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Abstract: Breast ultrasound (BUS) image segmentation is challenging and critical for BUS computer-
aided diagnosis (CAD) systems. Many BUS segmentation approaches have been studied in the last
two decades, but the performances of most approaches have been assessed using relatively small
private datasets with different quantitative metrics, which results in a discrepancy in performance
comparison. Therefore, there is a pressing need for building a benchmark to compare existing
methods using a public dataset objectively, to determine the performance of the best breast tumor
segmentation algorithm available today, and to investigate what segmentation strategies are valuable
in clinical practice and theoretical study. In this work, a benchmark for B-mode breast ultrasound
image segmentation is presented. In the benchmark, (1) we collected 562 breast ultrasound images
and proposed standardized procedures to obtain accurate annotations using four radiologists; (2) we
extensively compared the performance of 16 state-of-the-art segmentation methods and demon-
strated that most deep learning-based approaches achieved high dice similarity coefficient values
(DSC ≥ 0.90) and outperformed conventional approaches; (3) we proposed the losses-based approach
to evaluate the sensitivity of semi-automatic segmentation to user interactions; and (4) the successful
segmentation strategies and possible future improvements were discussed in details.

Keywords: breast ultrasound (BUS) images; segmentation; computer-aided diagnosis (CAD); benchmark

1. Introduction

Breast cancer occurs with the highest frequency in women among all cancers and is
also one of the leading causes of cancer death worldwide [1]. The key to reducing mortality
is to find the signs and symptoms of breast cancer at its early stage. In current clinical
practice, breast ultrasound (BUS) imaging with computer-aided diagnosis (CAD) system
has become one of the most important and effective approaches for breast cancer detection
due to its non-invasive, non-radioactive, and cost-effective nature. In addition, it is the most
suitable approach for large-scale breast cancer screening and diagnosis in low-resource
countries and regions.

CAD systems based on B-mode breast ultrasound (BUS) have been developed to over-
come the inter- and intra-variabilities of the radiologists’ diagnoses and have demonstrated
the ability to improve the diagnosis performance of breast cancer [2]. Automatic BUS
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segmentation, extracting tumor region from normal tissue regions of BUS image, is a crucial
component in a BUS CAD system. It can change the traditional subjective tumor assess-
ments into operator-independent, reproducible, and accurate tumor region measurements.

Driven by clinical demand, automatic BUS image segmentation has attracted great
attention in the last two decades; and many automatic segmentation algorithms have been
proposed. The existing approaches can be classified into semi-automatic and fully automatic
according to “with or without” user interactions in the segmentation process. In most
semi-automatic methods, the user needs to specify a region of interest (ROI) containing the
lesion, a seed in the lesion, or an initial boundary. Fully automatic segmentation is usually
considered as a top-down framework that models the knowledge of breast ultrasound
and oncology as prior constraints and needs no user intervention at all. However, it is
quite challenging to develop automatic tumor segmentation approaches for BUS images,
due to the poor image quality caused by speckle noise, low contrast, weak boundary,
and artifacts. Furthermore, tumor size, shape, and echo strength vary considerably across
patients, which prevents the application of strong priors to object features that are important
for conventional segmentation methods.

In previous works, most approaches were evaluated by using private datasets and
different quantitative metrics (see Table 1), which make the objective and effective com-
parisons among the methods quite challenging. As a consequence, it remains difficult
to determine the best performance of the algorithms available today, what segmentation
strategies are accessible to clinic practice and study, and what image features are helpful
and useful in improving segmentation accuracy and robustness.

Table 1. Recently published approaches.

Article Type Year Category Dataset Size/Availability Metrics
Kuo, et al. [3] S 2014 Deformable models 98/private DSC
Liu, et al. [4] S 2010 Level set-based 79/private TP, FP, SI

Xian, et al. [5] F 2015 Graph-based 184/private TPR, FPR, SI, HD, MD
Shao, et al. [6] F 2015 Graph-based 450/private TPR, FPR, SI

Huang, et al. [7] S 2014 Graph-based 20/private ARE, TPVF, FPVF, FNVF
Xian, et al. [8] F 2014 Graph-based 131/private SI, FPR, AHE
Gao, et al. [9] S 2012 Normalized cut 100/private TP, FP, SI, HD, MD

Hao, et al. [10] F 2012 CRF + DPM 480/private JI
Moon, et al. [11] S 2014 Fuzzy C-means 148/private Sensitivity and FP

Shan, et al. [12] F 2012 Neutrosophic L-mean 122/private TPR, FPR, FNR, SI, HD,
and MD

Hao, et al. [13] F 2012 Hierarchical SVM + CRF 261/private JI
Jiang, et al. [14] S 2012 Adaboost + SVM 112/private Mean overlap ratio

Shan, et al. [15] F 2012 Feedforward neural network 60/private TPR, FPR, FNR, HD,
MD

Pons, et al. [16] S 2014 SVM + DPM 163/private Sensitivity, ROC area
Yang, et al. [17] S 2012 Naive Bayes classifier 33/private FP

Torbati, et al. [18] S 2014 Feedforward Neural network 30/private JI

Huang, et al. [19] F 2020 Deep CNNs 325/private + 562/public TPR, FPR, JI, DSC, AER,
AHE, AME

