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Abstract: As osteoporosis is a degenerative disease related to postmenopausal aging, early diagnosis
is vital. This study used data from the Korea National Health and Nutrition Examination Surveys
to predict a patient’s risk of osteoporosis using machine learning algorithms. Data from 1431
postmenopausal women aged 40–69 years were used, including 20 features affecting osteoporosis,
chosen by feature importance and recursive feature elimination. Random Forest (RF), AdaBoost,
and Gradient Boosting (GBM) machine learning algorithms were each used to train three models:
A, checkup features; B, survey features; and C, both checkup and survey features, respectively. Of
the three models, Model C generated the best outcomes with an accuracy of 0.832 for RF, 0.849 for
AdaBoost, and 0.829 for GBM. Its area under the receiver operating characteristic curve (AUROC)
was 0.919 for RF, 0.921 for AdaBoost, and 0.908 for GBM. By utilizing multiple feature selection
methods, the ensemble models of this study achieved excellent results with an AUROC score of 0.921
with AdaBoost, which is 0.1–0.2 higher than those of the best performing models from recent studies.
Our model can be further improved as a practical medical tool for the early diagnosis of osteoporosis
after menopause.

Keywords: machine learning; feature selection; osteoporosis; postmenopausal women; pre-screening;
risk assessment

1. Introduction

Osteoporosis is a representative disease that accompanies aging and is closely related
to skeletal fractures and deaths [1]. Therefore, a methodology for early diagnosis and
prevention has been proposed. Osteoporosis is diagnosed by measuring bone mineral
density (BMD) using dual-energy X-ray absorptiometry (DXA) equipment [2]. However, the
associated costs are expensive [3]. Hence, with the accelerating growth of aged populations,
the financial burdens of individuals and governments are increasing dramatically [4,5].
Notably, a pre-screening diagnosis method that leverages data from surveys and checkups
to evaluate osteoporosis risk in advance would greatly benefit prevention and treatment
while reducing economic and financial burdens on society. For these reasons, pre-screening
diagnosis methods have been actively studied. Thus, many conventional methods of
predicting osteoporosis risk are used, including the Osteoporosis Self-Assessment Tool for
Asians [6], the osteoporosis risk assessment instrument [7], simple calculated osteoporosis
risk estimation [8], and the osteoporosis index of risk [9,10], because these methods rely
on only two or three features to predict osteoporosis simply. However, because enormous
amounts of medical data are collected nowadays, it is necessary to apply complicated
statistical methods to utilize data in advance for better results [3].
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Machine learning is an artificial intelligence technique for learning patterns and pre-
dicting outcomes based on input data [11]. Machine learning is especially effective at iden-
tifying trends and making predictions from multi-dimensional data and has already been
applied to osteoporosis diagnosis. For example, E et al. [12] attempted to improve the low
accuracy of osteoporosis prevalence predictions using machine learning, and Kim et al. [13]
applied machine learning techniques to pre-screen osteoporosis in postmenopausal women
in Korea.

Feature selection is important for machine learning efficiency and accuracy [14]. In
most machine learning osteoporosis diagnosis methods, selected features known to influence
osteoporosis are used to train machine learning models from prepared datasets [12,13,15,16].
This study instead applies a method of selecting features optimized for machine learning
from high-dimensional data, rather than by filtering features in advance based on expert
knowledge. The performance of this method turns out to be better than those of extant
feature selection methods.

The Korea National Health and Nutrition Examination Survey (KNHANES) is a
nationwide survey of Korean residents that collects general health and nutrition data,
including those of bone densitometry. Lee and Lee [15], Shim et al. [16], and Yoo et al. [17]
studied machine learning models that predict osteoporosis based on the features related
to osteoporosis, achieving area under the receiver operating characteristic (AUC) curve
performances of 0.710, 0.743, and 0.827, respectively. Based on this, the current study trains
and evaluates a machine learning model that predicts osteoporosis in postmenopausal
women using raw data from the KNHANES (2008–2011).

2. Materials and Methods
2.1. Data Collection

The KNHANES database was established to identify the health and nutritional statuses
of Korean citizens following the 1998 enactment of Article 16 of the National Health
Promotion Act. Hence, the survey has been conducted yearly with raw data released online.
KNHANES include data from common participant information, health behavior surveys,
health examinations, and nutrition surveys [18]. The current study uses raw data from
the V-4 (2008–2009) and V-5 (2010–2011) surveys, when osteoporosis tests were performed
using DXA equipment [19]. The current study’s use of KNHANES data received ethical
approval from the Institutional Review Board of the Korea Centers for Disease Control and
Prevention (IRB Num. IS19EISI0063). Data were downloaded from the KNHANES website
(https://knhanes.kdca.go.kr/knhanes/main.do (accessed on 7 October 2020)).

