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Abstract: Decision-making medical systems (DMS) refer to the design of decision techniques in the
healthcare sector. They involve a procedure of employing ideas and decisions related to certain
processes such as data acquisition, processing, judgment, and conclusion. Pancreatic cancer is a lethal
type of cancer, and its prediction is ineffective with current techniques. Automated detection and
classification of pancreatic tumors can be provided by the computer-aided diagnosis (CAD) model
using radiological images such as computed tomography (CT) and magnetic resonance imaging
(MRI). The recently developed machine learning (ML) and deep learning (DL) models can be utilized
for the automated and timely detection of pancreatic cancer. In light of this, this article introduces an
intelligent deep-learning-enabled decision-making medical system for pancreatic tumor classification
(IDLDMS-PTC) using CT images. The major intention of the IDLDMS-PTC technique is to examine
the CT images for the existence of pancreatic tumors. The IDLDMS-PTC model derives an emperor
penguin optimizer (EPO) with multilevel thresholding (EPO-MLT) technique for pancreatic tumor
segmentation. Additionally, the MobileNet model is applied as a feature extractor with optimal
auto encoder (AE) for pancreatic tumor classification. In order to optimally adjust the weight and
bias values of the AE technique, the multileader optimization (MLO) technique is utilized. The
design of the EPO algorithm for optimal threshold selection and the MLO algorithm for parameter
tuning shows the novelty. A wide range of simulations was executed on benchmark datasets, and the
outcomes reported the promising performance of the IDLDMS-PTC model on the existing methods.

Keywords: decision-making systems; healthcare sector; deep learning; multilevel thresholding;
machine learning; artificial intelligence

1. Introduction

Pancreatic cancer is relatively rare, but it can be a leading cause of death [1,2]. Re-
cently, the survival rate of pancreatic cancer has been low, and its 5-year survival rate gets
drastically reduced to 11% [3]. The surgical resection of the primary tumor is possible;
in less than 20% of patients, 5-year survival increased to 20–37% [4]. The evidence that
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impacts survival outcome is sparse and heterogeneous, although delay in diagnoses could
also affect the social well-being of patients and their family and quality of life, in part due
to the concern that the delay in the number of investigations and consultations would
affect treatment prognosis and options [5]. Earlier diagnoses provide better opportunities
to reduce the death rate for pancreatic cancer, but a systematic method for earlier diagnoses
remains unknown.

Radiomics, as a newly emerging technology, has provided a large amount of data on
healthcare images that could expose hidden features of diseases that are observed unclearly
with naked eyes. This technique has been investigated to promote and advance cancer
management for carcinoma of the lung, colorectal, breast, and bladder to promote and
advance cancer management [6]. Furthermore, radiomics extracts a greater number of
higher dimension quantitative features from medical images, involving magnetic resonance
imaging (MRI), positron emission tomography (PET), and computed tomography (CT).
Therefore, CT image is extensively utilized for pancreatic tumor diagnoses. Since roughly
40% of tumors smaller than 2 cm in diameter evade diagnosis by CT, there is a requirement
for a new method to increase radiologist analysis in enhancing the sensitivity for the
diagnosis of pancreatic cancer [7].

The application of artificial intelligence (AI) to medical diagnostics was initiated in the
early 1980s, and computer-assisted diagnosis (CAD) systems with deep learning (DL) have
been newly utilized for assisting physicians in enhancing the efficiency of the interpretation
of different medical imaging data [8]. The usage of AI in image detection mostly plays two
significant roles: computer-assisted diagnosis and computer-assisted detection of lesions
for the representation of optical lesions and biopsies. The DL method using convolution
neural networks (CNN) has shown considerable potential in analyzing medical images.
The neural network construction depends on a stack of neurons comprised of activation
functions and parameters to integrate and extract features from the image and establish a
model that captures complicated relationships between diagnoses and images [9]. CNN
has been reported to accomplish a higher performance in the imaging diagnoses of different
conditions involving diabetic retinopathy, liver masses, and skin cancer. However, the
potential advantages of CNN for the diagnosis and detection of pancreatic cancer have
not been broadly studied [10]. Mostly, pancreatic cancer presents with ill-defined margins
and irregular contours on CT and is frequently obscure at an earlier phase, which poses
considerable problems even for trained radiotherapists.

