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Abstract: (1) Background: The dynamics of hand tremors involve nonrandom and short-term motor
patterns (STMPs). This study aimed to (i) identify STMPs in Parkinson’s disease (PD) and physiologi-
cal resting tremor and (ii) characterize STMPs by amplitude, persistence, and regularity. (2) Methods:
This study included healthy (N = 12, 60.1 ± 5.9 years old) and PD (N = 14, 65 ± 11.54 years old) par-
ticipants. The signals were collected using a triaxial gyroscope on the dorsal side of the hand during
a resting condition. Data were preprocessed and seven features were extracted from each 1 s window
with 50% overlap. The STMPs were identified using the clustering technique k-means applied to the
data in the two-dimensional space given by t-Distributed Stochastic Neighbor Embedding (t-SNE).
The frequency, transition probability, and duration of the STMPs for each group were assessed. All
STMP features were averaged across groups. (3) Results: Three STMPs were identified in tremor
signals (p < 0.05). STMP 1 was prevalent in the healthy control (HC) subjects, STMP 2 in both groups,
and STMP3 in PD. Only the coefficient of variation and complexity differed significantly between
groups. (4) Conclusion: These results can help professionals characterize and evaluate tremor severity
and treatment efficacy.

Keywords: rest tremor; short-term motor patterns (STMPs); gyroscope; Parkinson’s disease

1. Introduction

Tremor is a rhythmical and involuntary oscillatory movement of a body part that can
be physiological, as seen in healthy people, or pathological, as observed in several motor
disorders [1]. The physiological tremor has a smaller amplitude and can be present in all
subjects. In contrast, a pathological tremor presents a higher amplitude and is associated
with disorders such as Parkinson’s disease (PD) [2]. The most prevalent tremor in PD is the
resting tremor [3]. This tremor manifests when a voluntary muscle contraction is absent in
a specific body segment [3,4]. The duration, frequency, and amplitude of this motor sign
can be used to characterize the complexity and severity of the disease.

According to the literature, a physiological tremor has a frequency range of 8 to 10 Hz,
whereas the rest tremor in PD occurs in a 3 to 6 Hz range [2]. However, higher tremor
frequencies up to 6 Hz can be found in PD patients at the early stage [5], and older people
tend to have lower tremor frequencies [6]. Due to these frequency overlaps, a frequency
analysis is not enough to discriminate tremors [7].

Understanding the origins of tremors is critical for evaluating and improving therapies
for various pathological tremors. The cause of tremor is unknown and has been studied
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extensively [2,3]. Some authors attribute the tremor to motor unit firing in the peripheral
neuromuscular system, central oscillations, or cardio ballistic effects [2]. For instance,
the physiological tremor origin is unlikely to be caused by neurogenic distortion. In PD,
however, there is no agreement on the cause of tremor [8]. Some studies have linked
tremor to oscillating thalamic activity, while others have linked it to an action of the basal
ganglia [3].

Tremors can also be characterized based on the affected body region, such as the upper
or lower limb [9]. Many studies have focused on assessing hand tremors [10–14], which is
the topic of this paper, regardless of the type of tremor, i.e., physiological or pathological.
Hand tremors are caused by a number of physiological components, including the activity
of the basal ganglia, cerebellar circuits, and peripheral nerves, all of which interact on
different spatiotemporal scales. Hand tremor dynamics are complicated because they may
involve the existence of nonrandom, short-term motor patterns (STMPs).

Using electromyography, some studies [15–17] suggested the presence of STMPs as
a result of tremors. For instance, Dietz et al. [15] investigated the characteristics of motor
unit activity in individuals with PD. They identified three relevant patterns: rhythmic spon-
taneous resting discharge, abnormally low firing rates during voluntary contraction, and
consistent firing patterns. Similarly, Agapaki et al. [16] focused on detecting and exploring
the characteristics of motor unity (MU) synchronization and discharge patterns during rest
and postural tremor. Rissanen et al. [17] also analyzed differences in electromyographic
patterns between individuals with PD and healthy subjects.

According to these authors [15–17], STMPs may be linked to the underlying mecha-
nisms that cause tremors, and STMPs may be present in both healthy people and people
with PD. STMPs exhibit selfsimilar structures across multiple scales of time and have a
hidden dynamic with underlying structures responsible for the abnormal tremor. The
characterization of STMPs differs according to the type of tremor, e.g., physiological or
pathological. Once a better knowledge of STMPs is achieved, such information may be
used to develop better therapies and follow up on different types of pathological tremor.

