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Abstract: Osteosarcoma is a bone tumor which is malignant. There are many difficulties when
doctors manually identify patients’ MRI images to complete the diagnosis. The osteosarcoma in MRI
images is very complex, making its recognition and segmentation resource-consuming. Automatic
osteosarcoma area segmentation can solve these problems to a certain extent. However, existing
studies usually fail to balance segmentation accuracy and efficiency. They are either sensitive to noise
with low accuracy or time-consuming. So we propose an auxiliary segmentation method based on
denoising and local enhancement. The method first optimizes the osteosarcoma images, including
removing noise using the Edge Enhancement based Transformer for Medical Image Denoising
(Eformer) and using a non-parameter method to localize and enhance the tumor region in MRI
images. Osteosarcoma was then segmented by Deep Feature Aggregation for Real-Time Semantic
Segmentation (DFANet). Our method achieves impressive segmentation accuracy. Moreover, it is
efficient in both time and space. It can provide information about the location and extent of the
osteosarcoma as a basis for further diagnosis.

Keywords: image segmentation; machine learning; non-parameter; localization; enhancement;
denoising; CNN

MSC: 68T01

1. Introduction

Osteosarcoma is a kind of malignant bone tumor [1], accounting for 20% to 45% of the
total malignant bone tumors, with a high incidence rate. The disease is locally aggressive,
develops rapidly, and has a high metastasis rate [2–5]. Due to the chemotherapy resistance
of osteosarcoma and the high recurrence rate of the disease, its overall prognosis is still
unsatisfactory [6–9]. At present, osteosarcoma still has high morbidity and the mortality
rate, about 35% of the patients face amputation [10], and survival rate is about 20% [11].
Early detection and localization of disease before surgery or treatment can improve overall
survival and reduce amputation rates [12].

Among imaging methods used in order to achieve the clinical evaluation of osteosar-
coma, MRI has good soft-tissue contrast and is sensitive to osteosarcoma, which can detect
abnormal signals in the early stage of lesions. Its multi-parameter and multi-planar slicing
capabilities can display the location and extent of lesions [13,14]. Therefore, MRI is often
used to diagnose osteosarcoma. After the clinical acquisition of patients’ MRI images,
diagnosis requires tumor identification and delineation [12].

In most developing countries, the diagnosis of osteosarcoma is difficult due to eco-
nomic backwardness, shortage of medical resources and lack of experienced doctors [15].
Conventional methods of osteosarcoma diagnosis rely on manual tasks. One patient will
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generate more than 600 MRI images at a time [16], which is a huge amount of data. How-
ever, only about 3% of these data are useful, leading to a heavy workload for doctors and
inefficiency in diagnosis. The doctor’s manually produced magnetic resonance imaging
(MRI) suffers from subjectivity and fatigue limitations. Doctor’s average manual segmenta-
tion accuracy is about 90%. For inexperienced doctors, the accuracy of the judgment is only
about 85% due to their own subjective judgments or mistakes [17]. The significant differ-
ences in the location, extent and shape of osteosarcoma in different patients lead to complex
MRI images. Moreover, the tumor area is difficult to identify because of the uneven internal
grayscale and texture features. Imaging will also affect visual effects [18]. Due to the high
heterogeneity of osteosarcoma, the formed osteoid is indistinguishable, and the blurring of
edges caused by partial volume effects in structural MRI reduces segmentation accuracy.

However, the identification and segmentation of osteosarcoma lesions is necessary. It
is the basis for further quantitative analysis or tissue classification. Segmentation is usu-
ally achieved by drawing a region of interest (ROI) within the tumor margin [19–21]. Com-
pared to manual segmentation, automated methods are generally faster, more objective, and
provide more accurate results [22,23]. Therefore, automatic segmentation techniques for os-
teosarcoma are needed clinically. In recent years, artificial intelligence-assisted segmentation
methodologies of osteosarcoma images have also been developed, including fuzzy connectiv-
ity [17], region growing, unsupervised clustering methods [24], supervised machine learning
methods, etc. [25–27]. Using computer-aided diagnosis technology and artificial intelligence
systems can ease the problems, including the shortage of medical resources, serious imbalance of
doctor-patient ratio, and lack of professional doctors in developing countries.

However, it has been reported that the segmentation accuracy of osteosarcoma is
generally 38–89% [12]. In the existing studies on osteosarcoma MRI image segmentation,
cluster-based methods are computationally efficient but are sensitive to noise with low ac-
curacy. Learning-based segmentation methods cannot balance accuracy and segmentation
efficiency. CNN-based segmentation methods are more accurate but time-consuming and
memory-consuming. In order to find an osteosarcoma image segmentation method with
high accuracy, high efficiency, high degree of automation, and good reproducibility, we
propose a method based on denoising and tumor localization and enhancement.