This article introduces an intelligent deep-learning-enabled decision-making medical
system for pancreatic tumor classification (IDLDMS-PTC) using CT images. The IDLDMS-
PTC technique intends to investigate the CT images for the existence of pancreatic tumors.
The IDLDMS-PTC model designs an emperor penguin optimizer (EPO) with multilevel
thresholding (EPO-MLT) technique for pancreatic tumor segmentation. Additionally, the
MobileNet technique was implemented as a feature extractor with optimal auto encoder
(AE) for pancreatic tumor classification. In order to optimally adjust the weight and bias
values of the AE method, the multileader optimization (MLO) algorithm was utilized. To
assess the effectiveness of the IDLDMS-PTC technique, a comprehensive experimental
analysis was carried out on a benchmark dataset.

2. Literature Review

In Sujatha’s research [11], a different diagnosis technique is presented for the recog-
nition of pancreatic tumors with image texture character that is estimated statistically.
Diagnoses were completed by deep wavelet neural networks (DWNN). A DL-based hier-
archical CNN (HCNN) is presented for pancreatic tumor diagnoses [12]. The RNN was
proposed for meeting the problems of spatial discrepancy segmentation over slices of adja-
cent images. Liang et al. [13] designed an approach that allows automated segmentation of
pancreatic GTV based on multiple parametric MRIs with DNN.

Asadpour et al. [14] presented a cascaded architecture for extracting the tumor in
adenocarcinoma patients and the volumetric shape of the pancreas. This method is an
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integration of an elastic atlas that is able to fit on three-dimensional volumetric shapes
extracted from CT slices, a CNN using three forwarded paths to label the patches of the
image with coarse to fine resolution with a multi-resolution architecture.

The capacity of DL is estimated in [15] to distinguish pancreatic disease on contrast-
enhanced magnetic resonance (MR) images with the help of a generative adversarial
network (GAN). Classification accuracy of trained InceptionV4 architecture for each patient
and patch were made on the validation set, correspondingly. Iwasa et al. [16] estimated
the ability of DL for the automated segmentation of pancreatic tumors on CE-EUS video
images and the probable factor that affects the automated segmentation. Automated
segmentation was implemented by U-Net with 100 epochs and estimated by using four-
fold cross-validation. The tumor boundary (TB) and degree of respiratory movement (RM)
were classified as to 3-degree intervals from the patient and estimated as feasible factor that
affects the segmentation.

3. The Proposed Model

In this study, a novel IDLDMS-PTC technique was derived from examining the CT
images for the existence of pancreatic tumors. The proposed IDLDMS-PTC technique
comprises several subprocesses, namely GF-based pre-processing, EPO-MLT-based seg-
mentation, MobileNet-based feature extraction, AE-based classification, and MLO-based
parameter optimization. The utilization of the EPO approach to better threshold selec-
tion and the MLO algorithm for parameter tuning assists in accomplishing improved
classification results. Figure 1 illustrates the overall process of the IDLDMS-PTC technique.
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3.1. Gabor Filtering Based Pre-Processing

At the initial stage, the pre-processing of the CT images is performed by the use of
the GT technique. It is a linear filter whose impulse response is a sinusoidal function
multiplied by a Gaussian function. They are nearly passband function. The major benefit
of presenting the Gaussian envelope is that the Gabor function is situated in spatial and
frequency domains, different from the sinusoidal function, which is entirely delocalized
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in the spatial (sinusoidal function covers the whole space) and localized accurately in the
frequency domain [17]. Thus, this function is highly suited for representing a signal in
these domains. Gabor is a 2D bandpass filter; when allocated a frequency and direction,
the address of the original image is conserved, and noise is reduced.