To identify and quantify tremors, a variety of instruments and sensors are used. These
include electroencephalograms (EEG), magnetoencephalograms (MEG), electromyograms
(EMG), inertial sensors, and microelectrode recordings (MER) [18]. Each approach enables
tremor investigation from a unique perspective. One way to evaluate the force and muscle
contraction associated with tremor is to use muscle activity. Kinetic parameters associated
with involuntary movement, on the other hand, are best represented and inferred by
angular velocity, linear acceleration, and magnetic field change, which are physical variables
acquired by gyroscopes, accelerometers, and magnetometers, respectively.

In particular, several studies use inertial sensors to measure tremor intensity and the
frequency of these oscillations [19–21]. To the best of our knowledge, there is a lack of
studies attempting to identify and characterize STMPs in pathological tremor in people
with PD, specifically using inertial sensors. According to the literature, gyroscopes and
accelerometers enable the objective and accurate quantification of this signal [22].

As a result, this study hypothesizes that tremor signals detected by inertial sensors
can be used to identify STMPs. Furthermore, the appearance of STMPs is controlled by a
hidden dynamic that describes their instantaneous appearance. The following questions
directed the execution of this research: (i) Is it possible to identify STMPs in rest tremor?
(ii) Are there differences between the STMPs of the healthy control (HC) and PD groups? Is
it possible to cluster STMPs and characterize them in terms of the extracted features?

To support these hypotheses, this study aimed (i) to identify the STMPs present in
resting tremor in individuals with PD and physiological tremor and (ii) to characterize
STMPs in terms of amplitude, persistence, and regularity.

2. Materials and Methods

Figure 1 depicts the main steps employed for the identification and characterization of
STMPs in PD.
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Figure 1. Diagram depicting the main steps for the identification and characterization of STMPs.

The subjects were recruited and the data were collected in step 1 (Figure 1) of the
experimental protocol. After that, the data set was preprocessed. The signals were then
split into windows for feature extraction. The estimated features were standardized before
being mapped onto a lower-dimensional space using t-SNE. STMP identification was
accomplished through clustering with k means. Once the STMP groups were identified,
they were evaluated and classified based on their amplitude, persistence, and regularity.

The Human Research Ethics Committee approved this study. Inertial signals were
recorded from 26 subjects. The subjects were divided into the following groups: neurologi-
cally healthy control individuals (HC = 12, aged 60.1 ± 5.9 years) and individuals with PD
(PD = 14, aged 65 ± 11.98 years) clinically diagnosed by a neurologist. Individuals with PD
had no evidence of dementia or musculoskeletal changes in the upper limb that were not
related to PD, and they were in the ON state of medication.

The subjects with PD were recruited at the Parkinson Association of Triângulo (Associação
Parkinson do Triângulo, Uberlândia, Brazil), an association for the evaluation and treat-
ment of individuals with PD. Before participation in the experimental protocol, a detailed
explanation was given to the participants who voluntarily signed a consent form.

Item 20 of the Unified Parkinson’s Disease Rating Scale part III (MDS—UPDRs III)
was used to assess the resting tremor. The score for item 20 is based on the hand tremor at
rest and ranges from 0 to 4, with 0 representing a nonvisible tremor and 4 representing the
most severe tremor. A specialist not involved in the data analysis examined the PD subjects
clinically. The medication was administered to the subjects between 60 min before the
experimental protocol, so the scores were assigned during the ON period of the medication.
The UDPRS scores for all PD subjects are shown in Table 1.
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Table 1. UPDRS III scores for resting tremor on the most affected side of individuals with PD.

