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Abstract: With the rapid development of medicine and technology, machine learning (ML) techniques
are extensively applied to medical informatics and the suboptimal health field to identify critical
predictor variables and risk factors. Metabolic syndrome (MetS) and chronic kidney disease (CKD)
are important risk factors for many comorbidities and complications. Existing studies that utilize
different statistical or ML algorithms to perform CKD data analysis mostly analyze the early-stage
subjects directly, but few studies have discussed the predictive models and important risk factors
for the stage-III CKD high-risk health screening population. The middle stages 3a and 3b of CKD
indicate moderate renal failure. This study aims to construct an effective hybrid important risk factor
evaluation scheme for subjects with MetS and CKD stages III based on ML predictive models. The
six well-known ML techniques, namely random forest (RF), logistic regression (LGR), multivariate
adaptive regression splines (MARS), extreme gradient boosting (XGBoost), gradient boosting with
categorical features support (CatBoost), and a light gradient boosting machine (LightGBM), were
used in the proposed scheme. The data were sourced from the Taiwan health examination indicators
and the questionnaire responses of 71,108 members between 2005 and 2017. In total, 375 stage 3a CKD
and 50 CKD stage 3b CKD patients were enrolled, and 33 different variables were used to evaluate
potential risk factors. Based on the results, the top five important variables, namely BUN, SBP, Right
Intraocular Pressure (R-IOP), RBCs, and T-Cho/HDL-C (C/H), were identified as significant variables
for evaluating the subjects with MetS and CKD stage 3a or 3b.

Keywords: machine learning (ML); Metabolic syndrome (MetS); chronic kidney disease (CKD);
end-stage kidney disease (ESKD); hybrid risk factor

1. Introduction

Suboptimal health status is a dynamic and intermediate bodily condition between
health and disease. Various indicators of suboptimal health must be considered during
the prevention of chronic diseases to achieve better health protection. Metabolic syndrome
(MetS) is a collection of suboptimal health risk indicators. According to the definition
provided by the Health Promotion Administration (HPA) and Ministry of Health and
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Welfare (MOHW) [1], the five diagnostic criteria of MetS are excessive abdominal fat, high
blood pressure, high fasting plasma glucose levels, high fasting triglycerides levels, and
elevated high-density lipoprotein-cholesterol levels. A person who meets three or more of
these criteria is diagnosed with MetS [1]. The accumulation of MetS risk factors increases
the risk of chronic kidney disease (CKD) and other major chronic diseases [2–4].

CKD refers to the irreversible and progressive loss of kidney function caused by
prolonged damage to the renal tissue for several months or years. According to the
American Kidney Foundation’s definition of CKD, the disease consists of the following
stages: 1, 2, 3a, 3b, 4, and 5 [5,6], each of which is defined in Table 1. The middle stages, 3a
and 3b, indicate moderate renal failure. Patients in CKD stage 3a are in the final stage of
early CKD, while those in CKD stage 3b are in the earliest stage of end-stage kidney disease
(ESKD). Thus, stage 3b is a critical point of renal function deterioration as it requires kidney
dialysis. Patients in stages 3a and 3b exhibit differences in their morality risk [7,8].

Table 1. Stages of CKD.

Stage 1 2 3a 3b 4 5

e-GFR value ≥90 89–60 59–45 45–30 30–15 <15 or dialysis

Description
Kidney damage
with normal or

e -GFR

Kidney damage
with normal or

mild e-GFR

Mild-moderately
decreased e-GFR

Moderately-
severely decreased

e-GFR

Severely
decreased

e-GFR

Severe Renal
failure

MetS and CKD are important risk factors for many comorbidities and complica-
tions [9,10]. Much research has denoted a positive correlation between MetS and CKD [11,12].
Furthermore, MetS diagnosis is an effective predictor of CKD [12]. Studies on CKD pre-
diction have identified four major risk factors: demographic variables (e.g., age, education
level), anthropometric parameters (e.g., body mass index, body fat), blood examination
indicators (e.g., blood urea nitrogen, uric acid), and lifestyle habits (e.g., smoking status,
alcohol consumption) [13–16]. Thus, they are often used in many studies to construct CKD
analytical models through machine learning (ML)-based data analysis methods [16–20].