3.2. EPO-MLT-Based Segmentation

In the image segmentation process, the EPO-MLT approach was developed for de-
termining the tumor regions in the CT images. The MLT issue was demonstrated by
assuming a gray level image I that was segmented containing K + 1 classes [18]. Therefore,
K thresholds {t1, t2, . . . , tK} are needed for dividing the image into sub-regions as in
Equation (3):

C0 = {g(u, v) ∈ I|0 ≤ g(u, v) ≤ t1 − 1} (1)

C1 = {g(u, v) ∈ I|t1 ≤ g(u, v) ≤ t2 − 1} (2)

CK = {g(u, v) ∈ I|tK ≤ g(u, v) ≤ L− 1} (3)

where Ck implies the kth class of images, tk (k = 1, . . . , K) refers to the kth threshold values,
g(u, v) stands for the gray level of pixels (u, v), and L signifies the gray level of I; these
levels are from the range (0, 1 . . . L− 1). The vital drive of multilevel thresholding is for
locating the threshold value that divides pixels into many groups, which are defined as
maximized in the subsequent formula:

t∗1 , t∗2 , . . . , t∗K = max
t1,...,tk

F(t1, . . . , tK) (4)

where F(t1, . . . , tK) refers to the Otsu’s function, which is determined as:

F =
K

∑
u=0

Au(ηu − η1)
2, (5)

Au =
tu+1−1

∑
v=τu

Pv, (6)

ηu =
τu+1−1

∑
v=lv

u
Pv

Av
, where Pl = h(u)/Np (7)

where η1 refers to the mean intensity of I with t0 = 0 and tK+1 = L. The h(u) and Pu
implies the frequency and probability of uth gray level; correspondingly, Np stands for the
entire number of pixels from I.

In order to define the optimum threshold values for the MLT approach, the EPO
algorithm is applied. The EPO was stimulated by the emperor penguins (EPs) huddling
attitudes as initiated in the Antarctic [19]. In order to forage, the EPs usually travel
from rafl/colonies. Therefore, an initial function is for defining an effective mover in the
swarm from the mathematical progress. The distances amongst Eps

(
Xep
)

were calculated
for achieving this, then its temperature profile (θ′). The temperature profile of EPs is
measured as:

θ′ =

(
θ − Iter max

C− Iter max

)
(8)

θ =

{
0 i f R > 0.5
1 i f R < 0.5

(9)

The higher number of iterations, where C implies the existing iteration, was stated as
Iter max, and R implies the arbitrary number between zero and one.
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As EPs usually huddle together to preserve temperature, careful precaution is taken

to protect them from neighborhood collisions. Consequently, it presents two vectors (
→
U)

and (
→
V) whose values are estimated as:

→
U = M×

(
θ′ + Xgrid (accuracy)

)
× Rand()− θ′ (10)

→
V = Rand() (11)

Xgrid (accuracy) =
∣∣∣∣→X −→X∣∣∣∣ (12)

where M indicates movement with the fixed value of 2,
→
x represents an optimum solution,

→
x ep signifies places of other EPs, [0, 1], and ‖ defines the absolute value of Rand.

→
D =

∣∣∣∣{S(
→
U) ·

→
X(x)−

→
V ·
→
X(x)

}∣∣∣∣ (13)

S(
→
U) =

√
( f e−C/v − e−C)

2 (14)

Equations (13) and (14) are created for calculating approximately the distance among

EP and optimally fittest searching agents (
→
D). S() illustrates the social force to that an

optimally searching agent was managed by EPs; e represents the exponential functions.
At this point, based on the optimum agents achieved utilizing Equation (15), the places

of EPs were upgraded.

→
Xep(x + 1) =

→
X(x)−

→
U ·
→
Dep (15)

It must be apparent that the parameter range selected is equal to individuals of new
works. Therefore, the EPO technique has been employed for obtaining the optimal global
value with respect to the operator. In EPO, with arbitrarily created individual EPs, the
population of emperor penguins is initialized.

3.3. MobileNet-Based Feature Extraction

At the time of feature extraction, the segmented images are passed into the MobileNet
model to generate feature vectors. AI has connected the gap between the abilities of
machines and humans. Computer vision is a field of AI that allows machines to observe
the world like humans. The advancement in this field has been completed over one
certain approach named a CNN. CNN contains input, hidden, and output layers [20]. To
design a diagnostic system for pancreatic tumor classification, in this study, the MobileNet
model is utilized for feature extraction. MobileNet is faster when compared to convolution
networks because of its different filter methods for every response channel. This method
is built on depth-wise separable convolution that has two successive functions: one is
a depth-wise convolutional at the filter phase, which employs convolutional to a single
input channel at a time, and the other is a point-wise convolution at the filtering phase,
which implements linear integration of output to the depth-wise convolution. ReLU
and Batch normalization (BN) layers come after the convolutional process. Computation
cost phenomenally reduces in the depth-wise separable model because of filtration at the
integrating phase to minimalize its complexity and size. The version applied here employs
MobileNet V2 with 3.47 million parameters.