Subject Identifier Age Sex Years Diagnosed
with PD Most Affected Side

Hand Tremor at
Rest—Item 20 of

the UPDRS

1 63 F 20 left 0
2 53 M 12 right 0
3 60 M 12 right 3
4 46 M 18 right 1
5 63 M 9 right 3
6 66 F 12 right 0
7 66 M 14 right 0
8 72 F 8 right 0
9 77 M 3 right 3

10 97 F 20 left 3
11 61 F 10 left 1
12 63 F 7 right 0
13 56 F 5 left 0
14 68 M 10 left 4

Mean ± SD 65.07 ± 11.98 11.42 ± 5.20

2.1. Experimental Setup

The TREMSEN device (Precise Tremor Sensing Technology, National Institute of
Intellectual Property—Brazil—BR 10 2014 023282 6) [20] containing one triaxial inertial
measurement unit (IMU) was employed for data acquisition and real-time visualization.
Each IMU consists of a gyroscope unit (L3G4200D, STMicroelectronics, Geneva, Switzer-
land) and an accelerometer–magnetometer combined unit (LSM303DLM, STMicroelec-
tronics, Switzerland). The sensitivity settings of the IMU can be changed individually via
I2C communication.

The sensitivities of the gyroscope, accelerometer, and magnetometer were set to
±500 dps, ±4 g, and ±2 Gauss, respectively, for all subjects, except subject 14, who had
higher UPDRS scores (Table 1). Due to the high severity of the tremor of this individ-
ual, the sensitivities were set to ±2000 dps, ±16 g, and ±12 Gauss. All the employed
settings were carried out in previous studies [23,24] and were chosen to avoid the satu-
ration of the signal conditioner. Signals were sampled at 50 Hz and digitized by a 12-bit
analog-to-digital converter.

The experimental protocol used one IMU placed on the hand of the subjects (Figure 2).
Data were collected from the dominant hand of healthy subjects and the most affected side
of PD subjects.

Tremulous activity can occur in all directions, depending on limb placement and
movement. Figure 2 presents the axes of orientation, in which X, Y, and Z are the proximal–
distal, medial–lateral, and dorsal–palmar axes, respectively. For the hand rest tremor
assessment, we only evaluated data from the X-axis of the gyroscope (IMU-1) (Figure 2).

IMU1 was placed on the dorsal side of the hand, between the second and fourth
metacarpophalangeal joints.

The experiments were carried out in a room where the subject sat in a comfortable
chair with the forearm fixed on an adjustable support surface, the upper arm positioned
alongside the trunk, and the elbow flexed at 90◦. This arrangement allows movements only
in the wrist joints, with the hand in a relaxed position, as shown in Figure 2. All subjects
performed three trials lasting approximately 15 s, with 60 s of resting between trials.

2.2. Signal Preprocessing

The signal preprocessing is fully explained in [20]. Briefly,

• For a better visualization of the STMP in the tremor signal, the collected data were
resampled at a sampling frequency of 300 Hz using splines.
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• The signals were smoothed by applying Tukey’s Running Median Smoothing tech-
nique, followed by the removal of low-frequency components related to involuntary
movements unrelated to the tremor and linear trends from the signals.

• Outliers were detected by a visual inspection of the box plots and then removed.
• All signal preprocessing and statistical analyses were performed using R.
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dorsal–palmar orientation axes, respectively.

2.3. Feature Extraction

Prior to feature extraction, the signals were divided into 1 s windows with 50% overlap
(Figure 3). To identify the STMPs in the signal, the following linear and nonlinear features
were extracted from each window: mean absolute value (MAV), coefficient of variation
(CV), zero crossing rate (ZCR), sample entropy (SampEn), and Hjorth parameters (activity-
ACT, mobility-MOB, complexity-COMP), as defined in Table 2. According to [25–27],
evaluating linear and nonlinear features is desirable to obtain complementary information
from hand tremors. As a result of the feature estimation, the data in each signal window
were represented by a feature vector of dimension seven.
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Figure 3. The main steps in tremor data analysis of healthy individuals (yellow) and individuals
with PD (gray). The tremor activity may have distinct STMPs that emerge over time. The signal is
windowed, and a feature vector is estimated for each overlapping window delimited by the arrows.
Black and red colors are used to ease the visualization of the boundaries of each window. The set
of features is estimated for individuals in the HC and PD groups. The high-dimensional data set is
reduced to a lower-dimensional space using t-SNE, allowing the identification of clusters representing
distinct STMP (represented by numbers 1, 2, and 3) templates present in the tremulous activity. Once
these STMP groups have been identified, it is possible to understand their dynamics over time, i.e.,
the likelihood of STMP appearance, persistence, and regularity.
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Table 2. Description of the features extracted from the signal. N is the total number of samples of the
discrete time-series x of each window, i is the i discrete time instant, µ is the mean, and σ the standard
deviation of x.