ML techniques are extensively applied in numerous studies on medical informatics
and suboptimal health status [3,16,21–24]. They are often used to identify critical predictor
variables or risk factors as they can effectively investigate the complex relationships between
risk factors and outcomes, based on their promising predictive performance with vast
amounts of medical data [16,22,23,25].

Because some ML techniques can identify important predictor variables, a single
technique for selecting important predictor variables and risk factors may result in a
localized optimal risk that generates a single ranking of the variables. A variable ensemble
is often used to integrate the different variables that are selected [26]. Relevant studies have
also demonstrated that using variable ensembles improves the robustness of the selected
variables, compared to a single variable selection technique, and reduces the bias and
variance of the results [27–30].

Existing studies that utilize ML methods to perform CKD data analysis mostly analyze
the patients directly [16,17,20,31–34], and few studies have discussed the predictive models
and important risk factors for CKD patients with MetS. Several studies have constructed
predictive models for MetS patients, as well as their risk factors. Although patients in
stages 3a and 3b of CKD vary in disease progression and mortality risk [35,36], they share
highly similar clinical presentations. Thus, this study aims to examine the ML predictive
models and important risk factors for CKD stages 3a and 3b patients with MetS by using
ML techniques.

This study aims to construct an effective hybrid important risk factor evaluation
scheme for CKD stages 3a and 3b patients with MetS, based on ML predictive models.
Our study used six well-known and effective ML techniques—random forest (RF), logistic
regression (LGR), multivariate adaptive regression splines (MARS), extreme gradient boost-
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ing (XGBoost), gradient boosting with categorical features support (CatBoost), and light
gradient boosting machine (LightGBM)—to develop ML predictive models [16,18,19,37–39].
The important risk factors identification results can provide valuable information regarding
the prevention of CKD and health promotion.

The rest of this paper is organized as follows: Section 2 describes the used materials
and the proposed scheme. Section 3 presents the experiment results. Section 4 discusses
the findings of the study. Finally, the study is concluded in Section 5.

2. Materials and Methods
2.1. Data

This study has selected a large database of sub-health groups in Taiwan, the MJ
Health Checkup-based Population Database (MJPD, http://www.mjhrf.org/main/page/
resource/en/#resource07, accessed on 1 August 2022). It has published more than dozens
of international journal papers, including 2 JAMA and 6 Lancet journal papers. This study
was approved by the institutional review board of Far Eastern Memorial Hospital (FEMH-
IRB) (No:_IRB-110027-E Approved Date: 15 February 2022) and the MJ Health Research
Foundation, and registered on ClinicalTrials.gov (ID: NCT05225454).

Figure 1 shows the all-subjects identification process, and the complete data were
collected from the MJPD. A total of 71,108 members from 2005 to 2017 comprised the
health examination indicators and questionnaire responses. Table 2 shows the 34 health
examination indicators and questionnaire variables. Among the 34 variables, CKD is
the target variable and the other 33 indicators are predictor variables. Given that each
member might have multiple examination records, those who had undergone multiple
health examinations only had their latest records analyzed. In addition, subjects whose
data had missing variables were excluded. After data processing, 30,255 subjects were
eligible. We applied the MOHW’s references and definitions of MetS and CKD to identify
423 MetS patients who were also diagnosed with CKD stages 3a or 3b. Table 3 presents
the statistical analysis results of the participants’ demographic data. A total of 375 patients
(88.65%) were diagnosed with CKD stage 3a, while the remaining had CKD stage 3b.
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Table 2. Variables for predicting the subjects with MetS and CKD stage 3a or 3b.