3.4. Optimal AE-Based Classification

Finally, the AE model is used to detect and classify the presence of pancreatic cancer.
An AE employs a set of weights recognition for encoding an input vector x into a depiction
vector h, represented as latent parameters [21]. Then, it employs a set of weights generative



Healthcare 2022, 10, 677 6 of 18

for decoding the depiction vector into an estimated reconstruction of the input vector x′.
The aim of the AE is to recreate the input information in an unsupervised manner, that is,
without utilizing any labels when the dimensionality of the input and the output need to
be identical.

The encoder phase of AE takes x ∈ Rm as input and maps to latent parameter h ∈ Rn:

h = f (Wx + b) (16)

where f denotes an activation function, namely sigmoid, s(x) = 1/1 + e−x or ReLU, W
indicates a weight matrix, and b represents a bias vector. Then, the decoder phase maps h
to x′ that is a reconstruction of x with similar dimensionality.

x′ = f ′
(
W ′h + b′

)
(17)

Here, f ′, W ′, and b′ indicate the respective parameters for the decoder that may be
distinct from the encoder one. AE is trained for minimizing reconstruction errors, including
mean squared error (MSE):

E
(
x, x′

)
= ‖x− x′‖2 (18)

x is usually averaged through n trained instances. For determining the weight and
bias values of the AE technique, the MLO approach can be utilized. It is arithmetically
modeled for implementing optimization problems. The major concept of the presented
approach is to utilize data from the members of the population. In such cases, member of
the population uses the data of different leaders for searching in the problem-solving space
as follows:

Xi =
[
χ1

i , . . . , χd
i , xm

i

]
(19)

where Xi represent the ith member of the population, and χd
i indicates the dth parameter

of optimization problem. Members of the population are estimated by placing them in the
fitness function [22]. Next, the population matrix is arranged according to the minimum
values of the fitness function as follows:

Xsort =

 Xsort
1
...

Xsort
N

∣∣∣∣∣∣∣
Xr1

...
XrN

∣∣∣∣∣∣∣
min( f it)

...
max( f it)

 (20)

Here, Xsort indicates the matrix of population, Xsort
1 represent the member with optimal

fitness value, Xsort
N indicates the member with worst fitness value, Xr1 shows the member

of the population with initial rank-based fitness value, XrN represent the member of the
population with worst rank-based fitness value, fir indicates the fitness value, and N
signifies the number of members of the population. After arranging the population matrix,
some amount of the ranked population is chosen as the leader. The leader is upgraded
with all the iterations to guide members of the population towards the optimum solution
as follows:

L =
{

Xsort
l , Xsort

l ∈ Xsort, l = 1 : nL
}

(21)

xsort =



Xsort
1
...

Xsort
nL
...

Xsort
N


N×m

→ L =



Xsort
1
...

Xsort
l
...

Xsort
nL


nl×m

(22)

where L indicates the selected leader member matrix and nL shows the leader’s number.
The population in MLO is upgraded as follows. Initially, all the members of the population
are moved in the searching space according to the leader position. The leader is defined
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according to the roulette wheel. All the leaders might be chosen for updating different
parameters of the presented solution.

f itn
i =

f iti −max( f it)
ΣN

j=1

(
f itj −max( f it)

) (23)

Pl =
f itn

l
Σnl

j=1 f itn
j

(24)

Cl = Pl + Cl−1,C0 = 0 & l = 1 : nl (25)

Ld
i,c =



L1 = Xsort
1 , 0 ≤ r ≤ C1

...
...

Lc = Xsort
c , Cc−1 ≤ r ≤ C1

...
...