Feature Description Formula

MAV Mean absolute value MAV = 1
N

N
∑

i=1

∣∣∣∣xi

∣∣∣∣
CV Coefficient of variation CV = σ(x)

µ(x)

ZCR Zero crossing rate
ZCR = 1

2N

N
∑

i=1

∣∣∣∣sgn(xi+1)− sgn(xi)

∣∣∣∣
where sgn(xi) =

{
1, xi ≥ 0
−1, xi < 0

SampEn Sample entropy

SampEn (m, r, N) = −log A
B

where m is the length of the template (length of the window
of the different vector comparisons) and r is tolerance,

which is usually selected as a factor of the standard
deviation. For this application, we adopted m = 2 and r = 0.2

as in other studies [28,29]. B is the probability that two
sequences are similar for m points, i.e., d[Xm(i), Xm(j)] < r,
while A is the probability that two sequences are similar for

m + 1 points, i.e., d[Xm+1(i), Xm+1(j)] < r [30].

Hjorth parameters

Activity Activity = σ2(x)

Mobility

Mobility =

√
Activity(

.
x)

Activity

where
.
x is the first discrete derivative of the x, i.e.,

.
x = xi−xi−1

∆t
with temporal resolution ∆t = ti − ti−1.

Complexity Complexity =

√
Mobility(

.
x)

Mobility

where
.
x is the first discrete derivative of the x, i.e.,

.
x = xi−xi−1

∆t
with temporal resolution ∆t = ti − ti−1.

The primary goal of this study was to detect STMPs and characterize them using
the studied time domain features. Although these features are estimated in time, some
of them (ZC and Mobility) capture changes in signal frequency. In this sense, the set of
features chosen combines the features capable of capturing information about changes in
the frequency, amplitude, and predictability of the signals.

2.4. Dimensionality Reduction

The dimensionality of the data, i.e., the feature vector, was reduced through t-Distributed
Stochastic Neighbor Embedding (t-SNE) [31], which converts data from a high-dimensional
space into a low-dimensional space while preserving the stochastic distribution of the data
points. The data were standardized before the dimensionality reduction.

t-SNE is a nonlinear method that converts the high-dimensional data set
X = {x1, x2, x3, . . . , xn} into two- or three-dimensional data Y = {y1, y2, y3, . . . , yn}.
The low-dimensional data Y is represented as a map, while the low-dimensional represen-
tations yi of the individual data points are represented as map points. The SNE algorithm
converts the Euclidean distances between the high-dimensional data points into conditional
probabilities (pij and qij). The pairwise similarities between two data points, xi e xj, are
represented by the conditional probability pij in the original high-dimensional space, and
the low-dimensional conditional probability is represented by qij of points yi and yj. For
nearby data points, pij is relatively high, whereas for widely separated data points, pij will
be almost infinitesimal.
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In order to determine how much the low-dimensional model well represents the
high-dimensional model, the t-SNE minimizes the Kullback–Leibler (KL) [31] cost function
using a gradient descent method (Equation (1)).

C = ∑
i

KL(Pi ‖ Qi) = ∑
i

∑
j

pijlog
pij

qij
(1)

where Pi is the conditional probability distribution over all data points given a data point
xi, and Qi represents the conditional probability distribution over all other map points
given a map point yi. The location of the points yi in the map is defined by minimizing the
KL divergence of the distribution P from the distribution Q. The goal is to optimize the
embedding such that pij and qij are as similar as possible. t-SNE improves SNE by using
the Student’s t-distribution rather than a Gaussian to compute the similarity between two
points in the low-dimensional space [31].

The perplexity parameter in t-SNE determines each point’s optimal number of close
neighbors. Van der Maaten and Hinton [31] suggest perplexity values between 5 to 50.
However, due to the number of points from our sample, the algorithm did not properly
work with perplexity values higher than 15. Then, we ran some experiments with perplexity
values in the range between 5 and 15 to verify how this parameter affected the quality of
the generated maps. With the map generated by t-SNE, we observed that the perplexity
values smaller than 10 generated a large number of clusters dominated by local variations.
In contrast, with perplexity values higher than 10, the number of clusters was reduced.
Based on this, the perplexity value was set to 10.