Huang, et al. [20] F 2018 Deep CNNs + CRF 325/private TPR, FPR, IoU

Shareef, et al. [21] F 2020 Deep CNNs 725/public TPR, FPR, JI, DSC, AER,
AHE, AME

Liu, et al. [22] S 2012 Cellular automata 205/private TPR, FPR, FNR, SI

Gómez, et al. [23] S 2010 Watershed 50/private Overlap ratio, NRV
and PD

F: fully automatic, S: semi-automatic, SVM: support vector machine, CRF: conditional random field, DPM: de-
formable part model, CNNs: convolutional neural networks, TP: true positive, FP: false positive, SI: similarity
index, HD: Hausdorff distance, MD: mean distance, DSC: Dice similarity, JI: Jaccard index, ROC: Receiver operat-
ing characteristic, ARE: average radial error, TPVF: true positive volume fraction, FPVF: false positive volume
fraction, FNVF: false negative volume fraction, NRV: normalized residual value, PD: proportional distance, TPR:
true positive ratio, FPR: false positive ratio, FNR: false negative ration, and IoU: Intersection over union.
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In this paper, we present a BUS image segmentation benchmark including 562 B-
Mode BUS images with ground truths, and compare 16 state-of-the-art BUS segmentation
methods by using seven popular quantitative metrics. Besides the BUS dataset in this study,
three other BUS datasets [24–26] were published recently. References [24,25] have many
challenging images with small tumors and could be valuable to test algorithm performance
in segmenting small tumors; however, [24] has only 163 images, and [25] does not have
ground truths for most images. The work of [26] has 763 images, including 133 normal
images (without tumors). It is valuable to test algorithms’ robustness in dealing with
normal images. However, the three datasets did not use the same standardized process for
ground truth generation; therefore, we do not report the performance of the algorithms
for them.

We also make the BUS dataset and the performance of the 16 approaches available at
http://cvprip.cs.usu.edu/busbench. (1 May 2018) To the authors’ best knowledge, this is
the first attempt to benchmark the BUS image segmentation methods. With the help of
this benchmark, researchers can compare their methods with other algorithms and find the
primary and essential factors for improving the segmentation performance.

The paper is organized as follows: Section 2 gives a brief review of BUS image segmenta-
tion approaches; Section 3 illustrates the setup of the benchmark; in Section 4, the experimental
results are presented; and the discussions and conclusion are in Sections 5 and 6, respectively.

2. Related Works

Many BUS segmentation approaches have been studied in the last two decades and
have proven effective using private datasets. In this section, a brief review of automatic
BUS image segmentation approaches is presented. For more details, refer to the survey
paper [27]. The BUS image segmentation approaches are classified into five categories:
(1) deformable models, (2) graph-based approaches, (3) machine learning-based approaches,
(4) classical approaches, and (5) other approaches.

Deformable models (DMs). According to the ways of representing the curves and
surfaces, DMs are generally classified into two subcategories: (1) parametric DMs (PDMs)
and (2) geometric DMs (GDMs). PDMs-based segmentation approaches focused on generat-
ing good initial tumor boundaries. PDMs [3,28–32] were investigated by utilizing different
preprocessing methods such as the balloon forces, sticks filter, gradient vector flow (GVF)
model, watershed approach, etc. In GDMs-based BUS image segmentation approaches,
many methods focused on dealing with the weak boundary and inhomogeneity of BUS
images. The authors of [33–38] utilized the active contour without edges (ACWE) model,
Mumford-Shah technique, signal-to-noise ratio and local intensity value, level set approach,
phase congruency, etc. Liu et al. [4] proposed a GDMs-based approach that enforced
priors of intensity distribution by calculating the probability density difference between
the observed intensity distribution and the estimated Rayleigh distribution. Two major
challenges exist in DMs. (1) PDMs-based approaches are sensitive to initial curves and
unable to adapt to topological changes of the objects; and (2) GDMs solved the challenge of
PDMs, but increased the computational cost greatly.

Graph-based approaches. Graph-based approaches gain popularity in BUS image
segmentation because of their flexibility and efficient energy optimization. The Markov
random field–maximum a posteriori–iterated conditional mode (MRF-MAP-ICM) and
the graph cuts or conditional random fields (CRFs) are the two major frameworks in
graph-based approaches [27]. Potts model [39] was a common choice for defining the prior
energy [40,41]. The authors of [41–43] utilized Gaussian distribution to model intensity
and texture, and the Gaussian parameters were either from manual selection or from
user interactions.

Graph cuts is a special case of the MRF-MAP modeling, but focuses on binary segmen-
tation. Xian et al. [5] proposed a novel fully automatic BUS image segmentation framework
in which the graph cuts energy modeled the information from both the frequency and
space domains. Shao et al. [6] modeled a tumor saliency map to exclude non-tumor regions

http://cvprip.cs.usu.edu/busbench
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and applied the map to define the data term in graph cuts. Chiang et al. [44] built the graph
using image regions, which was initialized by specifying a group of tumor regions and a
group of background regions and defined the weight function of the smoothness term (prior
energy) using regional intensity difference and edge strength [45]; and the data term was
determined online by a pre-trained probabilistic boosting tree (PBT) classifier [46]. In [13],
a hierarchical multi-scale superpixel classification framework was proposed to define the
data term. The “shrink” problem is a common challenge for all graph-based approaches,
which leads to an object boundary that is shorter than the actual one. Normalized cut was
proposed to solve this challenge but at the cost of high computation and inflexibility in
integrating semantic information [27].