2.2. Study Participants

Among the 21,303 participants, four exclusion criteria were applied to meet the pur-
pose of this study. First, those who were not tested for osteoporosis were excluded. Second,
osteopenia patients were excluded because the purpose of this study is to determine
whether patients have osteoporosis or normal as binary classification. Third, men were
excluded, as the focus of the study is postmenopausal women. Furthermore, patients who
had experienced both menopause and a hysterectomy were included as they have a high
chance of contracting osteoporosis, based on previous studies [20]. Fourth, only partici-
pants aged 40–69 years were included as most over 70 have already suffered osteoporosis.
Considering all four criteria, 1431 participants remained.

2.3. Bone Mineral Density and T-Score

Osteoporosis is normally diagnosed using BMD tests via DXA, which measures the
inorganic content in bone to determine the risk of fracture and identify the prevalence of
osteoporosis. BMDs of the lumbar spine and femur are usually measured, but those of the
wrist, finger, or heel may be substituted [21].

In KNHANES V-4 and V-5, BMD was measured in three areas: lumbar spine, femur
neck, and the whole femur. The individually measured BMDs were used to diagnose
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osteoporosis after calculating T-scores and comparing them to the BMDs of healthy adults,
according to a recommendation by the World Health Organization. The largest BMD
dataset from Asia Japan (DISCOVERY-W; fan-beam densitometer, Hologic, Inc., USA) was
used as the healthy adult group [22].

T-score = (BMD − group’s BMD mean) ∗ group’s BMD stddev, (1)

T-scores calculated using the above equation were classified: a T-score of −1 or higher
was classified as normal, −1 to −2.5 was classified as osteopenia, and less than −2.5 was
classified as osteoporosis [23]. Based on above criteria, T-scores were classified into three
different classes, and only two classes (normal and osteoporosis) as a dependent variable
were used to train binary classification model.

2.4. Experimental Design

Figure 1 displays a flowchart explaining the study design. Prior to analysis, partici-
pants were selected considering the criteria explained in Section 2.2, and data preprocessing
was conducted afterward (see Section 2.5). Machine learning algorithms were applied to
predict the occurrence of osteoporosis based on 20 features having high classification influ-
ence, chosen via discussions with medical specialists and feature importance scoring from
trained machine learning algorithms. The features consisted of 10 biochemical screening
results (Model A) and 10 survey results (Model B). When combined, Model C is obtained.
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Figure 1. Study procedure. Model A—trained Model based on checkup features. Model B—trained
Model based on survey features. Model C—trained Model based on total (checkup + survey) features.

2.5. Data Preprocessing

Data preprocessing was performed using Python V.3.8 using the pandas, numpy,
and scikit-learn libraries. Outliers and non-responses were converted into missing values
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(“N/A”) based on the KNHANES data guidelines, and multinominal data were analyzed
using the one-hot encoding method. Feature engineering was used to integrate features
with overlapping meanings by year, and all data were conditions with standard scaling
prior to training.

2.6. Feature Selection

As shown in Figure 1, feature selection was performed based on feature importance
and recursive feature elimination (RFE), following data processing. Feature importance
refers a measure of the individual contribution of the corresponding feature for a particular
classifier, regardless of the shape or direction of the feature effect [24]. The higher the feature
importance, the greater the influence on algorithmic decision-making. RFE is a backward
feature selection technique that removes features with low importance, considering the size
of the input feature set. The machine learning model was trained on all features initially,
and unimportant features were then eliminated from the set.

2.7. Machine Learning Algorithms

A total of eight different machine learning models (KNN, Decision Tree, LDA, QDA,
SVC, Random Forest, AdaBoost, and Gradient Boosting Machine) were trained and evalu-
ated based on the KNHANES data during study. Among them, three machine learning
models (Random Forest, AdaBoost, and Gradient Boosting Machine) were selected with
the highest performance. In this study, three ensemble machine learning algorithms were
used to analyze KNHANES data: Random Forest (RF), AdaBoost, and Gradient Boosting
Machine (GBM). Ensemble learning connects several weak learning algorithms to obtain
stronger results, which is effective in solving classification and regression problems. RF
generates a strong decision tree by combining the outputs of several randomly generated
ones [25]. AdaBoost is a classification-based model that synthesizes a classifier strengthened
through weight modification by combining many weak classifiers. GBM sequentially gen-
erates trees in a manner that mitigates the errors of previous trees using gradient boosting
classifiers [26].

