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Abstract: Recently, there has been considerable growth in the internet of things (IoT)-based healthcare
applications; however, they suffer from a lack of intrusion detection systems (IDS). Leveraging recent
technologies, such as machine learning (ML), edge computing, and blockchain, can provide suitable
and strong security solutions for preserving the privacy of medical data. In this paper, FIDChain
IDS is proposed using lightweight artificial neural networks (ANN) in a federated learning (FL)
way to ensure healthcare data privacy preservation with the advances of blockchain technology that
provides a distributed ledger for aggregating the local weights and then broadcasting the updated
global weights after averaging, which prevents poisoning attacks and provides full transparency
and immutability over the distributed system with negligible overhead. Applying the detection
model at the edge protects the cloud if an attack happens, as it blocks the data from its gateway with
smaller detection time and lesser computing and processing capacity as FL deals with smaller sets of
data. The ANN and eXtreme Gradient Boosting (XGBoost) models were evaluated using the BoT-IoT
dataset. The results show that ANN models have higher accuracy and better performance with the
heterogeneity of data in IoT devices, such as intensive care unit (ICU) in healthcare systems. Testing
the FIDChain with different datasets (CSE-CIC-IDS2018, Bot Net IoT, and KDD Cup 99) reveals that
the BoT-IoT dataset has the most stable and accurate results for testing IoT applications, such as those
used in healthcare systems.

Keywords: IoT; intrusion detection; healthcare security; federated learning; blockchain; machine
learning

1. Introduction

IoT plays a significant role in the development of the healthcare industry. Furthermore,
it has become a considerable and important source of medical data as the physical devices
collect the vital signs using numerous sensors and share the real-time data with the medical
team by connecting to the internet. Shaikh et al. [1] proposed a system that makes use of
embedded wearable sensors to monitor health parameters remotely, storing the analyzed
data on the cloud, and automatically sending results of the analysis to a doctor when
there is a critical condition. The proposed system minimizes health costs by reducing the
number of times the doctor visits. Rohokale et al. [2] proposed a health monitoring system
for controlling human health parameters, and applied this system in a safe motherhood
program application. The results revealed that the system saves about 57% energy, and it
supports the concept of green IoT communication, as well as enhancing throughput. The
storage of medical big data in information systems that are based on cloud-client servers
are suffering from single-point failure, and the controlling of data resources in a centralized
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manner leads to privacy leakage [3]. Li et al. [4] provides a solution to these problems
using the advances of blockchain technology to support the healthcare system. Blockchain
is a decentralized system that allows transaction transmission and storage under the roles
that are listed in consensus algorithm and smart contracts with no central authority in a
distributed ledger [5]. The blockchain framework provides different features, including
decentralization, privacy, and security. The blockchain storage uses cryptographic keys to
secure the user identity. Aujla et al. [6] presented a blockchain-based edge system for data
tampering and privacy preserving of the patient’s medical records. The system analysis
shows the effectiveness of it in terms of the block preparation time, header generation time,
tensor reduction ratio, and approximation error. The adoption of blockchain technology
with the IoT has a lot of benefits, such as immutability, transparency, and data prove-
nance [7]. There are many blockchain-based IoT applications in the healthcare industry,
such as electronic medical records management [8], remote patient monitoring [9], drug
traceability [10], and infectious-disease fighting [11].

It is assured that IoT devices are easily hackable and could be controlled remotely to
form IoT-based botnets [12,13]. These attacks and botnets cause the leakage of sensitive
information, infraction, and infringement in the wider IoT-enabled system [14]. Some of the
most common attacks in IoT systems include distributed denial-of-service (DDoS), denial
of service (DOS), ransom ware, and botnet attacks [15]. Therefore, there is considerable
research going on in the area of security and authentication issues for IoT-based healthcare
systems. There is a rapid growth in the research of ML-based healthcare applications.
Some ML models have been used in the diagnosis of diseases [16], while others have
been used in IDS for security issues. The need for IDS techniques is vital because of the
resource-constraint considerations in IoT devices [17]. Mohapatra et al. [18] proposed a
cloud-based model that transfers and stores patient data over a cloud, and its security
system involves approving user authentication by barcode sensor. The doctor can verify
patient data securely and give his valuable feedback. The cloud-computing technology
provides a backbone server called cloud to process and store data used to train the ML
model. Doriguzzi-Corin et al. [19] proposed LUCID, a convolutional neural network (CNN)-
based IDS, because of its ability of pattern recognition to classify benign traffic from DDoS
attacks. Latif et al. [20] presented a novel random neural network (RaNN) for predicting
attacks, such as DoS, malicious operation, malicious control, data type probing, spying, and
scan. The presented RaNN was compared with the traditional ANN, the support vector
machine (SVM), and the decision tree (DT). In addition, the proposed algorithm RaNN
achieves higher attack detection accuracy by an average of 5.65% compared to that the
others. However, traditional cloud-computing models suffer from high latency and losses
that are due to the crowded backbone network [21]. Edge computing is used to address the
limitations of cloud computing in supporting IoT applications [22,23]. Edge computing
is an inventive technology that processes data to the edge of the network closer to the
end-user rather than performing this previously in the core network [24]. An edge-assisted
IoT layer provides lower latency, more flexible access, protection of data privacy, and
enhanced quality of service [25].