Machine learning-based approaches. Both supervised and unsupervised learning
approaches have been applied to BUS image segmentation. Unsupervised approaches
are simple and fast and commonly utilized as preprocessing to generate candidate image
regions. Supervised approaches are good for integrating features at different levels and
producing accurate results.

Clustering: Xu et al. [47] proposed a BUS image segmentation method by applying the
spatial fuzzy c-means (sFCM) [48] to the local texture and intensity features. In [49], FCM
was applied to intensities for generating image regions in four clusters. Moon et al. [11]
applied FCM to image regions produced by using the mean shift method. Shan et al. [12]
extended the FCM and proposed the neutrosophic l-means (NLM) clustering to deal with
the weak boundary problem in BUS image segmentation by considering the indeterminacy
membership. Clustering approaches are sensitive to initialization and may require a
fixed threshold to determine tumor regions. These approaches are usually applied as a
preprocessing step to locate rough tumor regions.

SVM and shallow NNs: Liu et al. [50] trained a support vector machine (SVM) using
local image features to categorize small image lattices (16 × 16) into the tumor or non-
tumor classes. Jiang et al. [14] trained Adaboost classifier using 24 Haar-like features [51]
to generate a set of candidate tumor regions. Huang et al. [52] proposed an NN-based
method to segment 3D BUS images by processing 2D image slices using local image
features. Two artificial neural networks (ANNs) to determine the best-possible threshold
were trained [53]. Shan et al. [15] trained an ANN to conduct pixel-level classification by
using the joint probability of intensity and texture [28] with two new features: the phase
in the max-energy orientation (PMO) and radial distance (RD). The ANN had six hidden
nodes and one output node. The SVM and shallow NNs for breast tumor segmentation
depend on hand-crafted features and may need preprocessing approaches to partition
images and post-processing approaches to refine the results.

Deep Learning: deep learning-based approaches have been reported to achieve state-
of-the-art performance for many medical tasks such as prostate segmentation [54], cell
tracking [55], muscle perimysium segmentation [56], brain tissue segmentation [57], breast
tumor diagnosis [58], etc. Deep learning models have great potential to achieve good
performance due to the ability to characterize large image variations and to learn com-
pact image representations using a sufficiently huge image dataset automatically. Deep
learning architectures based on convolutional neural networks (CNNs) were employed
in medical image segmentation. U-Net [55], LeNet [59], FCN [60], and SegNet [61] are
popular architectures used in BUS image segmentation. Huang et al. [62] combined fuzzy
logic with FCN, and the five-layer structure of the breast is utilized to refine the final
segmentation results. Huang et al. [19] applied fuzzy logic to five convolutional blocks. It
can handle the breast images having no tumors or more than one tumor which was not
processed well before. Huang et al. [20] utilized fully convolutional CNNs to identify the
tissue layers of the breast and integrated the layer information into a fully connected CRF
model to generate the final segmentation results. Shareef et al. [21] proposed the STAN
architecture to improve small tumor segmentation. Two encoders were employed in STAN
to extract the multi-scale contextual information from different levels of the contracting
part. Zhuang et al. [63] proposed the RDAU-Net, which used the dilated residual blocks
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and attention gates to replace the basic blocks and original skip connections in U-Net,
respectively. RDAU-Net improved the overall sensitivity and accuracy of tumor segmenta-
tion on BUS images. Guan et al. [64] proposed a semantic context aware network (SCAN),
which integrates a location fusion module and context fusion module to detect semantic
and contextual features. To segment objects at different scales, Ibtehaz [65] improved U-Net
by replacing the convolutional blocks with inception-like blocks and replacing the original
skip connections with convolutions operations. Gu et al. [66] proposed the context encoder
network (CE-Net) by integrating a context encoder module into a U-Net framework to
preserve more spatial information. The DenseU-Net [67] architecture used residual con-
nections and a weighted focal loss function with median frequency balancing to improve
the performance of small object detection. Regardless of the unprecedented performance
of deep-learning approaches for breast tumor segmentation, two major challenges exist.
(1) Most deep learning approaches are ‘blackbox’ and lack essential explainability to justify
the results. (2) Popular deep-learning frameworks are vulnerable to adversarial attacks;
hence implementing and integrating defense strategies, e.g., RST [68], TREADES [69], and
LLR [70], are valuable to improve the adversarial robustness of deep-learning models.