2.5. Identification of STMPs

STMPs were identified for the HC and PD groups using the clustering technique k-
means applied to the data in the two-dimensional space given by t-SNE. Using the gap [32]
statistic and a Silhouette plot [33], the optimal number of clusters for the data set was
estimated as 3. Despite testing other values of k, including k = 2, 4, 5, and 6, k = 3 provided
a meaningful interpretation of the presence of STMPs in the signals. Before clustering, all
the variables were transformed to a z score.

In addition, differences between pairwise clusters were evaluated using the Fasano–Franceschini
test [34] (p < 0.05) because the bivariate normal distribution assumption of the variables
was violated (Kolmogorov–Smirnov test at the significance level of 5%).

2.5.1. STMP Assessment

The frequency of the STMPs in each group, the transition probability among the
STMPs in each group, and the time duration of the STMPs in each group were all evaluated.

The transition probability among the STMPs was calculated based on the transition
probability matrix denoted as P, which contains all transition probabilities. Assuming the
states are 1, 2, . . . , r, then the state transition matrix is given by

P =

p11 · · · p1r
...

. . .
...

pr1 · · · prr


The probability of being in the state i and reaching the state j is given by pij (Equation (2)).

pij = Pr {Xn = j| Xn−1 = i} (2)

Although Equation (2) provides the probability of being in the same state (rii or rjj),
it does not provide the state’s duration (i.e., persistence). The persistence time or time
duration is defined as the time of a sample to remain in the same STMP. Then, to estimate
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the time duration of the STMPs for each group, we calculated the persistence time defined
as D (Equation (3)).

D(i) =
ni
ri
× 0.06 (3)

where i is the STMP group, ni is the amount of the samples in i-th STMP group, and ri is
the number of permanence blocks for the i-th STMP type. The permanence block is the set
of samples consecutive of the same STMP (Figure 4). The constant 0.06 converts the value
into milliseconds. In the case of ri = 0, we considered D(i) = ni.
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Figure 4. Calculation of the persistence time (Equation (3)) for the STMP 2. Three STMPs (represented
by colors blue, yellow, and gray) were identified and distributed along the tremor signal and plotted
below according to their appearance order. For STMP 2, the number of samples n2 was 20, the number
of permanence blocks was 6, and the calculated persistence time was 0.2 ms.

Figure 4 illustrates how persistence time is calculated. We estimated the persistence
time for the STMP group identified as 2. Two steps should be followed to calculate duration
time in any STMP group. In this case for STMP 2:

• The number of samples in the STMP 2 was n2 = 20;

• The number of permanence blocks for each transition for the STMP 2 was r = 6.

Thus, we obtained the persistence time of 0.2 ms for STMP 2 (Figure 4).

2.5.2. STMP Characterization

To characterize each STMP in terms of the extracted features, we calculated the average
for all features for each STMP for the HC and PD groups. Since the distribution of the
data did not fit a normal distribution (Shapiro–Wilk test, p < 0.05), the Wilcoxon test was
performed to compare the difference between the groups (HC and PD), with a significance
level of 95% (p < 0.05).

3. Results
3.1. Explorative Cluster Analysis

The results from the k-means clustering were obtained from the feature vectors esti-
mated from the data in a lower dimensional space estimated by t-SNE. The gap statistic
and a Silhouette plot [32] were employed to estimate the optimal number of clusters (k)
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(Figure 5). According to both methods, k = 3 allowed for the identification of three clusters,
i.e., STMP templates.
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Figure 5. Silhouette plot indicating that the optimal number of clusters (k) equals to 3.

Furthermore, to confirm the findings above, we tested the differences between pairwise
clusters through the Fasano–Franceschini test (p < 0.05) (Table 3).

Table 3. Differences among pairwise clusters of STMPs given by the Fasano–Franceschini test.

Clusters D-Statistic p-Statistic

1 and 2 0.87 <0.05 *
1 and 3 0.97 <0.05 *
2 and 1 0.87 <0.05 *

Significant results for the differences between pairwise clusters are highlighted with “*”.

The results presented in Table 3 showed that the differences among pairwise clusters
were significant. The statistical results supported our decision that three clusters gave us
an optimal solution.

3.2. Identification of STMPs

From the analysis of clusters above, we identified three distinct types of STMPs
present in the tremor in PD individuals. The distribution of these STMPs according to their
similarity and groups (HC or PD) is shown in Figure 6.