Most of the previous IDS was deployed in the core cloud layer, which did not meet
the real security needs for protecting real-time healthcare monitoring data. If the intrusion
is not detected in time, it will cause incalculable damage to the applications and devices
in the IoT [26]. To train the central model, the privacy data must be uploaded to a central
entity; however, the transfer of personal data to a centralized entity affects the privacy. This
introduces a single point of failure that affects the integrity of data and quality of services.
The centralized IDS is time-consuming. Collecting diversified data types (e.g., text, audio,
video, and AR/VR) in the 5G/6G network is very costly [27]. Due to the previous issues
encountered in the research on security of healthcare systems, such research is still in the
development stage and the applicability of the intrusion detection technology has raised
higher requirements. Although ML and DL technologies have significant contributions
in solving real-word problems, they have various constraints. McMahan et al. [28] with
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the Google team presented an alternative technique to the centralized learning of deep
networks by leaving the training data distributed on the mobile devices, training mobile
models locally at the edge layer, aggregating locally computed updates to the server,
learning the global model, and, finally, broadcasting learning updates to local models.
They called this approach “federated learning (FL)”. This method preserves the privacy
of the locally trained data, which is necessary for various applications in the healthcare
sector. Zhao et al. [29] proposed a multitask deep neural network in FL (MT-DNN-FL).
For evaluation, the datasets of CICIDS2017, ISCXVPN2016, and ISCXT were used. The
results showed that the proposed algorithm has a good detection rate in the multi-tasks
and decreases the overhead of training time more than centralized training. The proposed
model needs to optimize the DNN structure to cope with the restrictions of IoT devices.
Rajendran et al. [30] proposed two FL models with ANN and logistic regression (LR) for
protecting patient data privacy and security in healthcare systems. However, due to
lower complexity of LR and lack of epochs, FL do not have the potential to improve
the performance of the models. Compared with ANN models, FL performs better in
accuracy and privacy. Rieke et al. [31] discussed the impact of FL on the future of digital
healthcare by presenting the issues of medical sensitive data privacy without the need
to exchange or centralize datasets. Despite the advances of the FL, it has a big challenge,
which is the poisoning attack for the training data and the global model through poisoning
aggregated weights, which is some kind of man-in-the-middle attack. Using model reverse
engineering with the help of aggregated weights of local models, the private data could
be compromised [32]. In [33], the authors presented a novel FL poisoning backdoor into
the aggregated data for IDS local models by changing training datasets to incorrectly
classify malicious traffic. The data poisoning attack occurs when the attacker poisons the
training data by inserting small amounts of backdoor malicious data. The work showed
the effectiveness of the attack toward the damage of the data. Bagdasaryan et al. [34]
proposed a model poisoning attack that is more powerful than the data poisoning attack.
The proposed poisoning attack affects aggregated model updates that train the global
model after averaging. Zhang et al. [35] proposed generative adversarial networks (GAN)
to poison the model while training and the private data is cloned. After training, the
label of the generated model data is poisoned, which increases the amount of effect on the
global models.

From the above research, there is a need for more feasible solutions and studies to
tackle FL poisoning attacks. Nguyen et al. [33] stated that the solution of averaging out
poisoned updates by scaling down the models with high amplitudes of updates could
damage the performance and negatively impact the model’s main task. The incorporation
of new technologies with the FL, such as modern communication protocols, encryption
standards, blockchain, and lightweight DL, could provide a good solution [27]. Much re-
search stated the benefits of leveraging blockchain technology for IoT systems in healthcare
applications. Alkadi et al. [36] proposed a deep blockchain framework for IDS-based IoT
networks to identify cyberattacks in the centralized cloud environment. The proposed
framework achieves better performance against inference and data poisoning attacks, but it
still has privacy preserving concerns that are due to centralized learning. In this study, we
propose a framework to integrate the blockchain technology and the FL-based IDS network
into IoT security in healthcare systems. The framework can maintain secure transaction
records of the local model weights, help in selective model aggregation, and effectively
protect the system from poisoning attacks.