Classical approaches: The three most popular classical approaches were applied to BUS
image segmentation: thresholding, region growing, and watershed. Thresholding [15,71]
was applied to automatically segment breast tumors. Kwak et al. [72] defined the cost of
growing a region by modeling common contour smoothness and region similarity (mean
intensity and size). Watershed could produce more stable results than thresholding and
region-growing approaches. Huang et al. [73] selected the watershed markers based on
the grey level and connectivity. Zhang et al. [74] applied watershed to determine the
boundaries of the binary image. The markers were set as the connected dark regions. Lo
et al. [75] applied watershed and post-refinement based on the grey level and location to
generate candidate tumor regions. The classical approaches are simple and fast, but usually
were implemented as preprocessing steps to facilitate other approaches.

Other approaches: Two interesting approaches are in this category: cell computation [44,45]
and cellular automation [22]. In cell computation, the cells are small image regions, and
adjacent cells compete with each other to split or merge. Chen et al. [45] defined two types
of competitions: Type I and Type II. In Type I competition, two adjacent cells from different
regions compete to split one cell from a region and merge it into another region. One cell
splits from a multi-cell region and generates a single-cell region in Type II competition.
This approach is simple and fast, but it needs user interaction to select the tumor region. In
cellular automation (CA), each cell has three components: state, neighbors, and a transition
function. A cell’s state updates by using its transition function and the states of its neighbor-
ing cells. Liu et al. [22] constructed the transition function by using local texture correlation.
It could generate accurate tumor boundaries and did not have the shrink problem in graph
cuts. The computation cost for CA to reach a stable state set was quite high.

In Table 1, we list 21 BUS image segmentation approaches published recently.

3. Benchmark Setup
3.1. BUS Segmentation Approaches and Setup

We obtained permissions from the developers of six BUS segmentation methods [4–6,15,21,22]
to use their source code. In addition, we implemented 10 deep learning-based approaches:
Fuzzy FCN [62], Fuzzy FCN Pyramid [19], FCN [60], U-Net [55], SegNet [61], MultiRe-
sUNet [65], CE-Net [66], RDAU Net [63], SCAN [64], and DenseU-Net [67]. Approaches
in [22] and [4] are interactive and both need an operator to specify regions of interest (ROIs)
manually. All other approaches are fully automatic.

Among the 16 approaches, [4–6,15,19,21,22,62] were trained and tested using BUS
datasets. [5] is an unsupervised approach and was originally validated using 184 BUS
images; and the spatial term weight λ is set to 2.4. Shan et al. [15] utilized a predefined
reference point (center of the upper part of the image) for seed generation and pre-trained
tumor grey-level distribution for texture feature extraction; we use the same reference point
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(i.e., image center) and the predefined grey-level distribution provided by the authors; and
10-fold cross-validation is employed to evaluate the overall segmentation performance.
Reference [4] is a level set-based segmentation approach and sets the initial tumor boundary
by user-specified ROI. The maximum number of iterations is set to 450 as the stopping
criterion. Reference [22] is based on cellular automation and uses the pixels on the boundary
of the ROI specified by the user as the background seeds and pixels on a cross at the ROI
center as the tumor seeds. Reference [6] is a graph-based fully automatic approach, and was
originally evaluated using 450 BUS images. In our experiments, we adopt all the parameters
from the original papers correspondingly. References [43,48,49,53–58] are deep-learning
approaches, and 5-fold cross-validation was applied to test the performance. To overcome
memory restrictions, we used a batch size of four. They were optimized in the same way as
described in their original papers.

3.2. Dataset and Ground Truth Generation

Our BUS image dataset has 562 images among women between the ages of 26 to
78 years. The images were originally collected and de-identified by the Second Affiliated
Hospital of Harbin Medical University, the Affiliated Hospital of Qingdao University,
and the Second Hospital of Hebei Medical University using multiple ultrasound devices:
GE VIVID 7 and LOGIQ E9, Hitachi EUB-6500, Philips iU22, and Siemens ACUSON
S2000. Since this project only involves historical and de-identified data, the IRB approval
was exempt.

The images from different sources are valuable for testing the robustness of algorithms.
Example images from different devices are shown in Figure 1. Informed consent to the
protocol from all patients was acquired. The privacy of the patients is well protected.
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Figure 1. Breast ultrasound images collected using different devices. BUS images produced using
(a) GE VIVID 7, (b) GELOGIQ E9, (c) Simens ACUSON S2000, and (d) Hitachi EUB-6500.

Four experienced radiologists are involved in the ground truth generation; three
radiologists read each image and delineate each tumor boundary individually, and the
fourth one (senior expert) judges if the majority voting results need adjustments. The
ground truth generation has four steps: (1) each of the three experienced radiologists
delineate each tumor boundary manually, and three delineation results are produced for
each BUS image. (2)Aall pixels inside/on the boundary are viewed as tumor region, outside
pixels as background; and majority voting is used to generate the preliminary result for
each BUS image. (3) The senior expert reads each BUS image and refers to its corresponding
preliminary result to decide if it needs any adjustment. (4) We label the tumor pixel as 1 and
the background pixel as 0 and generate a binary and uncompressed image as the ground
truth for each BUS image. An example of the ground truth generation is in Figure 2.
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3.3. Quantitative Metrics