2.8. Model Training

The k-fold cross-validation method was used for machine learning training and verifi-
cation k times by allocating verification data differently for each iteration after dividing the
dataset into k folds [27]. In this study, the training and testing datasets were divided 80:20
for learning and performance measurement, and k was set to five. This study repeated this
cross-validation method 10 times, followed by an accuracy comparative analysis of 50 total
learned models. During training, hyperparameters were optimized using the grid-search
approach, a tuning technique that computes the optimal combination of hyperparameters
by verifying the performance of all possible combinations using cross-validation [28].

2.9. Model Evaluation

Two indicators are normally required to evaluate machine learning performance. The
first is the area under the curve (AUC) score from the receiver operating characteristic
curve, which is curve-plotting sensitivity vs. one minus specificity. In statistic fields, the
accuracy of the machine learning model will improve as the AUC approaches one [29].

Principal component analysis (PCA) is a multivariate analysis method that finds the
main components represented by a linear combination of variables by identifying the
variation–covariant relationships between large quantitative variables. PCA was used in
the present study to visualize the clusters of target patients using two-dimensional reduced
principal component variables.

2.10. Statistical Analysis

As the dependent variable of this study is the T-score, point-biserial correlation and
phi correlation analyses were performed to calculate correlations instead of using the
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Pearson coefficient. Point-biserial correlation measures the correlation when one variable is
a binary variable and the other is continuous [30]. The phi correlation analysis determines
the degree of correlation between two variables when both independent and dependent
variables are binary [31].

3. Results
3.1. Draft Model Building

Training with 1151 features (original data), the AdaBoost model showed the best
performance in terms of the AUC (0.91), followed by the GBM (0.90) and RF (0.86). See
Figure 2A. Additionally, the osteoporosis per se (dependent variable) was not clearly
classified into two separate groups (normal and osteoporosis) based on only two main
features (PC1 and PC2), whereas the PCA was performed on 1151 features (Figure 2B).
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Figure 2. Draft Model Performance. (A): The result of principal component analysis plot based on
1151 features. GBM—Gradient Boosting Machine. (B): Receiver operating characteristic (ROC) curve
for three different best models (Random Forest, AdaBoost, and Gradient Boosting Machine) based on
total features (the number of features = 1151).

3.2. Feature Selection and Statistical Analysis

Survey data are questions that the patient can directly respond to and are related to
people’s life patterns. Checkup data are collected with the biochemical screening result
of participants. Table 1 shows the descriptive statistics of the 20 features selected for
importance, and Table 2 presents a list of 20 variables selected by referring to the feature
importance as well as one-to-one correlation coefficients between each variable and DX_OST
(dependent variable). As a result of the point-biserial correlation analysis, the age variable
had the highest correlation at 0.540 in the positive direction, followed by age of menarche
(0.24) and use of estrogen (0.17). Among the survey data, education level had the greatest
negative correlation at −0.34. Serum alkaline phosphatase level was the highest at 0.233
for screening questions with a positive correlation. From the screening questions, weight
(HE_wt) scored the highest negative correlation (−0.43) with the DX_OST, followed by
height (HE_ht) at −0.37.
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Table 1. Descriptive statistics of normal and osteoporosis subjects in the study.

Variables Characteristics Normal
(n = 610)

Osteoporosis
(n = 821)

Age Age (years) 55.15 (49.46, 60.84) 62.34 (56.92, 67.77)
LW_mp_a Age of menopause (years) 49.53 (45.07, 53.99) 48.86 (43.93, 53.78)
LW_ms_a Age of menarche (years) 15.22 (13.37, 17.07) 16.21 (14.16, 18.26)

BP8 Average sleeping time for a day (hours) 6.6 (5.25, 7.96) 6.5 (4.93, 8.08)
BD2 Beginning age of drinking (years) 23.42 (7.69, 39.16) 22.07 (2.02, 42.12)

HE_fev1fvc Expired lung vol. for 1 0.8 (0.75, 0.86) 0.79 (0.72, 0.86)
HE_HDL_st2 HDL cholesterol 49.58 (38.28, 60.87) 48.35 (37.58, 59.11)

HE_ht Height (cm) 156.71 (151.59, 161.82) 152.65 (147.57, 157.72)
DX_Q_ht Highest height of the young (cm) 158.88 (154.2, 163.56) 156.26 (151.22, 161.3)