The contributions of our proposed system are:

• Proposing an IDS model for preventing attacks on a healthcare system using lightweight
detection model to cope with insufficient memory space and resource-constraint con-
siderations of edge nodes. The ANN was selected because of its advantages, as it does
not have any restrictions on datasets and its distribution and has better performance
with the heterogeneity of data in IoT devices, such as ICU in healthcare systems.
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• Introducing an edge-cloud IDS architecture in a federated way to prevent the central-
ized manner problems, such as single point of failure, and preserve the privacy of the
local trained data, which is necessary for various applications in the healthcare sector.
Besides that, applying the detection model at the edge layer near the source of the
attacks makes the detection response quicker, as well as reduces the cloud’s workload.

• Integrating blockchain technology with FL manner to store the local weights for
updating the global model, which protects the system from poisoning attacks and
provides full transparency and immutability over the distributed training process.

The rest of the paper is organized as follows. Section 2 gives the description of the
proposed system and its layered architecture, algorithm of FIDChain, and its detection
model. Section 3 provides the preprocessing steps of the datasets, the evaluation results of
FIDChain, evaluation of blockchain with the federated model, discussion and comparison
with the state of the art of different related studies then using different datasets. Finally,
Section 4 gives the conclusion and directions for future work.

2. Materials and Methods
2.1. Proposed System

According to the required functions of IoT applications, there are different system
architectures [37]. Figure 1 presents a comparison of the layered architectures between
our proposed system and those proposed in [9,38]. The proposed system architecture
in [9] is composed of a physical layer, network connectivity layer, IoT blockchain cloud
layer, application layer, business layer. The system is proposed for monitoring patient
vital signs using smart contracts based on blockchain without any classification for these
data using machine learning algorithm. The system did not discuss the security issues of
intrusion detection. The system is centralized, suffering from single point of failure and
compromising medical information as it sends it to a central server.
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The proposed system architecture in [38] is composed of a data perception layer, edge
layer, network layer, data management (cloud layer), application layer, and business layer.
The proposed system is a multi-attack edge layer detection mechanism in a federated
manner. The intrusion detection system did not discuss the poisoning attacks problem
during the sending the weights for aggregation to the server. The accuracy results have an
average of 92%, which needs more enhancement. The architecture layers of the proposed
FIDChain system are described as follows:

• Healthcare data perception layer: this contains ICU IoT devices with sensors. ICU
case devices could be classified into two categories: room environmental monitoring
devices and patient health monitoring devices.

• Edge-based blockchain layer: this consists of IoT gateways. Each gateway contains
some healthcare sensing devices. There is no global internal protocol for physical
healthcare sensors; therefore, a lot of network access protocols were supported by the
gateways. An IoT gateway is responsible for performing a multi-attack detection. At
the edge server (ES), a lightweight IDS was developed to normalize their data and
detect several ANN-based attacks. The proposed module will be developed in the
FL mode and trained in the edge layer so as to protect the cloud or other resources
if a particular attack happens, as it blocks the data from its gateway. The detection
time of intrusion will be smaller as the attack resources are near. In addition, there
will be lesser computing and processing capacity because the FL model deals with
smaller sets of data. After the module learning process is completed, the weights of
each local model will be sent to a blockchain-distributed ledger and stored in chained
blocks that connect gateway nodes with a server node in the next cloud layer. These
chained blocks will be further used for aggregation and averaging purposes. Finally,
that chain is protected using a cryptographic hash function that connects the blocks
together in the chain and, consequently, it cannot be manipulated or changed, as
it operates by consensus algorithms (smart contracts). The flow execution of the
overall system is described in Figure 2. The proposed FIDChain model provides a
solution to poisoning attacks, which is one of the most important challenges facing
FL. In which, every ES acquires the values of the updated weights and encrypts the
collected data and generates the corresponding signature using its own secret key.
Then ES aggregates the ciphertext and submits it with the signature to the activated
blockchain layer controlled by a smart contract, keeping control of data privacy and
data integrity. When receiving the data of all ESs, smart contract verifies the validity of
these messages using the ES’ public keys and stored data as blockchain hashed blocks
under smart contract rules. In turn, the central public cloud center (CPCC) can fetch
the stored blocks from the activated blockchain, the CPCC can retrieve the aggregated
plaintext using its own secret key. In general applications of IoT edge computing, the
communications between CPCC and ESs, and ES and the corresponding local model
are both two-way. As in terminal edge computing-based data storage, local model can
both upload and download the data to or from CPCC via blochchain network and ES.
Algorithm 1 gives the pseudocode for the FIDChain.

• Network layer: this is responsible for securing transaction of data from the lower
layer to the higher layer. It is considered as the connectivity layer that aims to provide
routing management.

• Cloud-based blockchain layer: the cloud is in charge of aggregated weights in the
blockchain ledger from the ESs, taking average weights and updating the global
weights of the ANN algorithm. Periodically, the cloud sends the aforementioned
updated weights to all gateways for updating local models’ weights to protect the
network efficiently. Figure 3 describes the diagram of the FIDChain aggregation of
local and global weights into the blockchain network.