Among the approaches, two of them [4,22] are semi-automatic, and user predefined re-
gion of interest (ROI) needs to be set before the segmentation; while the other 14 approaches
are fully automatic. The performance of semi-automatic approaches may vary with dif-
ferent user interactions. It is meaningless to compare semi-automatic methods with fully
automatic methods; therefore, we will compare the methods in two categories separately. In
the evaluation of semi-automatic approaches, we compare the segmentation performances
of the two methods using the same set of ROIs and evaluate the sensitivity of the methods
to ROIs with different looseness ratio (LR) defined by

LR =
BD
BD0

(1)

where BD0 is the size of the bounding box of the ground truth and is used as the baseline,
and BD is the size of an ROI containing BD0. We produce 10 groups of ROIs with different
LRs automatically using the approach described in [76]: move the four sides of an ROI
toward the image borders to increase the looseness ratio; and the amount of the move is
proportional to the margin between the side and the image border. The LR of the first group
is 1.1; and the LR of each of the other groups is 0.2 larger than that of its previous group.

The method in [15] is fully automatic, it involves neural network training and testing,
and a 10-fold cross-validation strategy is utilized to evaluate its performance. Methods
in [5,6] need no training and operator interaction. All experiments are performed using a
windows-based PC equipped with a dual-core (2.6 GHz) processor and 8 GB memory. The
performances of these methods are validated by comparing the results with the ground
truths. Both area and boundary metrics are employed to assess the performances of the
approaches. The area error metrics include the true positive ratio (TPR), false positive ratio
(FPR), Jaccard index (JI), dice similarity coefficient (DSC), and area error ratio (AER)

TPR =
|Am ∩ Ar|
|Am|

(2)

FPR =
|Am ∪ Ar − Am|

|Am|
(3)

JI =
|Am ∩ Ar|
|Am ∪ Ar|

(4)
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DSC =
2|Am ∩ Ar|
|Am|+ |Ar|

(5)

AER =
|Am ∪ Ar| − |Am ∩ Ar|

|Am|
(6)

where Am is the pixel set in the tumor region of the ground truth, Ar is the pixel set in
the tumor region generated by a segmentation method, and |·| indicates the number of
elements of a set. TPR, FPR, and AER take values in [0, 1]; and FPR could be greater than 1
and takes value in [0, +∞). Furthermore, Hausdorf error (HE) and mean absolute error
(MAE) are used to measure the worst possible disagreement and the average agreement
between two boundaries, respectively. Let Cm and Cr be the boundaries of the tumors in
the ground truth and the segmentation result, respectively. The HE is defined by

HE(Cm, Cr) = max

{
max
x∈Cm
{d(x, Cr)}, max{d(y, Cm)}

y∈Cr

}
(7)

where x and y are the points on the boundaries Cm and Cr, respectively; and d(·,C) is the
distance between a point and a boundary C as

d(z, C) = min
k∈C
{‖z− k‖} (8)

where ‖z − k‖ is the Euclidean distance between points z and k; and d(z,C) is the minimum
distance between point z and all points on C. MAE is defined by

MAE(Cm, Cr) =
1

2
(

∑x∈Cm
d(x,Cr)

nr
+ ∑y∈Cr

d(y,Cm)
nm

) . (9)

where nr and nm are the numbers of points on boundaries Cr and Cm, respectively.
The seven metrics above were discussed in [27]. For the first two metrics (TPR and

FPR), each of them only measures a certain aspect of the segmentation result, and is not
suitable for describing the overall performance; e.g., a high TPR value indicates that most
portions of the tumor region are in the segmentation result; however, it cannot claim an
accurate segmentation because it does not measure the ratio of correctly segmented non-
tumor regions. The other five metrics (JI, DSC, AER, HE, and MAE) are more comprehensive
and effective to measure the overall performance of the segmentation approaches and are
commonly applied to tune the parameters of the segmentation models [5], e.g., large JI and
DSC, and small AER, HE, and MAE values indicate the high overall performance.

Although JI, DSC, AER, HE, and MAE are comprehensive metrics, we still recom-
mend using both TPR and FPR for evaluating BUS image segmentation; since with these
two metrics we can discover some hidden characteristics that cannot be found through the
comprehensive metrics. Suppose that the algorithm has low overall performance (small
JI and DSC, and large AER, HE, and MAE), if FPR and TPR are large, we can conclude
that the algorithm has overestimated the tumor region; if both FPR and TPR are small, the
algorithm has underestimated the tumor regions. The findings from TPR and FPR can
guide the improvement of the algorithms.

4. Approach Comparison

In this section, we evaluate 16 state-of-the-art approaches [4–6,15,19,21,22,55,60–67].
The 16 approaches are selected based on three criteria: (1) select at least one representative
approach for each category except the classic approaches; (2) each approach should achieve
good performance in their original dataset; and (3) the source codes of the approaches are
available. Fourteen approaches [5,6,15,19,21,55,60–67] are fully automatic, and we compare
their average performances by using the seven metrics discussed in Section 3.2; while for
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semi-automatic approaches [4,22], we also evaluate their sensitivities of the seven metrics
with different LRs.

