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Abstract: Colorectal cancer is the leading cause of cancer-associated morbidity and mortality world-
wide. One of the causes of developing colorectal cancer is untreated colon adenomatous polyps.
Clinically, polyps are detected in colonoscopy and the malignancies are determined according to
the biopsy. To provide a quick and objective assessment to gastroenterologists, this study proposed
a quantitative polyp classification via various image features in colonoscopy. The collected image
database was composed of 1991 images including 1053 hyperplastic polyps and 938 adenomatous
polyps and adenocarcinomas. From each image, textural features were extracted and combined in
machine learning classifiers and machine-generated features were automatically selected in deep con-
volutional neural networks (DCNN). The DCNNs included AlexNet, Inception-V3, ResNet-101, and
DenseNet-201. AlexNet trained from scratch achieved the best performance of 96.4% accuracy which
is better than transfer learning and textural features. Using the prediction models, the malignancy
level of polyps can be evaluated during a colonoscopy to provide a rapid treatment plan.

Keywords: colorectal cancer; colon polyp; image features; convolutional neural network

1. Introduction

Colorectal cancer (CRC) is the fourth most common newly diagnosed internal cancer
in the United States [1]. In 2020, a total of 147,951 new CRC cases and 52,300 CRC-related
deaths were reported [1] including gastrointestinal (GI)-related mortality [2]. The risk
factors are drinking, consuming red meat or processed meat, sedentary lifestyle, overweight,
smoking, and genetic diseases [3,4]. However, genetic problems are less than five percent
associated with colorectal cancer [4,5]. The possible symptoms are blood in the stool,
changes in bowel habits, weight loss, anemia, palpable mass, tenesmus, abdominal pain,
and fatigue. A CRC often transforms from a benign polyp to a malignant one [6] and can
be diagnosed by biopsy-proven tissues obtained from colonoscopy.

Polyp types can be divided into non-neoplastic (hyperplastic polyp) and neoplastic
polyps (adenomatous polyps) [7,8]. Hyperplastic polyps are usually <1 cm in diameter
and may occur in any part of the colon. They are not considered cancerous unless they
are sufficiently large to cause complications, and regular examination is recommended in
most cases. Adenomatous polyps including adenomas and sessile serrated adenomas (SSA)
are important precursors to the majority of colorectal cancer. Adenomas can be classified
into tubular adenomas, tubular villous adenomas, and villous adenomas according to
pathological classification. Other rare polyp types are hamartoma, pseudopolyps, carcinoid
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tumors, and connective tissue polyps. About 70% of colorectal cancers originate from
adenomatous polyps. In contrast, 25–30% of colorectal cancer cases originate from sessile
serrated polyps [9]. If colon adenomas are removed by colonoscopic polypectomy, patient
mortality is reduced by 53% [10]. Consequently, detecting early colon adenomatous polyps
is critical. In addition, for patients receiving anticoagulants or antiplatelet drugs such
as warfarin and clopidogrel, immediate polypectomy is not recommended [11]. The
colonoscopy examination simultaneously provides more information of polyp location and
surrounding tissues for further treatment.

With the advancements in image processing and machine learning techniques, computer-
aided diagnosis (CAD) systems have been proposed to assist clinical endoscopists to identify
different polyp types. In the past literature, CAD has been used by radiologists to detect
colon polyps in computed tomography colonoscopy [12–14]. Additionally, the automatized
colon polyp segmentation was proposed [15]. Recently, deep convolutional neural networks
(DCNN) have been proposed for colon polyp detection [16,17], segmentation [15,18], and
classification [19]. The key point of detection task is rapid. The DCNN used in the studies
can detect polys in real-time such as YOLO algorithms [16]. To correctly analyze the polyp
tissues, segmentation DCNN including Focus U-Net was introduced for a better region
extraction. As a CAD used in malignancy evaluation, handcrafted and DCNN features were
proposed to classify polyps in endoscopy video-frames [19]. As a widely used artificial
intelligence technique, DCNN has been used in the various applications in colonoscopy.
For polyp classification, both handcrafted and DCNN features are useful. However, more
complete comparisons should be established to realize the differences between features,
networks, and training methods.