Our method aims to achieve automatic segmentation of osteosarcoma target regions
in MRI images so that doctors can accurately and quickly analyze the patient’s condition
on this basis. The method firstly preprocesses the osteosarcoma MRI image dataset, uses
the Eformer model to remove noise, and then uses non-parametric localization and en-
hancement methods to dispose of the tumor area, making it clearer and easier to identify.
The osteosarcoma region was then segmented using DFANet. DFANet is a lightweight
real-time semantic segmentation network that handles image segmentation with fast speed,
high efficiency, considerable accuracy and low memory consumption.

Image data preprocessing, including denoising and local enhancement, can improve
the accuracy of segmentation, and the use of real-time semantic segmentation network can
improve the calculation speed. Therefore, our method also improves efficiency on the basis
of ensuring accuracy.

Using the method in this paper to process MRI images, the location and extent of os-
teosarcoma can be obtained, providing radiologists with intuitive features of osteosarcoma
as a reliable basis for subsequent diagnosis and analysis. At the same time, our method
can save resources and reduce the cost of osteosarcoma image segmentation processing.
This can alleviate the problems of low medical levels and shortage of medical resources in
developing countries. It is suitable for clinical use and promotion.

The contributions are as follows:

1. This study proposes an auxiliary segmentation method of osteosarcoma in MRI images
based on denoising and local enhancement, improving the accuracy and speed of
segmentation and reducing resource consumption.

2. We use the medical denoising model Eformer to remove noise and then localize
and enhance the osteosarcoma region in MRI images. After preprocessing, the tu-
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mor region in the MRI image will be clearer and the boundary can be enhanced.
Finally, an efficient and accurate network DFANet is used to segment osteosarcoma in
MRI images.

2. Related Works

In the diagnosis of osteosarcoma, using computer-aided diagnosis technology and an
artificial intelligence system as auxiliary is particularly important. Current methods for
segmenting tumor regions from images can be broadly divided into three categories [28].

The first type of method is based on clustering or clustering. Mandava et al. proposed
a spatial fuzzy clustering method based on a multi-criteria optimization method, which
considers two criteria of spatial information and intensity based on fuzzy C-means cluster-
ing (FCM) [29]. Mohamed Nasor et al. presented a technique using K-means clustering, etc.,
to complete segmentation [18]. EBK et al. created an automated segmentation system to
measure RECIST using SLIC-S and FCM [30]. However, these methods are sensitive to
initial noise and can only deal with images with simple structure and ordered texture due
to the lack of object priors.

The second type is the traditional learning-based approach. Frangee et al. proposed a
method using a supervised cascaded feedforward neural network to complete osteosarcoma
segmentation in dynamic perfusion MRI images, training a two-stage cascade classifier
model with multi-scale spatial features generated by a pharmacokinetic model [31]. The
overall segmentation accuracy is 38–78%. Glass et al. segmented MRI images by a hybrid
neural network and then used a multi-layer BPNN to complete classification [32]. Chen et al.
used Zernike moment and SVM to segment osteosarcoma in T1-weighted image (TIWI) [33].
The limitation of these methods is that they need to compute a large quantity of features
such as texture and wavelet features to train a classifier, which can be slow, time-consuming,
and memory-intensive. However, reducing dimensionality [34] or selecting a feature [35]
to reduce improvement can result in low accuracy [36]. Therefore, these methods are not
effective when the number of osteosarcoma images is large because of handcrafted features
and they cannot extract target osteosarcoma tumor regions with complex structures and
disordered textures.

The last type of method is based on CNN. Zhang et al. used a multi-supervised
residual network (MSRN)-based method [37]. Wu et al. [13] use the Mean Teacher algo-
rithm to optimize the dataset, and the obtained noisy data were subjected to the second
round of training. Finally, SepUNet and CRF were used to segment osteosarcoma lesions.
Barzekar et al. [38] use CNNs as feature extractors to achieve malignant and benign tumors
classification of images. Anisuzzaman et al. used computer-aided detection (CAD) and
diagnosis (CADx) to detect osteosarcoma [39].

Based on deep architecture, various CNN-based studies have been used for tumor
segmentation in images [40]. CNN operates on patches using kernels without the need to
extract handcrafted features, which can significantly improve segmentation accuracy [41].
However, overlapping patches always cause redundancy [42], so these methods are too
time-consuming and memory-intensive. The improved fully convolutional network (FCN)
based segmentation task achieved good results but failed to identify some smaller object
regions [42,43].