4.1. Semi-Automatic Segmentation Approaches

Ten ROIs were generated automatically for each BUS image, with an LRs range from
1.1 to 2.9 (step size is 0.2). In total, 5620 ROIs were generated for the entire BUS dataset,
and we ran each of the semi-automatic segmentation approaches 5620 times to produce
the results. All the segmentation results on the ROIs with the same LR were utilized to
calculate the average TPR, FPR, DSC, AER, HE, and MAE, respectively; and the results
of [4] and [22] are shown in Figures 3 and 4, respectively.
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Figure 4. Average segmetation results of [4] using ROIs with different looseness ratios (LRs).

The results of [22] are demonstrated in Figure 3. All average JI values are between 0.7
and 0.8; and all average DSC values are between 0.8 and 0.9. The average TPR values are
above 0.7 and increase with LRs of ROIs; the average JI and DSC values increase firstly, and
then decrease; the average FPR values increase with the increasing LRs; and the average
DSC, HE, and MAE decrease firstly, and then increase. Five metrics (average JI, DSC, AER,
HE, and MAE) reach their optimal values at the LR of 1.9 (Table 2).
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Table 2. Quantitative results of [4,22] using 10 LRs of ROI.

Methods

Metrics

LRs
Area Error Metrics Boundary Error

Metrics Time

Ave.
TPR

Ave.
FPR Ave. JI Ave.

DSC
Ave.
AER Ave. HE Ave.

MAE
Ave.

Time (s)

[4]

1.1 0.73
(0.23)

0.08
(0.09)

0.67
(0.20)

0.78
(0.18)

0.35
(0.22)

45.4
(31.6)

12.6
(10.9) 18

1.3 0.79
(0.18)

0.10
(0.12)

0.72
(0.16)

0.82
(0.14)

0.31
(0.19)

42.2
(28.0) 10.9 (8.9) 22

1.5 0.82
(0.15)

0.13
(0.14)

0.73
(0.14)

0.84
(0.11)

0.31
(0.18)

44.0
(28.3) 10.4 (7.5) 27

1.7 0.83
(0.15)

0.17
(0.18)

0.73
(0.14)

0.83
(0.12)

0.33
(0.20)

48.3
(32.2) 10.9 (8.0) 27

1.9 0.85
(0.14)

0.20
(0.21)

0.72
(0.14)

0.83
(0.12)

0.36
(0.23)

51.3
(35.3) 11.2 (7.9) 30

2.1 0.86
(0.14)

0.24
(0.25)

0.71
(0.15)

0.82
(0.13)

0.39
(0.27)

54.9
(38.8) 11.7 (8.4) 30

2.3 0.86
(0.13)

0.27
(0.28)

0.70
(0.15)

0.82
(0.12)

0.41
(0.29)

57.0
(41.7) 12.1 (8.8) 36

2.5 0.87
(0.14)

0.32
(0.33)

0.69
(0.16)

0.80
(0.13)

0.46
(0.34)

61.3
(44.2)

13.1
(10.5) 39

2.7 0.87
(0.14)

0.35
(0.36)

0.68
(0.17)

0.79
(0.14)

0.48
(0.36)

62.1
(43.3) 13.4 (9.5) 40

2.9 0.86
(0.17)

0.40
(0.41)

0.66
(0.19)

0.77
(0.17)

0.54
(0.44)

66.2
(46.1)

14.6
(10.7) 44

[22]

1.1 0.70
(0.10)

0.01
(0.02)

0.70
(0.09)

0.82
(0.07)

0.31
(0.09)

35.8
(17.0) 11.1 (5.3) 487

1.3 0.76
(0.09)

0.02
(0.03)

0.75
(0.08)

0.85
(0.06)

0.26
(0.09)

32.0
(15.6) 9.1 (4.6) 467

1.5 0.79
(0.08)

0.03
(0.04)

0.77
(0.08)

0.87
(0.05)

0.23
(0.09)

29.9
(15.0) 8.1 (4.2) 351

1.7 0.82
(0.09)

0.05
(0.06)

0.79
(0.09)

0.88
(0.06)

0.23
(0.10)

29.5
(16.5) 7.8 (4.8) 341

1.9 0.84
(0.09)

0.07
(0.07)

0.79
(0.09)

0.88
(0.06)

0.23
(0.11)

29.0
(17.0) 7.6 (5.3) 336

2.1 0.86
(0.08)

0.10
(0.09)

0.79
(0.10)

0.88
(0.07)

0.24
(0.13)

29.5
(18.4) 7.7 (5.2) 371

2.3 0.87
(0.09)

0.13
(0.12)

0.78
(0.11)

0.87
(0.08)

0.26
(0.16)

31.3
(21.9) 8.3 (6.4) 343

2.5 0.89
(0.09)

0.16
(0.14)

0.77
(0.11)

0.87
(0.08)

0.28
(0.17)

31.9
(20.1) 8.5 (6.1) 365

2.7 0.90
(0.09)

0.20
(0.15)

0.75
(0.11)

0.85
(0.08)

0.31
(0.18)

34.1
(20.2) 9.2 (5.9) 343

2.9 0.90
(0.10)

0.25
(0.18)

0.73
(0.12)

0.84
(0.10)

0.35
(0.22)

36.9
(21.8) 10.2 (6.7) 388

The values in ‘( )’are the standard deviations; and the best performance in each column is highlighted in bold.