Figure 6 highlights the difference among STMPs. For STMP 1, most STMPs are from
individuals in the control group. For STMP 3, most STMPs are from individuals with PD.
For STMP 2, both experimental groups presented STMPs with a similar frequency.
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Figure 6. Distribution in three STMPs of all signal segments of both groups (HC and PD). The black
circles highlight the cluster centers estimated by k−means. The STMP 1 (blue) has a predominance of
individuals from control group. STMP 2 (yellow) has both experimental groups, while in STMP 3
(gray) most STMPs are from individuals with PD.

3.3. STMPs Assessment

The STMPs were assessed based on their frequency as well as the transition probability
underlying their occurrences. Figure 7 shows the frequency of STMPs according to their
similarity (i.e., STMP 1, 2, or 3) and experimental groups (HC and PD).
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As shown in Figure 7, STMP 1 is more similar to those of the control group. In
comparison, approximately 80% of STMP 3 belonged to people with Parkinson’s disease.
STMP 2 had an equivalence number of STMPs in both experimental groups.
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Figure 8 shows the typical STMPs for the HC and PD groups. Although the signals
from individuals with PD contained more segments with STMP 3 (Figure 8D), those
individuals whose tremor was moderate had STMP 1 and 2 (Figure 8C), and the time series
was similar to that of healthy individuals (Figure 8B).
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Figure 8. STMPs distributed along the tremor time series obtained from the gyroscope axis X.
(A) Tremor signal from a healthy individual with the prevalence of STMP 1. (B) Tremor signal from a
healthy individual with STMPs of all types. However, most of them are STMP 1 and 2. (C) Tremor
signal from an individual with PD. Most of the STMPs are type 2. (D) Severe tremor signal from an
individual with PD with the prevalence of STMPs type 3.

Additionally, we evaluated the dynamics of the STMPs according to the transition
probability of their occurrence and the time of permanence in the underlying states related
to the distinct STMPs types.

For the assessment of the transition, we adopted the transition probability matrix to
calculate the probability of one STMP to transit to another one (Figure 9).
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Figure 9. Transition probability between the STMP for each group (HC and PD).

As presented in Figure 9, the HC group presented the highest transition values,
especially from the 2 to 1 and 3 to 2 STMP types, whereas the PD group showed the lowest
transition values.

The permanence time in each STMP type was calculated according to Equation (3) for
each group. Figure 10 illustrates the mean permanence time in ms of each STMP type.
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Figure 10. Mean of permanence time in each STMP for both groups.

As shown in Figure 10, the PD group presented the highest mean permanence time (up
to 10 ms in STMP 3). In contrast, the HC group presented about 3 ms in STMP 1. In STMP
2, both groups presented similar values of the mean permanence time, around 2.45 ms.

3.4. STMPs Characterization

The STMPs were characterized in terms of the extracted features. Table 4 shows the
average for all the extracted features for both groups for each STMP type. Only CV and
COMP were not significantly different (p > 0.05) between the HC and PD groups.
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Table 4. Mean of the extracted features for each STMP type for both groups.

Features STMP HC Group
(Mean ± Std)

PD Group
(Mean ± Std) p-Value

MAV
1 0.27 ± 0.13 4.10 ± 31.81 <0.05 *
2 0.32 ± 0.13 0.68 ± 1.12 <0.05 *
3 0.28 ± 0.14 30.59 ± 45.21 <0.05 *

CV
1 82.71 ± 1128.10 861.72 ± 17,606.78 0.314
2 −3.19 ± 435.55 −53.84 ± 517.96 0.078
3 25.26 ± 240.14 14.37 ± 457.44 0.975

ZRC
1 6.32 × 10−2 ± 6.90 × 10−3 6.43 × 10−2 ± 1.01 × 10−2 <0.05 *
2 5.15 × 10−2 ± 5.80 × 10−3 4.95 × 10−2 ± 5.90 × 10−3 <0.05 *
3 4.80 × 10−2 ± 8.62 × 10−3 3.75 × 10−2 ± 1.06 × 10−2 <0.05 *

SampEn
1 0.52 ± 4.27×10−2 0.51 ± 6.40 × 10−2 <0.05 *
2 0.48 ± 5.08×10−2 0.46 ± 5.12 × 10−2 <0.05 *
3 0.46 ± 6.74×10−2 0.37 ± 8.80 × 10−2 <0.05 *