3. Methods

In the diagnosis of osteosarcoma from patients’ MRI images, there are many difficulties
in the traditional manual identification by doctors. Due to a large amount of MRI image
data but few useful images generated by patients, the doctors have a large workload and
low work efficiency [44–46]. The results produced by experience and subjective assessment
may also be inaccurate. In the situation of developing countries, because of economic
backwardness, shortage of medical resources, and lack of equipment and professionals,
early diagnosis of osteosarcoma is more difficult [13].
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Segmenting and delineating osteosarcoma in MRI images can assist doctors in deter-
mining important information such as the location and extent of lesions [45]. Automated
segmentation can reduce labor costs and time costs. It also improves the reliability of seg-
mentation results to a certain extent. In order to further improve the accuracy and efficiency
of segmentation, this paper proposes an auxiliary segmentation method of osteosarcoma
in MRI images based on denoising and local enhancement. The overall structure of the
method is shown in Figure 1.
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The method begins with preprocessing the osteosarcoma image dataset, including de-
noising and tumor localization and enhancement, because MRI images usually have noise
affecting the segmentation accuracy. Moreover, the high heterogeneity of osteosarcoma can
lead to blurred edges. Therefore, we use the Eformer model to remove noise from MRI
images and perform edge enhancement. Afterward, we used non-parametric localization
and enhancement methods to localize and enhance the tumor area so that the shape of
osteosarcoma is clearer and easier to identify. Osteosarcoma in MRI images was then seg-
mented using DFANet. DFANet is a lightweight network that handles image segmentation
quickly and efficiently. We finally obtain the location and extent of osteosarcoma, which
provides a more accurate and reliable basis for the subsequent diagnosis and analysis.

The following content is divided into three parts. Firstly, collected MRI images are
preprocessed to improve the accuracy and robustness of segmentation and enhance the
model’s generalization ability. Section 3.1 shows using Eformer to remove noise in MRI
images and perform osteosarcoma edge enhancement. In Section 3.2, we locate and clarify
tumor regions, achieving a more efficient segmentation process. Section 3.3 introduces the
process of segmenting the preprocessed images using DFANet.

The symbols used in this chapter and their explanations are shown in Table 1.
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Table 1. Some symbols and their meanings.

Symbol Paraphrase

Pn W-output of MSA module
Qn L eFF module
t MRI image of osteosarcoma with noise
c clean MRI images
r residual noise
E Background regions in MRI images
F tumor area in the image

3.1. Remove Noise

Because the distribution density of osteosarcoma in MRI images is not uniform, the
brightness between images is different, and there is much noise in MRI images, which
will lead to overfitting of the model. Artifacts caused by partial volume effects and edge
blurring caused by high osteosarcoma heterogeneity can affect the subsequent segmentation
accuracy. In order to address these issues, we adopt Eformer [47]. Using the Eformer process
can effectively remove noise in the MRI images and enhance the edge of the tumor region,
improving the accuracy of subsequent segmentation. It utilizes transformer blocks to build
an encoder-decoder network. Window-based self-attention is used to reduce computational
requirements and effort. Furthermore, Eformer connects the learnable Sobel-Feldman
operator to the middle layer of the architecture to enhance the edge and improve the
denoising performance. Its model structure is shown in Figure 2.

Figure 2. Eformer model structure diagram.

After inputting the original osteosarcoma MRI image I, the osteosarcoma edge enhance-
ment feature map S(I) is first generated by Sobel Filter and then activated by GeLU [48].
After Sobel Filter post-processing, the feature map of the entire image will also be obtained,
and the number of channels has changed. In each LC2D block of encoding stage, the feature
map is first processed using LeWin transformer blocks, then concatenated with S(I), and
processed by a convolutional layer. Finally, the feature map and S(I) are down-sampled
and encoded. The encoded feature map is passed to another LeWin Transformer block for
processing. During decoding, the LC2U block up-samples the feature map and then passes
it through the convolution block after being concatenated with the previously generated
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edge feature map S(I). Finally, they are passed to LeWin transformer blocks. The final
part of decoding uses a single-layer convolution module output projection. After this
process, the noise in the MRI image is removed. Moreover, the edge of the osteosarcoma
is enhanced.

The denoising principle of our model is to find out the clean images that may exist
in the image through the process of residual learning, and remove them from the original
image, and finally obtain the residual, that is, the noise distribution in the image. After the
noise distribution is obtained, it is only necessary to remove the noise distribution from the
original image to complete denoising.