HE_insulin Insulin 10.7 (2.73, 18.66) 10.07 (4.5, 15.64)
LQ_VAS Quality of life scale (index) 72.96 (54.39, 91.53) 68.32 (47.18, 89.46)
HE_ALP Serum alkaline phosphatase (IU/L) 231.77 (165.21, 298.33) 267.75 (188.13, 347.37)
HE_sbp2 Systolic blood pressure (mmHg) 124.67 (106.22, 143.12) 127.36 (109.16, 145.56)
HE_crea Serum Creatinine (mg/dL) 0.72 (0.62, 0.82) 0.7 (0.52, 0.89)
HE_vitD Vitamin D (ng/mL) 18.58 (11.98, 25.18) 18.49 (11.38, 25.61)
HE_wt Weight (kg) 62.03 (53.58, 70.48) 54.52 (47.07, 61.98)
HE_wc Waist Circumference (cm) 83.71 (74.44, 92.98) 80.62 (71.98, 89.26)

BE5_1 Muscle exercise per week (%) *
1 Never 80 88.94
2 One day a week 3.97 1.84
3 Two days a week 4.13 2.21
4 Three days a week 4.63 2.83
5 Four days a week 2.15 1.6
6 More than five days a week 5.12 2.58

edu Education Level (%) *
1 Primary or less 37.25 72.52
2 Middle 23.18 12.52
3 High 28.64 12.15
4 College or more 10.93 2.82

LW_wh Use of estrogen (%) *
0 No 25.96 12.93
1 Yes 74.04 87.07

* indicates categorical variables, and the number of each characteristic under categorical variables refers
to percentage.

Table 2. The results of univariate correlation analysis with the list of 20 independent variables and
dependent variable.

Data Type Variables Characteristics Correlation

Checkup HE_wt Weight (kg) −0.426 (−0.467, −0.383)
HE_ht Height (cm) −0.367 (−0.411, −0.321)
HE_wc Waist Circumference (cm) −0.170 (−0.219, −0.119)

HE_fev1fvc Expired lung vol. for 1 s −0.115 (−0.172, −0.056)
HE_HDL_st2 HDL cholesterol (mg/dL) −0.055 (−0.108, −0.002)
HE_insulin Insulin (µIU/mL) −0.046 (−0.103, 0.010)
HE_Crea Serum Creatinine (mg/dL) −0.045 (−0.098, 0.008)
HE_vitD Vitamin D (ng/mL) −0.006 (−0.059, 0.047)
HE_sbp2 Systolic blood pressure (mmHg) 0.073 (0.021, 0.124)
HE_ALP Serum alkaline phosphatase (IU/L) 0.233 (0.183, 0.283)

Survey Edu Education Level −0.345 (−0.390, −0.298)
DX_Q_ht Highest height of the young (cm) −0.261 (−0.317, −0.203)
LQ_VAS Quality of life scale (index) −0.112 (−0.163, −0.060)

BE5_1 muscle exercise per week (days) −0.107 (−0.158, −0.055)
LW_mp_a Age of menopause (years) −0.070 (−0.123, −0.016)

BD2 Beginning age of drinking (hours) −0.037 (−0.088, 0.015)
BP8 Average sleeping time for a day (years) −0.034 (−0.085, 0.018)

LW_wh Use of estrogen 0.17
LW_ms_a Age of menarche (years) 0.243 (0.192, 0.292)

Age Age (years) 0.540 (0.503, 0.576)

Parentheses under the correlation column indicate a 95% confidence interval.
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3.3. Models (A, B, and C) Performance

The three machine learning models were each trained using Models A, B, and C, and
grid search and five-fold cross-validation techniques were used to determine the optimized
hyperparameters for the best performance. The performance of Model C (Figure 3) had a
high average AUC of 0.88. Models A and B had AUCs exceeding 0.80 and 0.83, respectively.
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data types. Model A—trained model based on checkup features. Model B—trained model based on
survey features. Model C—trained model based on total (survey + checkup) features.

Figure 4 and Table S2 show the performance of Model C, and using the same process,
the results of the best model performances of Models A and B can be viewed in the
supplementary section (Figures S2 and S3). Figure 4A shows the result of the ROC curves
for RF, AdaBoost, and GBM. The AUCs of the RF and AdaBoost algorithms were both 0.92,
and the GBM showed no significant difference at 0.91. Referring to Supplementary Table S2,
the performance indicators of accuracy, precision, and recall resulted in low variations
among algorithms and were stable. Figure 4B shows the results of the two-dimensional
PCA for the 20 selected features. Osteoporosis and normal clusters were not completely
separated, but two clusters of PC1 could be distinguished between zero and one along
the x-axis.
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Figure 4. Best Model (Model C) Performance. (A): The result of 2D principal component analysis plot
based on selected 20 features. (B): Receiver operating characteristic (ROC) curve of three different
best models (Random Forest, AdaBoost, and Gradient Boosting Machine) based on 20 selected
features (total).