To explore the classification ability and practice in clinical diagnosis, this study pro-
poses using CAD systems for polyp classification in colorectal endoscopic images using
different features, networks, and training methods. As shown in Figure 1, various ap-
proaches were implemented to compare the performance differences between machine
learning using texture features and deep learning using DCNN features, the performance
differences between DCNN models trained from scratch and transfer learning, and the
performance differences between various DCNN architectures. The evaluations would pro-
vide more practical advice to gastroenterologists about using CAD for polyp classification
in colonoscopy.

Figure 1. The flowchart of the polyp classification using colonoscopy image features.
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2. Materials and Methods
2.1. Colonoscopy Images

This study was approved by the Taipei Medical University-Joint Institutional Review
Board (approval no. N201802090c) on 25 February 2020. Between 1 January 2018 and
27 July 2018, 1991 patients underwent colonoscopy. Among these patients, 1053 were
biopsy-proven to have hyperplastic polyps, 732 had adenomas, and 206 had adenocarcino-
mas. The collected colonoscopic images were obtained from colonoscopes (GF-260 and 290,
Olympus Corporation, Tokyo, Japan). The format is jpeg with the resolution of 640 × 480.
A total of 24 bits were used for a pixel, that is, the bit depth is 8 for red (R), green (G), and
blue (B) individually. In the experiment, patient information was removed and the image
part completely presenting the lesion area was cropped to be the image database (Figure 2).
Colon polyps usually have a round or oval shape under the colonoscopy.

Figure 2. Different polys in endoscopy: (a) hyperplastic polyps; (b) adenoma; (c) adenocarcinoma.

2.2. Textural Features

Quantitative image analysis is widely used for medical images [20,21]. Some image
features used to interpret lesions can be observed by human eyes such as color and shape.
Other types of image features, such as texture features, are subtle and denote correlations
between adjacent pixel values. From the visual observations by gastroenterologists, the le-
sions including hyperplastic polyps, adenomas, and adenocarcinomas as shown in Figure 1
are mass-like which is related to shape properties. However, the light reflection and color
differences would cause the lesion segmentation to fail. That is, shape features are hardly
well-extracted from poor segmentations. Alternatively, texture features have been proposed
in many CAD systems. The pattern differences between various lesion types can provide
meaningful diagnostic information including the light reflection appeared in endoscopy.
To present the color difference among different types, the texture features can be extracted
from different color channels individually. Thus, texture features including gray-level
co-occurrence matrix (GLCM) [13] and Gabor features [22,23] were proposed in this study
for polyp classification.

GLCM extracts the spatial correlations between pixels as the texture features. First,
the co-occurrence matrices p = [p (i, j|d, θ)] are generated to show the frequencies of each
pixel (a gray value i) and its neighboring pixels (a gray value j) between a distance d and
the direction θ. In the experiment, one pixel distance and four directions: 0◦, 45◦, 90◦,
and 135◦ were calculated and averaged. From the matrices, the statistical analysis was
performed to generate various GLCM features including energy, mean, entropy, variance,
correlation, homogeneity, dissimilarity, angular second moment, and contrast [24]. These
features present the value distributions of tissue patterns. Energy is the sum of the squares
of the element values in GLCM. If all values in the matrix are equal, the energy value is
small; conversely, if some of the values are large and others are small, the energy value
is large. A large energy value indicates a more uniform and regularly changing texture
pattern. Entropy expresses the randomness of the texture. It is a measure of the amount
of information that the image has, such as uniformity or complexity. When all pixels in
the matrix are almost equal, entropy is relatively large. Contrast reflects the distribution
of values in the matrix. The greater the grayscale difference, the greater the contrast and
the greater this value. Correlation reflects the similarity among pixels in the matrix in a
row or column. Homogeneity can also be called variance, which reflects the homogeneity
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of the image texture. If the image texture is uniform between different areas and changes
slowly, homogeneity will be greater, and if the image texture is nonuniform, homogeneity
will be smaller.

Gabor wavelets generated another kind of texture feature used in the experiment
which was performed after Fourier transform. The Gabor features with various scales
and rotations were then created. A total of forty Gabor filters in five scales and eight
orientations are shown in Figure 3. In the Gabor, the sinusoid frequency and the orientation
of the normal to the parallel stripes are used [25]. Gabor filter is used for extracting texture
patterns such as what kind of specific frequency appeared in the pixels. The Gabor filter
has real and imaginary parts that are orthogonal to each other. The two can form a complex
number or be used alone. After filtering the real part, the image will be smooth, and
filtering the imaginary part is used to detect edges [22]. Texture features are extracted from
gray-scale pixels. Thus, from the original color image, three color channels were separated
into three images. Additionally, a transformed gray-scale image was generated. As shown
in Figure 4, four images were used for the feature extraction.