Sobel-Feldman operator: The Sobel operator is a classic edge detection algorithm [49].
Eformer uses its expanded version, including the diagonal direction, not only the horizontal
and vertical directions. The four filters used are shown in Figure 3. The edge enhancement
feature map is used many times in the whole network. It is repeatedly cascaded with the
image feature map, which can enhance the edge features to the greatest extent and solve
the blurred edge of osteosarcoma in images.
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Transformer-based encoder-decoder: Both the LC2D and the LC2U use LeWin trans-
former containing a local enhancement window (LeWin) to process convolutional feature
maps. LeWin consists of a low-resolution feature map. Equation (1) is the calculation
expression, where LN represents layer normalization. Pn. is the output of W-MSA block.
Qn is the output of LeFF block.

Pn = W −MSA(LN(Qn−1)) + Qn−1
Qn = LeFF(LN(Pn)) + Pn

(1)

We can see the LeWin block’s structure in Figure 4. The feature map is normalized
by a Layer Normalization and then passed to W-MSA, where the two-dimensional feature
map is decomposed into non-overlapping windows, and then the flattened features of each
window are performed self-attention. At last it concatenates all outputs and linearly projects
the final result. It is passed to locally enhanced feedforward network (LeFF) through a
Layer Normalization. In LeFF block, the image patch is managed through a linear projection
layer and a 3 × 3 depth-wise convolutional layer.
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Down-sampling & up-sampling: The Eformer down-sampling uses strided convolu-
tions. Up-sampling adopts transpose convolution [50], which can reconstruct the spatial
structure. To avoid uneven overlap, the size of the convolution kernel should generally
be divisible by the step size, so the size of the convolution kernel of 4 × 4 is selected for
transpose convolution, and the step size is set to 2.

Residual Learning: This aims to implicitly remove potentially clean images in hidden
layers of MRI images. For example, an MRI image of osteosarcoma that contains noise is
t = c + r. Eformer‘s approach is to train a network that can learn this residual mapping
R(t) = r, thereby estimating the noise distribution r in the image, and then the denoised
image can be obtained through c = t− r.

Optimization: Multiple loss functions are used. First, the Mean Squared Error (MSE)
loss function is used to estimate the pixel distance between the actual output and the clean
image as in Equation (2). The clean image here refers to the corresponding low-noise image.

Lmse =
1
N

N

∑
i=1
‖(ti − R(ti))− ci‖2 (2)

However, the MSE loss function easily causes image artifacts such as over-smoothing
and blurring, which is very unfavorable for the denoising of osteosarcoma MRI images,
so the Multi-scale Perceptual (MSP) [51] loss function used in ResNet is added, as in
Equation (3).

Lmsp =
1

NM

N

∑
i=1

M

∑
s=1

∥∥φs
(
ti − R(ti), θ̂

)
− φs

(
ci, θ̂

)∥∥2

(3)

Among them, φ uses ResNet-50 to extract features (but the pooling layer is removed,
only the convolutional layer parameters are kept, and the pre-trained model on ImageNet
is used). c and t − R(t) should be processed by the feature extractor and produce the
perceptual loss. The final loss function combines the above two loss functions, as shown in
the following formula, where the two λ are predefined numbers.

L f inal = λmseLmse + λmspLmsp (4)
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In this way, the combination of perceived loss MSP and mean square error MSE
can not only process the overall structural information, but also process the pixel-by-
pixel similarity, so as to obtain more accurate processing result, improve the effect of
denoising and minimize the loss of important information from the original MRI image
of osteosarcoma. After Eformer model processing, we obtained the image denoising and
edge enhancement.

3.2. Tumor Localization and Enhancement Methods

Since the osteosarcoma region’s location, shape and structure varied greatly, it is
difficult to identify in the image. Therefore, non-parametric tumor localization and en-
hancement methods were used to locate and clarify the tumor region [52] in order to find
more accurate targets for subsequent segmentation. Firstly, the frequency distribution
histogram of intensity value in MRI image was used to distinguish background and tumor
region, and the zero intensity value was dislodged. We calculated the frequency of intensity
value by Formula (5). j represents the range from 0 to the maximum intensity value σ in
the image. nj is the frequency distribution value of the th intensity in the MRI image to be
calculated. Ij is the image. x and y represent the coordinates of the points in the image.

nj =
σ

∑
j=1

Ij and I(x, y) ∈ [0, σ] (5)

After the above calculation, we can draw the frequency distribution histogram such as
Figure 5. Figure 5a is an image that requires osteosarcoma localization and enhancement,
and Figure 5b is a histogram of the entire corresponding frequency distribution.
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Then, the initial non-parametric threshold θ (average of the frequency of the intensity
values) is determined by the frequency of the intensity values. Its calculation method is
shown in Equation (6).