Lnl = Xsort
nL

, Cnl−1 ≤ r ≤ Cnl

(26)

χd
i,new = χd

i + rand
(

Ld
i,c − 2× xd

i

)
(27)

Xi =

{
Xi,new, f iti,new ≤ f iti
Xi, else

(28)

In the equation, f itn
i indicates the normalized fitness function for the ith population

member, Pl represent the possibility of selection of l’th leader for guiding the parameter,
Cl indicate the cumulative probability of l’th leader, xd

i,new shows the new value for dth
dimension of ith parameter, Ld

i,c denotes the dth dimension of selected cth leader for guiding
dth parameter of ith population member, and r shows the arbitrary value within [0, 1].
Next, after upgrading the initial stage, all the members of the population make a slight
random move in their own neighborhood. When the new location is highly relevant, the
member upgrades its location to new status or else returns to its preceding location.

xd
i,new = xd

i + 2×
(

1− τ

T

)
× (−0.2 + rand× 0.4)× xd

i (29)

Xi =

{
Xi,new, f iti,new ≤ f iti
Xi, else

(30)

Here, t denotes the tth iteration, and T represent the maximal number of iterations.
The MLO algorithm has determined a fitness function of tuning the parameter values

of the AE model. The fitness function is used to determine a positive integer for the
representation of effectual outcomes of the candidate solutions. Here, the objective is to
minimize the classification error rate as given below.

f itness(xi) = Classi f ierErrorRate(xi)

= number o f misclassi f ied images
Total number o f images ∗ 100

(31)

4. Experimental Validation

This section investigates the pancreatic tumor detection and classification performance
of the IDLDMS-PTC model using test CT images collected from various sources. The dataset
holds a total of 500 images, with 250 images under pancreatic tumor and 250 images under
non-pancreatic tumor. The results are investigated under varying sizes of training/testing
datasets. Figure 2 depicts sample CT images.
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4.1. Results Analysis

Table 1 and Figure 3 report the overall classification outcomes of the IDLDMS-PTC
with existing models under varying sizes of training sets (TS). The experimental outcomes
indicated that the IDLDMS-PTC model obtained effectual outcomes under distinct TSs. For
instance, the IDLDMS-PTC model obtained a higher average sensy of 0.9935 where the ODL-
PTNTC, WELM, KELM, and ELM models obtained lower average sensy values of 0.9989,
0.9969, 0.9697, and 0.9679, respectively. Along with that, the IDLDMS-PTC model gained an
increased average specy of 0.9884 where the ODL-PTNTC, WELM, KELM, and ELM models
provided reduced average specy values of 0.9775, 0.9715, 0.9692, and 0.9664, respectively.
Furthermore, the IDLDMS-PTC model reached a maximum average accuy of 0.9935 where
the ODL-PTNTC, WELM, KELM, and ELM models resulted in minimum average accuy
values of 0.9840, 0.9766, 0.9672, and 0.9644, respectively. Moreover, the IDLDMS-PTC
model exhibited increased an average Fscore of 0.9948 where the ODL-PTNTC, WELM,
KELM, and ELM models depicted decreased average Fscore values of 0.9882, 0.9739, 0.9688,
and 0.9674, respectively.
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Table 1. Results analysis of IDLDMS-PTC technique under different sizes of training set with existing
approaches.