• Application layer: this is responsible for monitoring healthcare vital signs.
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• Business layer: this helps managers of the whole healthcare application service to
create business models, flow charts, and executive reports based on analyzed and
received data from lower layers.

Algorithm 1: FIDChain

1:
Input: N is the node number atIDSFChain; g is global round; C is local epochs; M is the local
batch size; K no. of edge gateways; nk is size of data partition of edge gateway k; and η is the
learning rate.

2: Output: updated weights W
3: Procedure Server_ Node1 _Update:
4: Initialize w0
5: //IDSFChain is name of blockchain network
6: Node1: creates IDSFChain
7: Node1: connects to IDSFChainwith ip address
8: For each local edge from 1 to C do
9: //IDSFChainnode no. = edge node no. + 1
10: N = C + 1
11: Node1: grant mining of other nodes (sending and writing)
12: NodeN: connects to IDSFChain with ip address
13: End for
14: Node1: publish initial weights w0
15: For each global epoch g = 1, 2, . . . do
16: For each NodeN ∈ IDSFChain N from 2 to (k + 1) in parallel do
17: WK

g+1← Edge_Nodes_Update (NodeN, wg)
18: End for
19: Wg+1← ∑k

k=1
nk
n Wg+1

20: Where: n = ∑k nk
21: W←Wg+1
22: Node1: publish updated global W to IDSFChain
23: End for
24: End procedure
25: Procedure Edge_Nodes_Update (N, W):
26: M← (split data nk into batches of size M)
27: // train local models at the edge in feed-forward propagation
28: For each local epoch C = 1, 2, . . . do
29: // update local weights in back propagation using stochastic gradient descending (SDG)
30: W←W − η ∇ fk(W)
31: Where: ∇ fk(W) is the average gradient on edge local data
32: End for
33: NodeN: publish updated local w to IDSFChain
34: End procedure
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2.2. Detection Model Description

ANN is a parallel, distributed system inspired by the biological brain [39]. The most
common paradigm of ANN is the multilayer perceptron (MLP) [40]. For the proposed
IDS, an ANN has been used. For training, a back propagation algorithm is used at the
feed-forward neural network using a BoT-IoT dataset, as shown in Figure 4. Table 1 lists
the hyper-parameters used in the proposed detection model.
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2.2. Detection Model Description

ANN is a parallel, distributed system inspired by the biological brain [39]. The most
common paradigm of ANN is the multilayer perceptron (MLP) [40]. For the proposed
IDS, an ANN has been used. For training, a back propagation algorithm is used at the
feed-forward neural network using a BoT-IoT dataset, as shown in Figure 4. Table 1 lists
the hyper-parameters used in the proposed detection model.
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Table 1. The hyper-parameters used in the proposed detection model.

Hyper-Parameters Value

Learning rate 0.001:0.1 (+0.01)
Number of epochs 2:10 (+1)

Batch size 100:1000 (+100)
Classification type Binary
Activation function Sigmoid

Optimization algorithm Stochastic gradient descent (SGD)

In our test scenarios, there are some assumptions in the proposed system:

• The same structure and hyper-parameters for all local models, but they are trained
with different partitions of the origin dataset.

• The same initial weights for all the clients.
• The weight updates are published to the clients synchronously and regardless of their

participation in the last global epoch.
• Common learning rate to all the clients.

3. Results

Here, the FIDChain algorithm will be evaluated with ANN and compared with
XGBoost using a BoT-IoT dataset, then comparing results with related work tested the same
dataset. After evaluation, the algorithm will be tested on different datasets.

3.1. Working Environment

The simulation of the FIDChain system was performed on a machine with the follow-
ing characteristics:

3.1.1. Hardware Characteristics

CPU Intel Xeon 6th generation (1 socket, 8 cores, 16 threads), RAM 32 GB, GPU NVidia
Quadro P3000 with cuda v8.0.

3.1.2. Software Characteristics

Keras and PyTorch python ML and FL libraries were used, alongside TensorFlow as a
backend engine.

3.2. Data Preprocessing

The preprocessing steps of the dataset are performed as follows:

• Removing nominal features and excessive network traffic information by dropping
their columns.

• Replacing Null/NaN values with mean or median values.
• Using LabelEncoder function in scikit learn library to encode nonnumeric or symbolic

labels into numeric values between 0 and n_classes-1 to be appropriate for learning
and testing the proposed model.

• For binary classification, normal and attack traffic attributes were labeled to 0 and
1, respectively.

• Normalizing high-dimensional features using MinMaxScalar function in scikit learn
library to a range of (0, 1) to retain feature’s original distribution.

• Dividing dataset into five smaller client datasets to simulate data of five edge devices
(acting as gateways for the monitored systems). The dataset was partitioned in such a
way that each client with local model can recognize anomalous traffic or intrusions.