θ =
1
σ

σ

∑
j=1

nj (6)

In MRI images of osteosarcoma, the areas with infrequent intensity values represent
the background, while the areas with the most frequent intensity values represent healthy
tissue and tumor areas. It is then possible to use θ to determine the intensity minima
representing the background and tumor areas Emin and Fmin, using Equation (7). Iθ is the
intensity value with a frequency greater than θ. The calculations of Emin and Fmin allow us
to make a preliminary localization of the tumor area, where Emin < Fmin is the background
and Fmin < σ is the tumor area.

Emin = min(Iθ) and Fmin = max(Iθ) (7)



Healthcare 2022, 10, 1468 9 of 21

Subsequent operations aim to identify tumor regions as significant or low-contrast
tumors. To judge the distinguishability and contrast between background and tumor area,
we used basic statistical methods to achieve this by comparing standard deviations. If
the osteosarcoma is a significant tumor, it is easy to distinguish and segment. Otherwise,
as a low-contrast tumor, its localization requires further processing. Standard deviations
for background and tumor areas were calculated using Equation (8). In the formula, ∂
represents the intensity, m is the mean value of it, and n represents the number of pixels.

Sj =

√√√√√∑
(
∂j −mj

)2

nj
(8)

After determining the initial localization and contrast of the osteosarcoma in the MRI
images, we should find the final localization of the osteosarcoma. The final positioning
formula is shown in Equation (9). {

E i f SE > SF
F i f SE < SF

(9)

To enhance the visual appearance of the tumor area, we processed the localized tumor
area, ignoring the blank area to make the osteosarcoma area more prominent. First, when
the tumor is located in the F region, we use Equation (10).

ZF =
IF(x,y) − Fmin

SF
(10)

The enhancement method we used also takes into account the updated tumor region
minimum. The updated E′min and SF′ of the tumor area are shown in Equations (11) and (12).

E′min =
1
x

σ

∑
j=Emin

Ij (11)

In Equation (11), E′min is the updated minimum value of the tumor area, which is
defined as the average intensity value between Emin to σ. x represents the pixels in this area.

SF′ =

√√√√∑(∂F′ −mF′)
2

nF′
(12)

In Equation (12), σF′ represents the intensity value, mF′ represents the mean valueof
the intensity value, and nF′ represents the number of pixels in the updated tumor area
F′min. Moreover, the final calculation is shown in Equation (13) below.

ZE =
IF(x,y) − F′min

SF′
(13)

Finally, by adding the enhanced image to the preprocessed MRI image, the osteosar-
coma localization and enhanced image can be obtained, as shown in Equation (14). I f
represents the filtered image. Zi will be defined as ZE. or ZF according to Equation (9).

ZR = I f + Zi (14)

The use of non-parametric localization and enhancement methods can effectively
solve the difficulty caused by the osteosarcoma’s complex structure, shape, and location.
This method makes the shape of the osteosarcoma clearer, facilitating the subsequent
segmentation to obtain more accurate results.
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3.3. Osteosarcoma Image Segmentation
3.3.1. Deep Feature Aggregation Network (DFANet)

During tumor localization and enhancement, some healthy tissues in the image with
close strength values to the osteosarcoma region were localized and enhanced, which forced
the use of supervised segmentation techniques to avoid the segmentation of unrelated areas.
We used the DFANet model to segment the region of osteosarcoma in the image. DFANet
is a very efficient CNN structure with high accuracy, used for semantic segmentation [53].

We improved the Xception network with smaller computational complexity to pursue
the inference speed of our proposed method and pre-trained it. Then it is used as the
backbone in our model.

3.3.2. Network Architecture

The DFANet semantic segmentation network can be regarded as an encoder-decoder
structure, as shown in Figure 5. The encoder includes three Xception backlines. Encoders
are not only composed of sub-backbone and sub-backbone networks but also some sub-
stages that connect this information, combining high-level and low-level characteristics [54].
DFANet implements cross-level feature aggregation. Subnetwork aggregation refers to
the up-sampling of advanced feature maps from the previous trunk and the input to the
next trunk. Subphase aggregation refers to the transfer of receiving domains and higher-
dimensional structural details by grouping layers with the same dimensions [55]. The
decoder consists of convolution and bilinear up-sampling operations, which combine the
output of each stage to generate segmentation results. Its architecture is shown in Figure 6.
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Figure 6. DFANet structure diagram.