Training (%) IDLDMS-PTC ODL-PTNTC WELM KELM ELM

Sensitivity

TS = 40 0.9995 0.9989 0.9969 0.9697 0.9679

TS = 50 0.9912 0.9855 0.9835 0.9823 0.9749

TS = 60 0.9851 0.9832 0.9720 0.9800 0.9712

TS = 70 0.9960 0.9759 0.9653 0.9702 0.9713

TS = 80 0.9958 0.9931 0.9889 0.9782 0.9628

Average 0.9935 0.9873 0.9813 0.9761 0.9696

Specificity

TS = 40 0.9767 0.9696 0.9622 0.9687 0.9696

TS = 50 0.9853 0.9720 0.9684 0.9712 0.9543

TS = 60 0.9992 0.9882 0.9870 0.9578 0.9778

TS = 70 0.9959 0.9757 0.9646 0.9719 0.9531

TS = 80 0.9847 0.9818 0.9753 0.9764 0.9774

Average 0.9884 0.9775 0.9715 0.9692 0.9664

Accuracy

TS = 40 0.9937 0.9834 0.9829 0.9544 0.9746

TS = 50 0.9911 0.9908 0.9760 0.9792 0.9893

TS = 60 0.9974 0.9850 0.9847 0.9487 0.9459

TS = 70 0.9876 0.9721 0.9652 0.9702 0.9432

TS = 80 0.9978 0.9886 0.9742 0.9837 0.9690

Average 0.9935 0.9840 0.9766 0.9672 0.9644

F-score

TS = 40 0.9919 0.9892 0.9839 0.9859 0.9432

TS = 50 0.9940 0.9908 0.9576 0.9884 0.9651

TS = 60 0.9989 0.9984 0.9970 0.9710 0.9708

TS = 70 0.9873 0.9827 0.9671 0.9555 0.9788

TS = 80 0.9889 0.9798 0.9640 0.9431 0.9793

Average 0.9948 0.9882 0.9739 0.9688 0.9674

The accuracy of the IDLDMS-PTC approach under training set (80:20) data is portrayed
in Figure 4. The results demonstrated that the IDLDMS-PTC technique accomplished
improved validation accuracy compared to training accuracy. It can also be observed that
the accuracy values get saturated with the count of epochs.



Healthcare 2022, 10, 677 10 of 18
Healthcare 2022, 10, x 9 of 19 
 

 

 

Figure 3. Result analysis of IDLDMS-PTC technique under different sizes of training set: (a) sensi-

tivity, (b) specificity, (c) accuracy, and (d) F-score. 

Table 1. Results analysis of IDLDMS-PTC technique under different sizes of training set with exist-

ing approaches. 

Training (%) IDLDMS-PTC ODL-PTNTC WELM KELM ELM 

Sensitivity 

TS = 40 0.9995 0.9989 0.9969 0.9697 0.9679 

TS = 50 0.9912 0.9855 0.9835 0.9823 0.9749 

TS = 60 0.9851 0.9832 0.9720 0.9800 0.9712 

TS = 70 0.9960 0.9759 0.9653 0.9702 0.9713 

TS = 80 0.9958 0.9931 0.9889 0.9782 0.9628 

Average 0.9935 0.9873 0.9813 0.9761 0.9696 

Specificity  

TS = 40 0.9767 0.9696 0.9622 0.9687 0.9696 

TS = 50 0.9853 0.9720 0.9684 0.9712 0.9543 

TS = 60 0.9992 0.9882 0.9870 0.9578 0.9778 

TS = 70 0.9959 0.9757 0.9646 0.9719 0.9531 

TS = 80 0.9847 0.9818 0.9753 0.9764 0.9774 

Average 0.9884 0.9775 0.9715 0.9692 0.9664 

Figure 3. Result analysis of IDLDMS-PTC technique under different sizes of training set: (a) sensitivity,
(b) specificity, (c) accuracy, and (d) F-score.

Healthcare 2022, 10, x 10 of 19 
 

 

Accuracy 

TS = 40 0.9937 0.9834 0.9829 0.9544 0.9746 

TS = 50 0.9911 0.9908 0.9760 0.9792 0.9893 

TS = 60 0.9974 0.9850 0.9847 0.9487 0.9459 

TS = 70 0.9876 0.9721 0.9652 0.9702 0.9432 

TS = 80 0.9978 0.9886 0.9742 0.9837 0.9690 

Average 0.9935 0.9840 0.9766 0.9672 0.9644 

F-score 

TS = 40 0.9919 0.9892 0.9839 0.9859 0.9432 

TS = 50 0.9940 0.9908 0.9576 0.9884 0.9651 

TS = 60 0.9989 0.9984 0.9970 0.9710 0.9708 

TS = 70 0.9873 0.9827 0.9671 0.9555 0.9788 

TS = 80 0.9889 0.9798 0.9640 0.9431 0.9793 

Average 0.9948 0.9882 0.9739 0.9688 0.9674 

The accuracy of the IDLDMS-PTC approach under training set (80:20) data is por-

trayed in Figure 4. The results demonstrated that the IDLDMS-PTC technique accom-

plished improved validation accuracy compared to training accuracy. It can also be ob-

served that the accuracy values get saturated with the count of epochs. 

 

Figure 4. Accuracy of IDLDMS-PTC technique under training set (80:20). 

The loss outcome analysis of the IDLDMS-PTC technique under training set (80:20) 

data is depicted in Figure 5. The figure exposed that the IDLDMS-PTC technique has de-

noted the reduced validation loss over the training loss. It can be additionally observed 

that the loss values get saturated with the count of epochs. 