Figure 3. The 40 Gaussian filters in the Gabor filter.

Figure 4. Conversions from a RGB image to four R, G, B, and grayscale images.
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The use of GLCM and Gabor textures refer to the complete domain information, that
is, Gabor collected texture features from frequency domain and GLCM collected texture
features from spatial domain. After feature extraction, these image features were combined
in various classifiers to establish polyp classification models. A total of 21 classifiers
from MATLAB Classification Learner App (MathWorks Inc., Natick, MA, USA) were
used, including decision tree, logistic regression, k-nearest neighbors, ensemble learning,
and support vector machine (SVM). A 10-fold cross-validation was also performed during
model evaluation. Principal component analysis was also performed as the feature selection
to deal with the numerous features. The analysis reduces the feature dimension but
minimizes information loss at the same time [26].

2.3. DCNN Features

DCNN is a deep learning technique that uses multiple layers in artificial neural
networks [27–29]. Image features can be automatically extracted through linear or nonlinear
transformation in multiple processing layers [30]. DCNN does not require the quantification
of features through artificially designed metrics [31]. The essential architecture is composed
of convolution layers, pooling layers, fully connective layers, and activation (nonlinearity)
layers. The success of DCNN is based on the statistical analysis used to generate feature
rules for the following classification. Therefore, a large number of input images is necessary.
However, in the medical field, image data are not easily obtained such as natural images.
To solve this problem, transfer learning was introduced to use features obtained from a
pretrained model [32]. This is also called knowledge transfer, which means acquiring the
knowledge of how to perform pattern recognition in natural images and using it in medical
image classification. At present, the most widely known image database for transfer
learning is ImageNet. In its implementation, the last few layers were removed from the
pretrained model and were replaced with new layers. Then, the polyp images were fed to
train parameters of new layers. An illustration is shown in Figure 5.

Figure 5. Illustration of transferred convolutional neural network.

In the experiment, two ways were used to train a DCNN model. A DCNN trained from
scratch means all the parameters for feature extraction and classification are learned from
the target image database, i.e., the colonoscopy in this study. Another way to train a model
is transferring parameters from a pre-trained big dataset such as ImageNet. However,
ImageNet does not have too many colonoscopy images and may not be as helpful as
expected. Thus, the comparisons are shown in this study to emphasize the differences.
Moreover, the performances of different DCNN architectures were compared including
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AlexNet [33], Inception-V3 [34], ResNet-101 [35], and DenseNet-201 [36]. In the model
training, the training and test datasets were randomly selected. Each network was trained
10 times, and the averaged accuracy values were regarded as the final result.

3. Results

In the experiment, input images were firstly divided into R, G, B, and grayscale images.
After extracting GLCM and Gabor features, 21 classifiers were used. That is, the results
contained 4 image types × 2 feature types × 21 classifiers = 168 prediction models with
10-fold cross-validation. The highest accuracy of 75.6% was obtained using GLCM from
B images (Table 1), and the area under receiver operating characteristic curve was 0.82.

Table 1. The top five accuracies using the texture features and different classifiers.

Model Type Accuracy Feature

Ensemble Bagged Trees 75.6% GLCM_B

Coarse KNN 75.0% GLCM_B

Ensemble Booted Trees 73.9% GLCM_G

Ensemble RUSBooted Trees 73.5% Gabor_B

Quadratic SVM 72.8% GLCM_B
B = blue channel; G = green channel.

Using DCNN features, the performances of four types of DCNN with and without
transfer learning were also explored, including AlexNet, Inception-V3, Resnet-101, and
DenseNet-201. The parameters used in the training are learning rate = 0.001 and mini batch
size = 64 to gradually achieve the local minimum with affordable image number. Epoch
as the training iteration is set 30 for train from scratch and 3~15 for transfer learning. The
determination is based on when to achieve the training convergence.