3.3.3. Deep Feature Aggregation

DFANet first learns sub-pixel details by up-sampling the output features of the net-
work and refining the feature map at a larger resolution with another sub-network. To
avoid the accuracy loss of high-dimensional features and receptive fields in the feature flow,
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DFANet achieves stage-level refinement by concatenating feature layers with the same
resolution. It reuses high-level features extracted from the backbone network to bridge
semantic information and structural details (this refers to the spatial structure, such as
edge, shape, etc.). These two aggregation strategies combine detailed and spatial informa-
tion at different depth locations in the feature extraction network to achieve comparable
performance. A schematic diagram of the two aggregation strategies is shown in Figure 7.
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Our paper uses a new method for assisted segmentation of osteosarcoma, including
denoising and tumor localization and enhancement. It solves the noise and blurred edges of
MRI images of osteosarcoma. At the same time, osteosarcoma can be enhanced in complex
images, which improves the accuracy and precision of segmentation. The segmentation
speed is fast and consumes less memory. The position and range of osteosarcoma can be
obtained after the MRI image is processed by the above methods. It provides intuitive
image features for subsequent diagnosis and analysis. The value of this method is mainly
to provide hospitals and doctors with more accurate auxiliary information for the diagnosis
of osteosarcoma. Our method can save resource consumption, including workforce and
time costs. If it is promoted clinically, it can effectively improve the current situation of
osteosarcoma’s difficult diagnosis.

4. Experiments
4.1. Dataset

We collected a total of 81,326 clinical images of 204 patients with approximately
400 images per patient, all of which are representative images. Patient-specific information
is shown in the table below. We selected about 80% of the data as the training set and
about 20% of the data as the test set. Out of 204 patients, 164 training sets and 40 test sets
were obtained. Several radiologists and image processing operators participated in the
annotation of image data. After identifying the osteosarcoma, they used the itk-snap tool
to mark the image. The basic information of patients who provided experimental data is
shown in the Table 2.

In addition, to improve the model’s generalization and accuracy, we need to enhance
the image data. So we scale, randomly crop, flip horizontally, and rotate the images by
90 degrees and 180 degrees.
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Table 2. Patient information providing experimental data.

Characteristics Total Training Set Test Set Characteristics

Age
<15 48(23.5%) 38(23.2%) 10(25%)

15–25 131(64.2%) 107(65.2%) 24(60%)
>25 25(12.3%) 19(11.6%) 6(15.0%)

Sex
Female 92 (45.1%) 69 (42.1%) 23 (57.5%)
Male 112 (54.9%) 95 (57.9%) 17 (42.5%)

Marital status
Married 32 (15.7%) 19 (11.6%) 13 (32.5%)

Unmarried 172 (84.3%) 145 (88.4%) 27 (67.5%)

SES
Low SES 78 (38.2%) 66 (40.2%) 12 (30.0%)
High SES 126 (61.8%) 98 (59.8%) 28 (70.0%)

Surgery Yes 181 (88.8%) 146 (89.0%) 35 (87.5%)
No 23 (11.2%) 18 (11.0%) 5 (12.5%)

Grade
Low grade 41 (20.1%) 15 (9.1%) 26 (65%)
High grade 163 (79.9%) 149 (90.9%) 14 (35%)

Location
Axial 29 (14.2%) 21 (12.8%) 8 (20%)

Extremity 138 (67.7%) 109 (66.5%) 29 (72.5%)
Other 37 (18.1%) 34 (20.7%) 3 (7.5%)

4.2. Evaluation Indicators

We use some metrics to evaluate the model. Confusion matrices are often used to
evaluate network performance in supervised learning and are mainly used to compare
classification results with the true classification of instances. Evaluation of our network
consists of four parts: the osteosarcoma region predicted by the model as osteosarcoma
(True Positive, TP), the other regions predicted by the model as osteosarcoma (False Positive,
FP), areas of osteosarcoma predicted to be non-tumor (False Negative, FN), and other areas
predicted by the model to be non-tumor (True Negative, TN) [56]. The confusion matrix
is shown in Table 3 below. According to these four parts, we use the following indicators
for evaluation. We use metrics such as accuracy, precision, recall, and F1-score to count
the accuracy of segmentation results [57]. We use IOU, DSC to calculate the effect of
segmentation based on area. The number of parameters is also used to measure the
complexity of the model.