Figure 4. Accuracy of IDLDMS-PTC technique under training set (80:20).



Healthcare 2022, 10, 677 11 of 18

The loss outcome analysis of the IDLDMS-PTC technique under training set (80:20)
data is depicted in Figure 5. The figure exposed that the IDLDMS-PTC technique has
denoted the reduced validation loss over the training loss. It can be additionally observed
that the loss values get saturated with the count of epochs.
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Table 2 and Figure 6 report the overall classification outcomes of the IDLDMS-PTC
with existing techniques under varying sizes of CV. The experimental outcomes indicate
that the IDLDMS-PTC algorithm obtained effectual outcomes under distinct CVs. For
instance, the IDLDMS-PTC model obtained a higher average sensy of 0.9884 where the
ODL-PTNTC, WELM, KELM, and ELM approaches achieved minimum average sensy
values of 0.9788, 0.9738, 0.9571, and 0.9557, respectively. Followed by that, the IDLDMS-
PTC model gained an increased average specy of 0.9965 where the ODL-PTNTC, WELM,
KELM, and ELM approaches provided decreased average specy values of 0.9938, 0.9819,
0.9813, and 0.9789, respectively.

Additionally, the IDLDMS-PTC model reached a maximal average accuy of 0.9894,
where the ODL-PTNTC, WELM, KELM, and ELM approaches resulted in minimum average
accuy values of 0.9808, 0.9685, 0.9665, and 0.95977, respectively. Moreover, the IDLDMS-
PTC model exhibited an increased average Fscore of 0.9904 where the ODL-PTNTC, WELM,
KELM, and ELM models outperformed decreased average Fscore values of 0.9863, 0.9756,
0.9727, and 0.9710, respectively.

The accuracy outcome analysis of the IDLDMS-PTC technique under CV of 7 data is
illustrated in Figure 7. The results demonstrate that the IDLDMS-PTC technique accom-
plished improved validation accuracy compared to training accuracy. It is also observable
that the accuracy values get saturated with the epoch count.
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Table 2. Result analysis of IDLDMS-PTC technique under different sizes of CV with existing ap-
proaches.

No. of Folds IDLDMS-PTC ODL-PTNTC WELM KELM ELM

Sensitivity

CV=6 0.9864 0.9773 0.9757 0.9607 0.9431

CV=7 0.9768 0.9761 0.9603 0.9654 0.9741

CV=8 0.9931 0.9853 0.9829 0.9445 0.9748

CV=9 0.9885 0.9670 0.9644 0.9605 0.9375

CV=10 0.9970 0.9885 0.9859 0.9546 0.9489

Average 0.9884 0.9788 0.9738 0.9571 0.9557

Specificity

CV = 6 0.9981 0.9942 0.9927 0.9625 0.9803

CV = 7 0.9938 0.9880 0.9857 0.9672 0.9851

CV = 8 0.9967 0.9945 0.9699 0.9872 0.9937

CV = 9 0.9983 0.9975 0.9822 0.9965 0.9650

CV = 10 0.9958 0.9947 0.9788 0.9932 0.9706

Average 0.9965 0.9938 0.9819 0.9813 0.9789

Accuracy

CV = 6 0.9986 0.9977 0.9846 0.9934 0.9379

CV = 7 0.9987 0.9944 0.9698 0.9904 0.9746

CV = 8 0.9807 0.9623 0.9546 0.9610 0.9422

CV = 9 0.9831 0.9648 0.9618 0.9486 0.9609

CV = 10 0.9860 0.9847 0.9715 0.9389 0.9829

Average 0.9894 0.9808 0.9685 0.9665 0.9597

F-score

CV = 6 0.9861 0.9824 0.9799 0.9810 0.9657

CV = 7 0.9850 0.9832 0.9796 0.9744 0.9615

CV = 8 0.9864 0.9805 0.9784 0.9764 0.9692

CV = 9 0.9995 0.9992 0.9578 0.9786 0.9987

CV = 10 0.9948 0.9863 0.9821 0.9531 0.9600

Average 0.9904 0.9863 0.9756 0.9727 0.9710

The loss outcome analysis of the IDLDMS-PTC technique under CV of 7 data is dis-
played in Figure 8. The figure demonstrates that the IDLDMS-PTC methodology signified
the reduced validation loss over the training loss. It is additionally noted that the loss
values get saturated with the epoch count.
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4.2. Discussion