• Random splitting of processed dataset into training set (80%) and testing set (20%),
knowing that there is no duplication between the testing and the training traffic.
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3.3. BoT_IoT Dataset
3.3.1. Dataset Description

The BoT-IoT dataset was used to evaluate the performance of the proposed model. It
is an IoT traffic-based dataset that was created by designing a genuine testbed environment
in the Cyber Range Lab of UNSW. The Canberra Testbed was set up with simulated and
actual IoT normal and botnet attacks traffic, which provides more than 73 million records,
containing 46 features in each raw, and is provided in csv format of about 16.7 GB in
size [41]. The dataset contains normal instances and three types of categorized attacks as
follows: information gathering, DoS, and information theft, with their further subcategories
to form 10 types of attacks. To ease the training and testing processes of the proposed model,
a smaller set (5%) of the original full dataset was extracted and provided by the authors of
the dataset. This 5% dataset is comprised of four files with approximately 3 million records
and about 1.07 GB total size [42].

3.3.2. Feature Selection

The study [41] provided the selection of the best 10 features of the BoT-IoT dataset
(“seq”, “DstIP”, “srate”, “SrcIP”, “max”, “mean”, “stddev”, “min”, “state_number”, and
“drate”) using Equation (1) for joint entropy and correlation coefficient lows, which en-
hances the performance of the proposed IDS and improves accuracy, as shown in Table 2.

Entropy = −∑x ∑y(p(x, y) ∗ log p(x, y)) (1)

Table 2. The description of BoT-IoT best features.

State_Number Numerical Representation of Feature State

Seq Argus sequence number

N_IN_Conn_P_SrcIP Number of inbound connections per source IP

N_IN_Conn_P_DstIP Number of inbound connections per destination IP

Srate Source-to-destination packets per second

Drate Destination-to-source packets per second

Min Minimum duration of aggregated records

Max Maximum duration of aggregated records

Mean Average duration of aggregated records

Stddev Standard deviation of aggregated records

Higher values of entropy refer to lower information gain and depicts randomness
of the data. First, the pairwise Shannon joint entropy was calculated using Equation (1),
producing n× n table, where n is the number of features [43]. Then a score value per feature
was introduced through calculating the average joint entropy, then normalizing scores.
For measuring the strength of the relationship between the features of the dataset, first
the Pearson correlation coefficient is used, producing a matrix. The output of correlation
ranges between [−1, 1], and its magnitude indicates the strength of correlation between
two feature vectors. Second, the average correlation for each feature of the dataset is
calculated and normalized between [0, 1]. The feature with large average joint entropy and
low average correlation score was considered ideal.

To reveal the importance of best 10 BoT-IoT dataset features, the adoption of these
features with the information gain (IG) was calculated using Equation (2). The most
distinguishing features are (‘seq’, ‘DstIP’, ‘srate’, ‘SrcIP’, and ‘max’), while the remaining
features that have smaller information gain and lesser contribution to the IDS are (‘mean’,
‘stddev’, ‘min’, ‘state_number’, and ‘drate’), as shown in Figure 5.

IG(S, Q) = E(S)−∑K
i=1 Pi E(S, Qi) (2)



Healthcare 2022, 10, 1110 11 of 20

Healthcare 2022, 10, x 11 of 21 
 

 

Drate Destination-to-source packets per second 
Min Minimum duration of aggregated records 
Max Maximum duration of aggregated records 
Mean Average duration of aggregated records 
Stddev Standard deviation of aggregated records 

 

Entropy = − ∑ ∑ (𝑝(𝑥, 𝑦) ∗ 𝑙𝑜𝑔 𝑝(𝑥, 𝑦)) 
 

(1) 

Higher values of entropy refer to lower information gain and depicts randomness of 
the data. First, the pairwise Shannon joint entropy was calculated using Equation (1), pro-
ducing n × n table, where n is the number of features [43]. Then a score value per feature 
was introduced through calculating the average joint entropy, then normalizing scores. 
For measuring the strength of the relationship between the features of the dataset, first the 
Pearson correlation coefficient is used, producing a matrix. The output of correlation 
ranges between [−1, 1], and its magnitude indicates the strength of correlation between 
two feature vectors. Second, the average correlation for each feature of the dataset is cal-
culated and normalized between [0, 1]. The feature with large average joint entropy and 
low average correlation score was considered ideal. 

To reveal the importance of best 10 BoT-IoT dataset features, the adoption of these 
features with the information gain (IG) was calculated using Equation (2). The most dis-
tinguishing features are (‘seq’, ‘DstIP’, ‘srate’, ‘SrcIP’, and ‘max’), while the remaining fea-
tures that have smaller information gain and lesser contribution to the IDS are (‘mean’, 
‘stddev’, ‘min’, ‘state_number’, and ‘drate’), as shown in Figure 5. IG(S, Q) = E(S) − P   E(S, Q ) (2)

 
Figure 5. Feature ranking based on information gain. 