Table 3. Patient information providing experimental data.

Predicted: NO Predicted: YES

Actual: NO TN FN

Actual: YES FP TP

Acc is the most commonly used classification performance indicator [58]. It is defined
as Equation (18).

Acc =
TP + TN

TP + TN + FP + FN
(15)

Pre is the percent of all regions predicted to be tumors that are correctly predicted and
is defined as Equation (19).

Pre =
TP

TP + FP
(16)

Recall is the proportion of all true tumor regions that are correctly predicted as tumors
and is defined as Equation (20).

Re =
TP

TP + FN
(17)
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F1-score represents the model’s robustness and it is defined as follows [59].

F1 = 2× precision× recall
precision + recall

(18)

IOU is the intersection ratio.

IOU =
prediction ∩ target
prediction ∪ target

(19)

DSC reflects the similarity of two samples, and it is defined as follows.

DSC = 2× |prediction ∩ target|
|prediction|+ |target| (20)

The result of the above metrics can reflect the effect of our segmentation model of
osteosarcoma, and we use these metrics to measure model performance.

4.3. Comparison Algorithm

We set up comparative experiments to compare our method with FCN [60], PSP-
Net [61], MSRN [37], MSFCN [62], FPN [63], and U-Net [64] algorithms and analyze the
experimental results.

(1) FCN implements pixel-level classification. The problem of repeated storage and
calculation of convolutions due to the use of pixel blocks is avoided. This paper uses the
FCN-8s and FCN-16s networks, respectively.

(2) PSPNet adopts a pyramid pooling model, which can collect hierarchical infor-
mation and use global knowledge, promoting the development of scene parsing and
semantic segmentation.

(3) MSRN uses residual blocks and convolution blocks to use feature detection at
different scales. A simple and efficient reconstruction structure is also designed to easily
achieve multi-scale upscaling.

(4) MSFCN uses feature channels to capture contextual information while up-sampling.
The accuracy of segmentation is ensured.

(5) FPN adopts a unique feature pyramid model and utilizes the hierarchical semantic
features of convolutional networks to achieve feature extraction. It can greatly improve the
performance of segmentation models.

(6) U-Net proposes a network structure and a strategy to utilize labeled data efficiently.
It uses spliced feature fusion and relies on data enhancement to use data more effectively.

4.4. Parameter Setting

The experiments were trained using the “poly“ learning rate strategy, and multiplying
the initial rate by (1-maxiteriter) to the power of 0.9, set-ting the basic The learning rate
is 2 × 10−1. The batch size is 48, and the weight decay is 10−5. The cross-entropy error
at each pixel on the class is applied as our loss function. All experiments were repeated
five times, and the results were averaged. When we train the model, we use three-fold
cross-validation to obtain a model with better generalization ability.

4.5. Evaluation of Segmentation Effect

In our method, we performed denoising and tumor localization and enhancement on
the initial MRI images of the dataset, and the processing effect is shown in Figure 8. The
three MRI images of osteosarcoma represent the initial image (Figure 8a), the image after
noise removal (Figure 8b), and the image after localization enhancement (Figure 8c). It can
be seen that preprocessing can effectively remove noise and enhance the tumor area, which
is convenient for improving segmentation accuracy.
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Figure 8. Denoising and tumor localization and enhancement renderings.

We can see the effect of data processing in Figure 9, including the original osteosarcoma
MRI image (Figure 9a), the ground truth (Figure 9b), the segmentation rendering obtained
on the unpreprocessed dataset (Figure 9c) and the result after denoising, tumor localization,
and enhancement (Figure 9d). We can see the preprocessed model segmentation results
are closer to the ground truth, and the edge processing and shape of osteosarcoma are
more accurate.
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Figure 9. Comparison of segmentation effects before and after preprocessing.

Figure 10 contains the results of the comparison experiment, showing the intuitive
results of the segmentation of the same original MRI image by DFANet and the comparison
algorithm, respectively. The first column is the original MRI image of the osteosarcoma be-
fore segmentation, and the second column represents the image after marking the position
of the osteosarcoma, i.e., the real mask. Columns 3–7 represent the segmentation results
of different comparison algorithms, respectively. After comparison, DFANet has better
segmentation results. Compared with other algorithms, the images predicted by DFANet
are closest to the real labels. The edge processing and predicted shape of osteosarcoma are
more accurate.