As shown in Figure 4, all the average TPR and DSC values of the method in [4] are
above 0.7, and the average JI values vary in the range [0.65, 0.75]. The average TPR values
increase with the increasing LR values of ROIs. Both the average JI and DSC values tend to
increase first and then decrease with the increasing LRs of ROIs. FPR, AER, and HE have
low average values when the LRs are small, which indicates that the high performance of
the method in [4] can be achieved by using tight ROIs; however, the values of the three
metrics increase almost linearly with the LRs of ROIs when the looseness is greater than
1.3; this observation shows that the overall performance of [4] drops rapidly by using large
ROIs above a certain level of LR. The average MAE values decrease first and then increase
and vary with the LRs in a small range. Four metrics (average JI, DSC, AER, and MAE)
reach their optimal values at the LR of 1.5 (Table 2). After 1.5, the increasing ROIs make [4]
segment more non-tumor regions into the tumor region (refer to the average FPR curve in
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Figure 4). The increasing false positive results in the decreasing of the average, JI, and DSC
values, and increasing of all other metrics.

As shown in Figures 3 and 4, and in Table 2, the two approaches achieve their best
performances with different LRs (1.5 and 1.9 respectively). We can observe the following
facts:

• The works of [4,22] are quite sensitive to the sizes of ROIs.
• The works of [4,22] achieve the best performance when setting them with their optimal

LRs (1.9 for [22] and 1.5 for [4]).
• The performances of the two approaches drop if the looseness level is greater than a

certain value; and the performance of method [22] drops much slower than that of the
method in [4].

• Set 1.9 as the optimal LR for [22] and 1.5 for [4]; and [22] achieves better average
performance than that of [4].

• The running time of the approach in [4] is proportional to the size of the specified ROI,
while there is no such relationship of the running time for the approach in [22].

• The running time of the approach in [22] is slower than that of the approach in [4] by
one order of magnitude.

4.2. Fully Automatic Segmentation Approaches

The performance of 14 fully automatic approaches is reported in Table 3. Except
for methods [5,6,15], the other approaches are deep convolutional neural networks. In
general, all deep learning approaches outperform [5,6,15], using the benchmark dataset.
The work of [5] achieves better performance than that of the methods in [6,15] on all five
comprehensive metrics. The works of [19,22] achieve the lowest average FPR. The method
in [15] has the same average TPR value as the method in [5]; however, its average FPR value
is much high (1.06), which is almost six times larger than that of the method in [5]; the high
average FPR and AER values of the method in [15] indicate that large portions of non-tumor
regions are misclassified as tumor regions. The average JIs of all deep learning approaches
are above 0.8 except FCN-AlexNet; and [62] achieved the best average JI performance.
Table 3 also shows the average optimal performances of [4] and [22] at the LRs of 1.5 and
1.9, respectively.

Table 3. Overal performance of all approaches.

Methods

Metrics
Area Error Metrics Boundary Error

Metrics Time

Ave. TPR Ave. FPR Ave. JI Ave. DSC Ave. AER Ave. HE Ave.
MAE

Ave.
Time (s)

FCN-AlexNet [60] 0.95/– 0.34/– 0.74/– 0.84/– 0.39/– 25.1/– 7.1/– 5.8

SegNet [61] 0.94/– 0.16/– 0.82/– 0.89/– 0.22/– 21.7/– 4.5/– 12.1

U-Net [55] 0.92/– 0.14/– 0.83/– 0.90/– 0.22/– 26.8/– 4.9/– 2.15

CE-Net [66] 0.91/– 0.13/– 0.83/– 0.90/– 0.22/– 21.6/– 4.5/– 2.0

MultiResUNet [65] 0.93/– 0.11/– 0.84/– 0.91/– 0.19/– 18.8/– 4.1/– 6.5

RDAU NET [63] 0.91/– 0.11/– 0.84/– 0.91/– 0.19/– 19.3/– 4.1/– 3.5

SCAN [64] 0.91/– 0.11/– 0.83/– 0.90/– 0.20/– 26.9/– 4.9/– 4.1

DenseU-Net [67] 0.91/– 0.16/– 0.81/– 0.88/– 0.25/– 25.3/– 5.5/– 3.5

STAN [21] 0.92/– 0.09/– 0.85/– 0.91/– 0.18/– 18.9/– 3.9/– 5.8

Xian, et al. [5] 0.81/0.91 0.16/0.10 0.72/0.84 0.83/– 0.36/– 49.2/24.4 12.7/5.8 3.5

Shan, et al. [15] 0.81/0.93 1.06/0.13 0.60/– 0.70/– 1.25/– 107.6/18.9 26.6/5.0 3.0

Shao, et al. [6] 0.67/0.81 0.18/0.12 0.61/0.74 0.71/– 0.51/– 69.2/50.2 21.3/13.4 3.5
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Table 3. Cont.