3.4. Evaluation Methodology of Detection Model 
In the classification of attack detection, the FIDChain detection model was evaluated 

in terms of accuracy, detection rate, precision, recall, specificity, F1-score, and false alarm 
rate. For binary classification, here are the important metrics to assess the performance of 
the model. 

The confusion matrix: this is commonly used to give a more complete picture when 
evaluating the performance of a model [44], as shown in Figure 6. 

0

0.2

0.4

0.6

0.8

1

se
q

Ds
tIP

sr
at

e

Sr
cI

P

m
ax

m
ea

n

st
dd

ev m
in

S_
nu

m
be

r

dr
at

e

IG
 R

ES
UL

T

FEATURES

Figure 5. Feature ranking based on information gain.

3.4. Evaluation Methodology of Detection Model

In the classification of attack detection, the FIDChain detection model was evaluated
in terms of accuracy, detection rate, precision, recall, specificity, F1-score, and false alarm
rate. For binary classification, here are the important metrics to assess the performance of
the model.

The confusion matrix: this is commonly used to give a more complete picture when
evaluating the performance of a model [44], as shown in Figure 6.
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The main metrics: this is commonly used to test the performance of classification
models by how effective the detection model is in distinguishing between the different
classes of network traffic [45]. Table 3 shows the metrics used in this study.
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Table 3. Effectiveness main metrics.

Metric Equation Definition

Accuracy TP+TN
TP+TN+FP+FN Ratio of correctly predicted instances to total number of predicted instances.

Precision
(Detection rate)

TP
TP+FP Ratio of the correctly predicted positive instances to total positive predictions.

Recall
(Sensitivity)

TP
TP+FN

Ratio of the correctly predicted positive instances to the overall available
positive data category.

Specificity TN
TN+FP

Ratio of the correctly predicted negative instances to the overall available
negative data category.

F1-score 2TP
2TP+FP+FN

Hybrid metric indicates the overall performance of the model respecting to
both precision and recall, useful for unbalanced classes

False alarm rate FP
FN+FP

Ratio of false positive alarms per the total number of false prediction warnings
or alarms.

3.5. Testing FIDChain Algorithm with BoT-IoT Dataset

For binary classification, the detection model of the FIDChain will be evaluated in
terms of accuracy, precision (detection rate), recall (sensitivity), specificity, F1-score, and
false alarm rate. In our test scenarios, the BoT-IoT dataset [42] was divided into five smaller
client datasets to simulate data of five edge nodes (clients). The detection model has been
tested on two ML models, ANN and XGBoost, using a dataset with “Full Features” and
“Best 10 Features”. Table 4 presents the obtained results. Figure 7a,b show the average of
training and testing losses of edge gateways (clients) of the proposed algorithm with ANN
with the BoT-IoT dataset (full features, best features respectively), there is a good cutoff
point for the loss which mostly occurs after about 150 communication rounds (iteration).
Figure 8a,b show losses of testing for each client individually.

Table 4. The performance analysis of FIDChain using ANN compared to XGBoost with BoT-IoT dataset.

ML Algorithm ANN XGBOOST
Dataset Version Full Features Best 10 Features Full Features Best 10 Features

Accuracy 99.99% 99.99% 98.40% 98.96%
Precision (Detection Rate) 100% 100% 99.36% 99.38%

Recall (Sensitivity) 99.99% 99.99% 99.59% 99.57%
F-score 99.99% 99.99% 99.47% 99.47%

Specificity 88.89% 100% 56.98% 57.12%
False Alarm Rate 11.11% 0% 43.02% 42.88%
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The results show that ANN has better performance than XGBoost because of higher
accuracy in both dataset versions (99.99%), whereas XGBoost has less accuracy of 98.4%
and 98.96% for the full features version and best features version of the dataset, respectively.
These results are obtained by taking the average results obtained from all edge local models.
ANN has a higher detection rate (100% for BoT-IoT dataset with full features and best
features) than XGBoost (99.36% and 99.38% for BoT-IoT dataset full features and best
features, respectively), which indicates the accurate positive predictions of attacks. This
implies that our proposed solution can minimize the false positives. ANN detection models
have higher coverage of actual positive sample with a 99.99% recall result for the dataset
than XGBoost with 99.59% and 99.57% for BoT-IoT dataset with full features and best
features, respectively. The F1-score of ANN is better than that of XGBoost (99.99% and
99.47% for the BoT-IoT dataset with full features and best features, respectively). The
F1 scores show that ANN performs better in considering both false positives and false
negatives. Furthermore, ANN has better specificity than XGBoost, which indicates better
coverage of actual negative instances. Additionally, ANN has lower false alarm rate than
XGBoost, which indicates lower false predictions of the attacks.