In Table 2, without transfer learning, the networks achieved the accuracies of 96.4%,
82.4%, 80.6%, and 87.4%, respectively. All of them have accuracy higher than 80% and
the best one is 96.4%. Considering transfer learning in Table 3, the accuracies were 81.3%,
78.2%, 85.3%, and 87.7%. Inception-V3 only had 78.2% but still better than conventional
texture features. The best one is 87.7% which is no better than AlexNet trained from scratch.

Table 2. The performances of various convolutional neural networks trained from scratch.

Train from Scratch Accuracy Sensitivity Specificity

Alex 96.4% 95.7% 97.2%

Inception-V3 82.4% 78.7% 85.9%

ResNet-101 80.6% 87.2% 74.5%

DenseNet-201 87.4% 86.2% 87.7%

Table 3. The performances of various convolutional neural networks using transfer learning.

Transfer Learning Accuracy Sensitivity Specificity

Alex 81.3% 90.4% 72.6%

Inception-V3 78.2% 67.0% 87.7%

ResNet-101 85.3% 81.9% 87.7%

DenseNet-201 87.7% 83.0% 91.5%

4. Discussion

CAD has been used for polyp detection under computed tomography [13]. Based
on the success, this study explored extracting image features from colonoscopy image for
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polyp type classification. Recent literature proposed using texture features only or using
DCNN features only in the classification of colon polyps [29,37]. The implementation of
texture features is time-consuming, while it relatively costs less than DCNN. Nevertheless,
texture features are easier to be explained. In the training of DCNN, a large image dataset
and computational power are required. Although it may generate a higher accuracy, not
all the medical intuitions can afford the computation power. With respect to achieving
a higher accuracy, DCNN trained from scratch and transfer learning were implemented.
According to the result, AlexNet trained from scratch can achieve the best performance of
96.4% accuracy. Transfer learning may not improve the performance with respect to the
different networks used for the colonoscopy images. Some performances were increased
or decreased or similar. Nevertheless, the worst one had 78.2% accuracy which was still
higher than the best texture features, i.e., 75.6%.

Compared to a recent study using handcrafted and DCNN features for polyp classifi-
cation [19], Ay, Betul et al. obtained 96.3% to 98.3% accuracies from different combinations
of features and classifiers using video-frames of 80 participants. Although the number
of 80 patients is much smaller than the 1991 patients used in this study, DCNN features
performed better than handcrafted features in both studies. The accuracies higher than 96%
would show the classification abilities of DCNN in polyp classification.

In clinical use, training from scratch may take more time compared to transfer learning.
However, the accuracy difference is substantial such as 15.1% between AlexNet trained
from scratch and transfer learning. It seems necessary to train an optimal model for a
specific target task to obtain a good performance. Another way to improve the performance
would be combining various features such as texture features or intensity features and
various DCNN features in machine learning classifiers. This relates to more techniques
about feature combination and feature selection. Whether the model can be applied to
other datasets generated in different settings would be the next experiment. Then, we
can estimate if a customized model is needed for different datasets and training methods.
Meanwhile, a split validation would be performed to obtain more comparable results [38].
So far, the result shows that the prediction model can help gastroenterologists determine
the polyp types during a colonoscopy.

It is helpful for gastrologists to predict the possible pathological results of polyps.
With the prediction model based on the image features, gastrologist can have an early
estimation of tissue malignancy. Some treatment plans can be arranged in advance without
having to wait a few weeks. Using an image-based estimation model on other modalities
is also helpful, including abnormal detections in capsule endoscopy which would be a
time-consuming task for gastrologist. More trial or experiments will be executed after the
preparation of data collection.

Compared with the general population, inflammatory bowel disease has a higher
incidence of colorectal polyps [39] and colon cancer [40,41]. The proposed method may be
used to predict the severity of intestinal mucosal pathological outcomes of inflammatory
bowel disease in the future.

5. Conclusions

This study proposed the CAD system for the classification of polyp types using
colonoscopy. Various features, networks, and training methods were implemented in the
experiment. GLCM texture features in the B channel had the accuracy of 75.6%, while
AlexNet trained from scratch obtained the accuracy of 96.4%. Based on the performance
comparisons, DCNN can achieve a substantial performance and training from scratch is a
promising way to build a model if the image data are good enough. The evaluations would
provide more practical advice to gastroenterologists about using CAD for polyp classifica-
tion during a colonoscopy. More CAD systems for intestinal tumors or inflammatory bowel
diseases such as Crohn’s disease and ulcerative colitis would be possible in the future.
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