The performance of our algorithm cannot be wholly determined only by the effect
chart. In order to evaluate the effect of the model more accurately, we adopt some indicators
to analyze and evaluate the algorithm’s performance. After obtaining the value of each
comparison algorithm evaluation index through experiments, it is compared with our
method. The result is seen in Table 4. Our method has better performance on each evalua-
tion index. The table also compares the performance indicators of the segmentation effect
with or without the data preprocessing operation. It shows that the data set preprocessing
effectively improves the segmentation results and optimizes the segmentation boundary. It
is necessary to denoise the image data and enhance the tumor area before model training.
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Table 4. Comparison of osteosarcoma segmentation performance of different algorithms.

Model Acc Pre Re F1 IOU DSC Params

FCN-8s 0.993 0.941 0.873 0.901 0.831 0.876 134.3 M
FCN-16s 0.989 0.922 0.882 0.900 0.824 0.859 134.3 M
PSPNet 0.975 0.856 0.888 0.871 0.771 0.870 46.70 M
MSRN 0.988 0.893 0.945 0.917 0.853 0.886 23.38 M

MSFCN 0.991 0.881 0.936 0.906 0.841 0.874 14.27 M
FPN 0.989 0.914 0.924 0.919 0.852 0.888 48.20 M
UNet 0.990 0.922 0.924 0.923 0.868 0.893 17.26 M

Our (DFANet) 0.991 0.943 0.952 0.950 0.903 0.949 11.25 M
Our (Eformer + DFANet) 0.995 0.959 0.955 0.961 0.928 0.964 19.97 M

In order to compare the effects more intuitively, we drew a line chart as shown in
Figure 11. Our model has better performance than other models in each evaluation index.
Among them, the IOU and DSC indicators are nearly 0.1 higher than other models. The
IOU index is about 0.15 higher than PSPNet, and the precision is nearly 0.1 higher than
PSPNet. The F1 indicator is also nearly 0.05 higher than the other models. From various
indicators, the indicators of PSPNet are generally the lowest, and the segmentation effect is
the worst.
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Figure 11. Comparison of evaluation indicators of various algorithms.

Figure 12 compares the IOU and parameters of DFANet and various comparison
algorithms. It can be seen in the image that the IOU value of our model is the highest. It
also consumes the least number of parameters, only 8.72 M. Among various algorithms,
the FCN algorithm has a general segmentation effect but consumes the largest number of
parameters. PSPnet has the worst segmentation effect but also consumes a large number
of parameters.
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Figure 12. The IOU value and the amount of training parameters of the training results of different
models.

Figure 13 shows the accuracy values of those methods. Our method’s performance
is not as good as that of FPN and UNet in the first 30 rounds of training. However, in
the subsequent training, the accuracy value of our model is higher than that of other
comparison algorithms, nearly 0.1 higher than MSRN. The performance of MSRN and
MSFCN models is very unstable. In contrast, the accuracy value of our model remains
above 0.95, and reaches 0.99 in the later stage.
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We plot the precision as a function of 100 epochs for five of the contrasting models in
Figure 14. It can be seen from the figure that the accuracy of our method is the highest most
of the time, reaching more than 0.95, which is nearly 0.2 higher than the worst-performing
MSRN. Between epochs 30 and 60 and after 80, the precision of DFANet is maintained in a
relatively stable and high state, and the obtained segmentation effect is relatively accurate.
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We compared the F1-score values of different models, as shown in Figure 15. The
F1-score value of DFANet gradually increased in the later stage, and reached 0.94 at about
100 rounds of training. Our method has a good segmentation effect and high segmentation
accuracy for osteosarcoma.
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Finally, we compared the DSC values of these models at corresponding epochs. As
shown in Figure 16, the DSC value of our model is the highest, close to 0.95, nearly 0.05
higher than MSFCN, and about 0.15 higher than the worst MSRN. DSC of our model has a
continuous upward trend, and as the number of training rounds increases, its effect will
get better and better. It shows that DFANet has high segmentation similarity and can better
segment the target area of osteosarcoma and process the boundary.
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5. Summary

In this paper, an auxiliary segmentation method of osteosarcoma in MRI images
based on denoising and local enhancement is proposed. More than 8000 osteosarcoma
MRI images collected from hospitals are used as a dataset. We also compare the method
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with other segmentation models. The results show that our method is very accurate and
combines accuracy and speed, reducing the consumption of resources and costs. Using this
method to process MRI images of osteosarcoma is helpful for doctors to diagnose patient
conditions more efficiently and accurately.

Our method only uses MRI image processing to aid in diagnosing osteosarcoma. In
the future, we will work on combining more data sources, relying on images for diagnosis,
and studying multimodal learning combined with medical records.
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