Finally, by examining the results it is obvious that the proposed FIDChain with ANN
detection model is much better than using other recent methods, such as XGBoost. This is
because ANNs have many advances that make it better and more suitable for intrusion
detection. ANN has the following qualities: the ability to learn complex and nonlinear
relationships as in IoT applications [46]; it can generalize and predict unseen data after
learning from the relationships of the initial data; it does not place any restrictions on
the dataset and its distribution; and it has better performance with the heterogeneity of
data in IoT devices, such as in ICUs in healthcare systems. The FIDChain mechanism is
suitable for healthcare systems because it has the ability to quickly and accurately predict
the intrusions and attacks, is simpler, and is suitable for edge-distributed models with the
limited processing capacity of healthcare IoT devices.

3.6. Evaluating Blockchain with the Federated System

The public blockchain that depends on the proof of work consensus protocol will not
be feasible for the federated learning process as it involves a large amount of weight updates.
The generation of new blocks on the ledger would be too slow such as in Hyperledger or
Ethereum. Therefore, the proposed system relies on a private and permissioned blockchain
that supports a consensus algorithm based on block signatures and a customizable round-
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robin consensus scheme without proof of work. The blockchain algorithm increases the
complexity with limited impact on the federated learning performance. At the end of
each local update, the edge node writes the weights event on the blockchain and the
CPCC computes the weighted average of the local weights. However, as most blockchains
create new blocks at fixed time intervals, we propose to line up the averaging process
with the period of the block creation to minimize any latencies. The duration of training
on a single edge node was approximately 54 min with up to one minute more or less on
average, i.e., 54 ± 1. We have noticed there is some execution time complexity because of
the blockchain algorithm increases the complexity with limited impact on the federated
learning time. The impact can be measured experimentally before and after the activation
of blockchain. The approximate time loads per epoch are calculated with and without using
blockchain. From Figure 9, the overhead of about 3% is estimated (2 s at average per epoch),
while providing full transparency and immutability over the distributed training process.
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3.7. Comparison of FIDChain with the State of the Art

Here, we compare the proposed FIDChain algorithm with the related work that uses
some popular ML and DL algorithms tested on the BoT-IoT dataset, as shown in Table 5.
The average accuracy, recall, and F1-score of the FIDChain is superior to those of the
other methods in most classes with the highest precision, which means that the proposed
FIDChain can minimize the false positives in comparison with the stated approaches. The
study [47] used the advances of blockchain as storage with 99.99% accuracy, but the learning
IDS is centralized, which compromises medical data. The study [48] proposed an algorithm
that provides an IDS with auto-encoder model and uses the advances of blockchain to
store local weights, tacking average and providing updated weights. For evaluation, the
CICIDS2017 dataset was used and the obtained accuracy was 97%, which is lower than
FIDChain. However, it deletes the centralized server from the blockchain network, which
leads to no update of the global model weights. The study [38] proposed an algorithm that
presents an IDS in FL mode with ANN, but with lower accuracy (92.5%) than FIDChain,
and it did not make use of blockchain advances of protecting from poisoning attacks.
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Table 5. Comparison with related work tested on BoT-IoT dataset.

Ref. Model Classification
Type Accuracy

Precision
(Detection

Rate)
Recall F1-Score Mode

Integration
with

Blockchain

[49] CNN-
TSODE

Binary 99.99% 99.99% 99.99% 99.99%
Centralized No

Multi 99.04% 99.04% 99.04% 99.04%

[50]
DNN

Multi 98.37% - - - Centralized NoRNN

CNN

[51] RNN Multi 98.20% - - - Centralized No

[37]
DeepDCA

(DCA-
SNN)

Binary 98.73% 99.17% 98.36% 98.77% Centralized No

[52]

Naive
Bayes

Binary
51.5% - - -

Centralized NoKNN 92.1% - - -

ANN 82.8% - - -

[47]
RF

Multi
99.99% 99.99% 99.99% 99.99%

Centralized Yes
XGBoost 99.99% 87.77% 94.36% 87.90%

[53]

NB

Binary

52.18% 79.67% 99.70% 69.50%

Centralized No

KNN 99.48% 99.65% 99.68% 99.58%

RF 99.51% 99.70% 99.79% 99.65%

Log R 99.50% 95.28% 90.39% 94.70%

DT 99.47% 99.69% 99.79% 99.63%

[54]

