coefficient, ALAMO—automated deep learning-based abdominal
multiorgan segmentation, ANN—artificial neural network, AUC—area under the curve, CP—cluster promi-
nence, Dp—pseudo-diffusion coefficient, DSC—Dice similarity coefficient, Dt—pure diffusion coefficient, DWI
—diffusion-weighted imaging, Fp—perfusion fraction, HOMO—homogeneity, IVIM—intravoxel incoherent mo-
tion, MRCP—magnetic resonance cholangiopancreatography, MRI—magnetic resonance imaging, NS—not
specified, RW—record-wise, Sen—sensitivity, Spe—specificity, SVM—support vector machine, SW—subject-wise,
T1WI—T1-weighted imaging, T2WI—T2-weighted imaging, TS—training set, VIBE—volumetric interpolated
breath-hold examination, VS—validation set.

5. Discussion

For pancreatic pathologies, the use of medical imaging is essential for diagnosis,
evaluation, and treatment planning [78]. The application of AI and radiomics is emerging
and expanding, especially with regard to their applications for non-oncological pancreatic
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segmentation and tumor differentiation. In this review, we divided articles depending on
their focus on CAD or radiomics, and further divided into two macro-categories based on
their topic: non-oncological and oncological studies.

As concerns the non-oncological studies included in this review, the main application
is DL segmentation, which is a useful step for training AI algorithms for detecting, char-
acterizing, and classifying pancreatic lesions. As for the oncological studies included, AI
is mainly used both for differential diagnosis and lesion segmentation. PDAC, which is
the most prevalent neoplastic disease of the pancreas, has been extensively studied in the
literature along with pNETs, especially in those studies focused on differential diagnosis.

Although great developments have occurred in recent years, it is important to address
the obstacles that still need to be overcome before these technologies can be implemented
into our clinical routines. However, despite the surge in publications on pancreas CAD and
radiomics, there has not been a clinical translation of these applications.

Despite the use of large sample sizes in some studies and a large number of extracted
features in radiomics, the limited heterogeneity of labeled training datasets may be one
of the reasons that have precluded the clinical-grade performance and generalizability of
the CAD and radiomics models. The articles reviewed were mainly retrospective with
insufficient clinical data; for this reason, it is necessary to carry out more prospective studies
that combine AI/radiomics and clinical data. Moreover, most of the articles included
considered only the venous phase in CT for assessing pancreatic lesions, whereas only
some of them included both arterial and venous phases in the study of lesion characteristics
and showed better results than those who considered just the venous phase.

According to Chen et al. [78], there are three main challenges to the application of
AI in pancreatic imaging. The first one is the inconsistencies and contradictions found in
the results of the studies. For this reason, the authors proposed that there should be an
initiative to standardize the development of quantitative imaging biomarkers. Second,
there is a need for having more public annotated data on pancreatic imaging as the available
data are not enough; this is due to the labor-intensive work that needs to be performed by
experienced radiologists to label target lesions. Furthermore, the majority of the available
studies are retrospective, with limited clinical, laboratory, and outcome data that prevent
AI from being applied in clinical practice.

We are aware that the narrative nature of our review represents a limitation due to
the absence of a systematic approach during the study selection process. We designed
our study to provide only an overview of the available literature on the application of
CAD/radiomics in pancreatic imaging.

6. Conclusions

This review demonstrated that AI applied to pancreatic imaging represents promising
tools for a noninvasive diagnosis that will allow personalized approaches to patients. Up
to now, the use of CAD and radiomics in pancreatic imaging has proven to be useful for
both non-oncological and oncological purposes. There is much excitement and optimism
about their applications; however, more multicenter, prospective, and large-scale studies
need to be performed to introduce these tools into clinical practice.
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