ACT
1 0.14 ± 0.19 1378.22 ± 11,695.60 <0.05 *
2 0.19 ± 0.19 2.62 ± 18.21 <0.05 *
3 0.16 ± 0.22 4000.02 ± 10,009.58 <0.05 *

MOB
1 0.20 ± 1.83 × 10−2 0.20 ± 2.85 × 10−2 <0.05 *
2 0.17 ± 1.4 × 10−2 0.16 ± 1.55 × 10−2 <0.05 *
3 0.16 ± 2.07 × 10−2 0.13 ± 2.85 <0.05 *

COMP
1 1.42 ± 0.14 1.45 ± 0.17 0.057
2 1.39 ± 0.13 1.40 ± 0.13 0.284
3 1.77 ± 0.18 1.67 ± 0.31 <0.05 *

* Wilcoxon test: significant difference between group.

4. Discussion

Tremor characterization is critical for developing appropriate individualized treatment
and rehabilitation strategies. According to our findings, there are at least three STMPs that
are significantly different in tremor signals, and these STMPs can be characterized and
evaluated based on amplitude, time of permanence and transition, and complexity. We
found that the tremulous motion of the hand provided novel insights into the underlying
temporal aspects of tremors that may be used as diagnostic and prognostic biomarkers
for tremors.

The experimental protocol and signal preprocessing were based on the study from
Andrade et al. [20]. The protocol used a pair of triaxial inertial units positioned on the back
of the hand (Figure 2). Due to simplicity and the reported results in a previous study [20],
we adopted the same protocol. However, only data from the gyroscope placed on the hand
were used for analysis. In addition, to improve the data quality from gyroscope X, linear
and nonlinear trends from the signals were removed following the same preprocessing
steps described in [20]. As we investigated the short pieces of the signal, it is crucial to
guarantee that small motions unrelated to the tremor motion and noise from the device
are removed.

The sensor and axis were chosen using a strategy based on the clustering of STMPs
(Figure 6). Because the tremor manifests in all directions, we tested other sensors (e.g., an
accelerometer and gyroscope) to determine which was best for detecting STMPs. The sensor
performance based on the clustering results from gyroscope axis X (Figure 6) was more
relevant for our purposes. Furthermore, in the setting shown in Figure 2, the gyroscope
captured hand tremors better, particularly around the X-axis, where a tremor corresponding
to small amplitude movements of wrist adduction/abduction (radial–ulnar deviation) and
forearm pronation/supination occurs, and such movements are more pronounced than
movements around the Y axis, which correspond to movements of wrist flexion/extension.

The main focus of most tremor studies is detecting or comparing the tremor of different
groups/conditions and extracting features of the whole signal [10,20,26,27,35,36]. However,
to identify underlying patterns in tremor signals, it is necessary to track them since tremors
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change over time. Thus, all signals were segmented with a 50% overlapping window to
explore their dynamics [37]. For each segment, linear and nonlinear features were extracted
(Table 2), as linear and nonlinear features provide complementary information for tremor
assessment [38]. Morrison et al. [27] emphasized the importance of assessing the pattern of
the tremor signal using nonlinear features. According to the authors, it is not always simple
to discriminate different forms of tremor using only standard linear measures such as mean
amplitude or the dispersion around a mean as traditionally defined. Table 4 highlights the
importance of these feature combinations. It is possible to discriminate the groups using
some of the features.

The instantaneous fluctuations present in the signal contain physiologically meaning-
ful patterns across multiple temporal–spatial scales. This study identified three (Figure 6)
types of STMPs that were significantly different in the tremor signals (Table 3). T-SNE
produced the visualization of STMPs (Figure 6), discriminating the different types of STMPs.
Moreover, regarding discrimination among the STMP types, t-SNE was a relevant tool
applied before executing the clustering step. Similarly, Oliveira et al. [39] found the highest
accuracy in applying t-SNE as an a priori step to the classification. To our knowledge, this
is the first study reporting cluster analysis techniques to examine STMPs in tremor signals
using inertial sensors. This approach supported the concept that tremors are heterogeneous
since we could identify a sequence of different STMPs in the tremor signal from a PD
individual. Figure 7 shows that STMP 1 was present mainly in tremor signals from healthy
people, although it was also present in tremors from PD individuals. Furthermore, the
number of STMP 2s increased substantially in the PD individuals (Figure 8C), and STMP 3
was prevalent in PD individuals with a higher UPDRs score (Figure 8D).