decision
tree

Multi

99.99% 97.10% 94.27% 98.95%

Centralized No

Naive
Bayes 97.49% 56.28% 57.95% 98.44%

Random
Forest 99.98% 95.05% 91.37% 99.99%

SVM 97.80% 57.89% 43.24% 98.48%

[38] ANN Multi
99.9% - - - Centralized

No92.5% - - - Federated

Our work ANN Binary 99.99% 100% 99.99% 99.99% Federated Yes

3.8. Testing FIDChain with ANN Using Different Data Sets

Here, the performance indicators of the proposed FIDChain will be evaluated in terms
of precision (detection rate), recall (sensitivity), F-score, specificity, accuracy, and false
alarm rate using different datasets and compared to the BoT-IoT (full and best features).
Table 6 describes these datasets. The datasets were prepared with the same test scenario
as BoT-IoT by dividing them into five smaller client datasets to simulate data of five edge
nodes (clients). Table 7 shows the obtained results, which reveal that the BoT-IoT dataset
gives the most stable and accurate results, as it is the IoT traffic-based dataset that has more
variety of botnet and it is the most suitable for testing IoT applications, such as in healthcare
systems. Figure 10a–c show the average of training and testing losses of edge gateways
(clients) of the proposed algorithm using CSE-CIC-IDS2018, Bot Net IoT, and KDD Cup
99 datasets, respectively. Figure 11a–c show losses of testing for each client individually.
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Table 6. Description of used datasets.

Dataset Description

CSE-CIC-IDS2018 [55]
Network traffic-based dataset proposed by the Communications Security Establishment
(CSE) & the Canadian Institute for Cybersecurity (CIC) including 7 botnet types with 80

network flow features.

Bot Net IoT [56]
Internet-connected devices-based dataset proposed by Beigi et al. which is divided into

training (with 7 botnet types) and test datasets (with 16 botnet types) with four groups of
features (byte-based, packet-based, time, and behavior-based).

KDD Cup 99 [57]

Network traffic-based dataset consists of approximately 4,900,000 vectors. The botnet types
are divided into four categories (user-to-root attack (U2R), remote-to-local attack (R2L),

probing attack, and denial-of-service attack (DoS)) containing 41 features, which are
categorized into three classes (basic features, traffic features, and content features).

Table 7. Results of testing FIDChain with different datasets.

Dataset Precision
(Detection Rate)

Recall
(Sensitivity) F-Score Specificity Accuracy False Alarm

Rate
CSE-CIC-IDS2018 0.4461 0.8581 0.5870 0.8589 0.8588 0.1411

Bot Net IoT 1.0000 0.9742 0.9869 0.9996 0.9756 0.0004
Bot-IoT (10 Features) 1.0000 0.9999 0.9999 1.0000 0.9999 0.0000
Bot-IoT (All Features) 1.0000 0.9999 0.9999 0.8889 0.9999 0.1111

KDD Cup 99 0.9709 0.9491 0.9599 0.9928 0.9840 0.0072
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4. Conclusions

In this paper, an edge-cloud intrusion detection mechanism was introduced with the
integration of blockchain distributed ledger, FIDChain, which is simple and suitable for
deployment on edge devices in healthcare systems. These healthcare systems use IoT
devices with limited storage capacity and lower computations. FIDChain has the ability
to detect multiple botnets faster as the detection model is trained in the edge server so
as to protect the cloud or other resources if a particular attack happens, as it blocks the
data from its gateway, with smaller detection time as the attack resources become nearer.
The proposed FIDChain undergoes lesser computing and processing capacity because the
FL model deals with smaller sets of data. Furthermore, the proposed FIDChain model
provides a solution to poisoning attacks, which is one of the most important challenges
facing FL, as it uses the blockchain network to store the weights of each local model in a
distributed ledger in chained blocks. These chained blocks connect gateway nodes with
server node in the next cloud layer, which is further used for aggregation and averaging
purposes. Finally, the chain is protected using a cryptographic hash function that connects
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the blocks together in the chain. Thus, it cannot be tampered with or changed, as it
operates on a smart contract. Although that blockchain increases the complexity of the
system, it had a limited impact with a negligible time overhead of about 3% per epoch
in terms of providing full transparency and immutability over the distributed system.
After evaluation in terms of different performance indicators, such as precision (detection
rate), recall (sensitivity), F-score, specificity, accuracy, and false alarm rate, using real IoT
traffic-based dataset “BoT-IoT”, the results obtained show that FIDChain not only enhances
the accuracy (99.99%) and false alarm rate but also outclasses the latest ML and DL models.
In addition, it gives balanced results of the intrusion detection. For further evaluation, the
FIDChain with ANN has been tested with different datasets: CSE-CIC-IDS2018, Bot Net
IoT, and KDD Cup 99. The obtained results show that the BoT-IoT dataset gives the most
stable and accurate results, as it is the IoT traffic-based dataset that has more variety of
botnet types, and it is the most suitable for testing IoT applications, such as in healthcare
systems. In future work, the performance of the proposed FIDChain should be improved
using multiple classifications to detect the type of attack and trace its source for further
enhancement of protecting healthcare systems; the blockchain-based federated learning
solution would be applied to more use cases with different neural network architectures,
the algorithm would be improved to deal with large number of heterogeneous hardware,
and the aggregation algorithm would be enhanced to deal with the delay caused by the
slowest contributor.
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