Methods

Metrics
Area Error Metrics Boundary Error

Metrics Time

Ave. TPR Ave. FPR Ave. JI Ave. DSC Ave. AER Ave. HE Ave.
MAE

Ave.
Time (s)

Fuzzy FCN [62] 0.94/– 0.08/– 0.88/– 0.92/– 0.14/– 19.8/– 4.2/– 6.0

Huang, et al. [19] 0.93/0.93 0.07/0.07 0.87/0.87 0.93/0.93 0.15/0.15 26.0/26.0 4.9/4.9 6.5

Liu, et al. [4]
LR = 1.5 0.82/0.94 0.13/0.08 0.73/0.87 0.84/– 0.31/– 44.0/26.3 10.4/– 27.0

Liu, et al. [22]
LR = 1.9 0.84/0.94 0.07/0.07 0.79/0.88 0.88/– 0.23/– 29.0/25.1 7.6/– 336.0

The values before the slashes are approaches’ performances on the proposed dataset, and after the slashes are
their performances reported in the original publications. Notation ‘–’ indicates that the corresponding metric was
not reported in the original paper. The best performance in each column is highlighted in bold.

5. Discussions

Many semi-automatic segmentation approaches are utilized for BUS image segmenta-
tion [27]. User interactions (setting seeds and/or ROIs) are required by these approaches
and could be useful for segmenting BUS images with extremely low quality. As shown in
Table 3, the two interactive approaches could achieve very good performance if the ROI is
set properly.

Figures 3 and 4 also demonstrate that the two semi-automatic approaches achieve
varying performances using different sizes of ROIs. Therefore, the major issue in semi-
automatic approaches is to determine the best ROIs/seeds. HOwever, such issue has been
neglected before completely. Most semi-automatic approaches focused only on improving
segmentation performance by designing complex features and segmentation models, but
failed to consider user interaction as an important factor that could affect the segmentation
performance. Hence, we recommend that researchers should consider such issues when
they develop semi-automatic approaches. Two possible solutions could be employed to
solve this issue. First, for a given approach, we could choose the best LR by running
experiments on a given BUS image training set (like Section 4.1) and apply the LR to the
test set. Second, like the interactive segmentation approach in [76], we could bypass this
issue by designing segmentation models less sensitive to user interactions.

Fully automatic segmentation approaches have many good properties, such as operator-
independence and reproducibility. The key strategy shared by many successful fully auto-
matic approaches is to localize the tumor ROI accurately by modeling domain knowledge.
The authors of [15] localized tumor ROI by formalizing the empirical tumor location,
appearance, and size; [24] generated tumor ROI by finding adaptive reference position;
and in [6], the ROI was generated to detect the mammary layer of BUS image, and the
segmentation algorithm only detected the tumor in this layer. However, in many fully
automatic approaches, the performance heavily depends on hand-crafted features and
some inflexible constraints, e.g., [15] utilized a fixed reference position to rank the candidate
regions in the ROI localization process. Table 3 demonstrates that deep learning approaches
outperform all traditional approaches. It is worth noting that deep learning approaches
have limitations in segmenting small breast tumors [21].

As shown in Table 3, using the benchmark dataset, the approaches of [4–6,15,22]
cannot achieve the performances reported in the original papers. The average JI of [5]
is 14% less than the original average JI; the average FPR of [15] is 87% higher than the
original value; the average TPR of [6] is 17% less than its reported value; and the average
JI values of [22] and [4] are 17% and 10% lower than the reported values, respectively.
There are two possible reasons: (1) many previous approaches were trained and tested
using small BUS datasets from a single source or ultrasound machine, and the images
lacked variations. However, the proposed benchmark dataset was collected from multiple
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ultrasound machines with images of large variations; and (2) existing approaches lack the
robustness to adapt to the differences in data distributions.

As shown in Table 1, many quantitative metrics exist for evaluating the performances
of BUS image segmentation approaches. In this paper, we applied seven metrics [27] to
evaluate BUS image segmentation approaches. As shown in Figures 3 and 4, average JI,
DSC, and AER have the same trend, and each of them is sufficient to evaluate the area error
comprehensively. To further improve the performance of current approaches, multitask
learning and classifier fusion strategies [77] could be future directions.

6. Conclusions

In this paper, we established a BUS image segmentation benchmark and presented
and discussed the results of 16 state-of-the-art segmentation approaches; two of them are
semi-automatic, and others are fully automatic. The BUS dataset contains 562 BUS images
collected and has significant variations in image contrast, brightness, and noise level. The
quantitative analysis of the considered approaches highlights the following findings.

• As shown in Table 3, by using the benchmark, no approaches in this study can achieve
the same performances reported in their original papers, which demonstrates the
models’ poor capability/robustness to adapt to BUS images from different sources.

• The two semi-automatic approaches are quite sensitive to user interaction (See
Figures 3 and 4). We recommend researchers evaluate the sensitivity of their semi-
automatic approaches to user interactions in the future.

• Deep learning approaches outperform all conventional approaches using our bench-
mark dataset; but the explainability and robustness of existing approaches still need
to be improved.

• The quantitative metrics such as JI, DSC, AER, HE, and MAE are more comprehensive
and effective to measure the overall segmentation performance than TPR and FPR;
however, TPR and FPR are also useful for developing and improving algorithms.

In addition, the benchmark should be and will be expanded continuously.
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