In order to further ensure the betterment of the proposed model, a detailed compara-
tive study of the IDLDMS-PTC approach with recent approaches is offered in Table 3 [23–26].
Figure 9 portrays the sensy examination of the IDLDMS-PTC technique with existing ap-
proaches. The figure defined that the CNN-10x10 and CNN-30x30 models obtained lower
sensy values of 0.8050 and 0.8810, respectively. Afterward, the CNN-50x50 and CNN-70x70
techniques attained slightly increased sensy values of 0.9110 and 0.9150, respectively. In
line with, the WELM, KELM, and ELM models resulted in moderately closer sensy of
0.9776, 0.9666, and 0.9627, respectively. Though the ODL-PTNTC model accomplished near
optimum sensy of 0.9873, the presented IDLDMS-PTC methodology reached a maximum
sensy of 0.9935.

Table 3. Comparative analysis of IDLDMS-PTC technique with recent approaches.

Methods Sensitivity Specificity Accuracy

IDLDMS-PTC 0.9935 0.9884 0.9935
ODL-PTNTC 0.9873 0.9775 0.9840

WELM 0.9776 0.9767 0.9726
KELM 0.9666 0.9753 0.9669
ELM 0.9627 0.9727 0.9621

CNN-10x10 0.8050 0.8180 0.8160
CNN-30x30 0.8810 0.8540 0.8590
CNN-50x50 0.9110 0.8650 0.8730
CNN-70x70 0.9150 0.8670 0.8740
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Figure 10 depicts the specy examination of the IDLDMS-PTC technique with existing
approaches. The figure reported that the CNN-10x10 and CNN-30x30 methods obtained
lower specy values of 0.8180 and 0.8540. Likewise, the CNN-50x50 and CNN-70x70 models
attained slightly increased specy values of 0.8650 and 08670, respectively. Moreover, the
WELM, KELM, and ELM models resulted in moderately closer specy of 0.9767, 0.9753, and
0.9727, respectively. Next, the ODL-PTNTC model accomplished near-optimal specy of
0.9775, and the projected IDLDMS-PTC technique attained increased specy of 0.9884.
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Figure 11 compares the accy examination of the IDLDMS-PTC system with existing
algorithms. The figure revealed that the CNN-10x10 and CNN-30x30 methods obtained
lower accy values of 0.8160 and 0.8590, respectively. Similarly, the CNN-50x50 and CNN-
70x70 methods attained slightly increased accy values of 0.8730 and 0.8740, respectively.
Additionally, the WELM, KELM, and ELM algorithms resulted in moderately closer accy of
0.9726, 0.9669, and 0.9621, respectively. Eventually, the ODL-PTNTC system has accom-
plished near-optimal accy of 0.9840, and the presented IDLDMS-PTC technique has reached
a maximum accy of 0.9935.
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By looking into the above-mentioned tables and figures, it can be ensured that the
IDLDMS-PTC model resulted in superior pancreatic tumor detection and classification
performance over the other methods. The reduced network size, minimum parameters, and
faster performance of the MobileNet model help in assisting improved performance. Addi-
tionally, the utilization of the EPO technique for optimum threshold selection and the MLO
algorithm for parameter tuning assists in accomplishing improved classification results.

5. Conclusions

In this study, a novel IDLDMS-PTC approach was derived from examining the CT
images for the existence of pancreatic tumors. The proposed IDLDMS-PTC technique
comprises several subprocesses, namely GF-based pre-processing, EPO-MLT-based seg-
mentation, MobileNet-based feature extraction, AE-based classification, and MLO-based
parameter optimization. The utilization of the EPO technique to optimum threshold se-
lection and the MLO algorithm for parameter tuning assists in accomplishing improved
classification results. To assess the effectiveness of the IDLDMS-PTC technique, a com-
prehensive experimental analysis was carried out on a benchmark dataset. Extensive
comparative outcomes exposed the promising performance of the IDLDMS-PTC model
over the existing methods. Therefore, the IDLDMS-PTC technique can be utilized as an ef-
fective tool for the healthcare system. In the future, deep instance segmentation approaches
will be applied to improve the classifier results of the IDLDMS-PTC model.
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