4. Discussion

In this study, a PCA was performed prior to feature selection and afterward to confirm
the relationships between osteoporosis and the selected features. According to the PCA
plot (Figure 2B) of the draft model, the normal and osteoporosis groups could not be clearly
distinguished based on the two principal components. However, the results of Model C
(Figure 4B) implied that the clusters were distinguishable on the right side (normal) and
the left side (osteoporosis) based on the specific value at the x-axis (between zero and one).
There was no significant difference between the AUC of the draft model and Model C. For
Model C, the variation in the AUCs among the three machine learning algorithms was
small. Thus, training machine learning models with a small number of features is more
effective than using all features in terms of model efficiency and stability.

Checkup data would be used to predict the occurrence of osteoporosis with an 80%
accuracy when applying Model A and survey data would be used to predict the occurrence
of osteoporosis with an 85% accuracy if Model B was applied. Finally, if both checkup
and survey data were available, Model C would be appropriate to predict the occurrence
of osteoporosis with an 88% accuracy. To sum up, each model would be used practically
depending on the type of data collected.

Prior studies selected features that potentially affected osteoporosis based on knowl-
edge of the medical domain. However, in this study, the feature selection step was per-
formed using medical domain knowledge alongside feature importance and RFE tech-
niques. Instead of collecting commonly known significant features, a large dataset was used
to describe the participants in as much detail as possible. A manual data preprocessing
step was also necessary to improve training and prediction accuracy. For example, the
beginning age of drinking is meaningful only within the group that already had experience
in drinking. Therefore, in this case, a feature engineering technique was used to convert the
variable into a new one combining drinking experience and the beginning age of drinking.
Using this feature selection method with preprocessing, the machine learning models of this
study had better results, with AUCs of 0.919 (RF), 0.921 (AdaBoost), and 0.908 (GBM). These
scores are approximately 0.1–0.2 higher than the scores of the best model performance from
previous studies. Although this study did not fully consider the clinical knowledge, the
unique feature selection method and data preprocessing step had a positive influence on
model performance via the selection of more suitable features and the merging of various
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raw data into more meaningful data. In particular, the features selected in this study could
be classified into two different groups (i.e., checkup and survey), each of which results in an
AUC score of at least 0.80. Therefore, the trained machine learning model from this study
may serve as an osteoporosis assistant diagnostic program that predicts the occurrence of
osteoporosis and determines the necessity of more thorough examinations.

There were several limitations in this study. First, the raw data from the KNHANES
were gathered from cross-sectional observational studies performed at limited points in
time across a limited sample population. Second, as participant selection was restricted
to women between 40 and 69 years old, it may be difficult to generalize the results of this
study to all populations in Korea.

The results of this study can be used as an auxiliary diagnosis program for osteoporosis
in the future. In a further study, the models will verify if clinical data with the same features
collected from medical institutions can be generalized. Furthermore, as medical image
data and deep learning technology can be used for osteoporosis diagnosis, combined with
the results of this study, it might be used as a more objective and accurate osteoporosis
auxiliary diagnostic tool [32,33].

5. Conclusions

This study generated a prediction model for classifying the osteoporosis using three
machine learning algorithms based on 20 features obtained through the feature selection
step. The model (Model C) including both checkup and survey features, had an AUROC
value (0.92) based on 20 features. Additionally, the model (Model A) with only checkup
features, scored an AUROC value (0.81), and the model (Model B) with only survey features,
attained an AUROC value (0.85). The trained osteoporosis prediction models when each
dataset is available are expected to be useful as an auxiliary diagnostic tool for women
after menopause.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/healthcare10061107/s1, Figure S1: Machine Learning Curve for
each best models using Grid search method; Figure S2: ROC Curve for three different best models
based on 10 selected Checkup features; Figure S3: ROC Curve for three different best models based
on 10 selected Survey features; Figure S4: Feature importance bar graph for 20 features measured by
three different ensemble machine learning models; Table S1: The number of normal and osteoporosis
patients distributed in women; Table S2: Summary of the Model C’s Performances on the test set
(n = 287).
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