Similarly, Dietz et al. [15] described that tremors in PD might be characterized by motor
unit discharges. According to the authors, in those periods that the grouped discharges
were more regular, the tremor amplitude decreased, and the firing frequency increased.
Sometimes in these discharge periods, the tremor may disappear. It means that in a single
tremor signal, it is possible to find distinct types of STMPs, as shown in Figure 8B,C. In
addition, corroborating this result, Agapaki et al. [16] demonstrated the similarities between
the characteristics and the activity of MUs in interspike intervals within doublets/triplets
of tremors in PD and physiological tremors.

Some signals from healthy people presented STMP 3, although about 80% of the signals
from people with PD presented STMP 3. Comparing the results with the UPDRS scores
of the PD group, signals containing a large number of STMP 1 were from PD individuals
with a more moderate tremor. In contrast, those people from the PD group whose signals
presented a large number of STMP 3s had a more severe tremor (Figure 8D). Surprisingly,
some individuals in the HC group presented an expressive number of STMP 3s in their
signals, possibly indicating the presence of a smoother tremor. A possible explanation for
this result is that most people from HC are older adults, suggesting that tremors are related
to aging, in which there exist segments of STMP 3 [40].

STMP 2 represents tremulous patterns associated with an intermediary state present
for both groups in the same proportion. Interestingly, the appearance frequency of STMP2
may be related to tremor severity, as seen in the values of permanence time and transition
probability (Figures 9 and 10). STMP 2 is present in the signal of HC individuals all the time
(Figure 9); thus, it has a higher mean probability of transition and lower permanence time
in a single STMP (Figure 10). In contrast, the signal of PD individuals tends to have a lower
transition probability and higher permanence time (Figures 5 and 6). We may consider this
higher transition probability from HC as variability, which provides adaptive strategies to
maintain the control of tremors. Harbourne and Stergiou [41] emphasized the relevance of
variability for maintaining health. They highlight that a lack of variability traps a behavior
in a specific state or pattern, as shown in Figure 10 with the PD group. Individuals with
PD tended to stay in state 3 related to STMP 3 for almost 30 ms (Figure 10), while healthy
individuals stayed in state 1, related to STMP 1, for about 3 ms. Figure 8D shows a severe
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tremor; therefore, the whole signal had STMP 3. Then, we suggest that permanence time
and transition probability in STMPs might be a source of behavioral change.

According to Harbourne and Stergiou [41], nonlinear tools best capture the hidden
information in the variability, quantifying the structure of the signal. Sample entropy is
a nonlinear tool used for measuring the degree of predictability or the structure of the
variability of a time series. The difference among the STMPs of both groups was significant
(Table 4, p < 0.05). For HC, the sample entropy values were higher than those for the
PD group, indicating that the tremor was more regular and more predictable in the PD
group. Similar results were found in studies where the tremor variability was around
15–22% lower in PD patients than in healthy controls, and the tremor was more regular in
PD [25–27,42].

Furthermore, Gil et al. investigated entropy to evaluate hand tremors. They observed
a 59.8% decrease in entropy for the resting tremor in PD patients and an increased tremor
amplitude for these patients [43]. Similarly, Rissanen et al. [17] concluded that the EMG
signals of PD individuals are more regular and contain more recurrent patterns than the
EMG signals of healthy individuals. These previous findings supported our findings that
the signals of individuals with PD are more regular (with less variability) than healthy
individuals.

Limitations

The sample size (N = 26) was determined according to the literature. Many studies
evaluated tremors with similar samples size and reached significant results [16,20,22,26,27].
A greater sample size would validate the finding that tremors are heterogeneous, and more
samples of each tremor severity may better characterize the signs of tremors.

5. Conclusions

This study described a method to identify and characterize STMPs in tremor signals.
We assessed these STMPs from data obtained from a gyroscope placed on the dorsal side
of the hand. We identified three STMPs in tremor signals and observed their prevalence
depending on the tremor type, i.e., pathological or physiological, and individual condition.
Moreover, we characterized these STMPs in terms of amplitude, permanence time, and
complexity. The results confirm that tremors in individuals with PD tend to get trapped in
a specific state. Therefore, this signal is less complex than the tremor in HC.

In this sense, the methods used in this study can identify relevant landmarks for the
follow up with tremor symptoms, assisting professionals in evaluating the tremor severity
and the efficacy of a treatment.
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