Abbreviation Variables Unit/Description

BMI Body Mass Index kg/m2

BF Body Fat % (@TANITA, DC-430MA)

WC Waist Circumference cm

SBP Systolic Blood Pressure mmHg

DBP Diastolic Blood Pressure mmHg

FPG Fasting Plasma Glucose mg/dL

L-IOP # Left Intraocular Pressure mmHg

R-IOP # Right Intraocular Pressure mmHg

r-GT Gamma Glutamyl Transpeptidase U/L

BUN Blood Urea Nitrogen mg/dL

UA Uric Acid mg/dL

TG Triglyceride mg/dL

T-Cho Total Cholesterol mg/dl

HDL-C High Density Lipoprotein-Cholesterol mg/dL

LDL-C Low Density Lipoprotein-Cholesterol mg/dL

C/H T-Cho/HDL-C the vascular risk predicts index

MS Marital Status (1) Single, (2) married, remarried, cohabiting, (3) divorced,
(4) widowed

EL Educational Level (1) No formal education, (2) elementary school, (3) secondary school,
(4) high school, (5) college, (6) university, (7) graduate school

FI Yearly Family Income

(1) Unwaged, (2) NTD ≤ 200,000, (3) NTD 200,001–400,000, (4)
NTD 400,001–800,000, (5) NTD 800,001–1,200,000, (6) NTD
1,200,001–1,600,000, (7) NTD 1,600,001–2,000,000; NTD: New
Taiwan Dollar.

HC Hip Circumference cm

WHR Waist–hip Ratio %

LEE Lower Extremity Edema (1) No, (2) Yes

SGOT Serum Glutamic-Oxaloacetic
Transaminase U/L

SGPT Serum Glutamic-Pyruvic Transaminase U/L

BMD Bone Mass Density Dual energy X-ray Absorptiometry (DEXA)

RBCs Red Blood Cells 106/µl

Hb Hemoglobin g/dl

MCV Mean Cell Volume fl

UP Urine Protein Qualitative test, (1) non, (2) +−, (3) + (4) ++, (5) +++, (6) ++++

GU Glucose Urine Qualitative test, (1) non, (2) +−, (3) + (4) ++, (5) +++, (6) ++++

CS Current Smokers (1) Never, (2) passive smoking, (3) quit, (4) occasional, (5) addicted

AD Alcohol Drinkers (1) Never, (2) quit, (3) 1–2 times a week, (4) 3–4 times a week, (5)
5–6 times a week, (6) addicted

CBN Chewing “Betel Nut”/“Areca catechu” (1) Never, (2) quit, (3) 1–3 times a week, (4) 4–5 times a week,
(5) addicted

CKD Chronic Kidney Disease (1) CKD stage 3a, (2) CKD stage 3b

Note: #, Intraocular pressure was measured in this database as individuals received the measurement during
health check-ups.
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Table 3. Subject Demographics.

Variables Mean ± SD Variables n (%)

BMI 27.19 ± 3.29

FI

(1) Unwaged 78 (18.44%)
BF 30.32 ± 6.99 (2) NTD ≤ 200,000 60 (14.18%)

WC 90.21 ± 8.50 (3) NTD 200,001–400,000 87 (20.57%)
SBP 138.18 ± 20.54 (4) NTD 400,001–800,000 82 (19.39%)
DBP 84.30 ± 12.50 (5) NTD 800,001–1,200,000 47 (11.11%)
FPG 123.20 ± 34.35 (6) NTD 1,200,001–1,600,000 35 (8.27%)

L-IOP 14.60 ± 3.40 (7) NTD 1,600,001–2,000,000 34 (8.04%)

R-IOP 14.51 ± 3.28
LEE

(1) No 418 (98.82%)
r-GT 38.95 ± 45.14 (2) Yes 5 (1.18%)

BUN 18.54 ± 4.74

UP

(1) non 333 (78.72%)
UA 7.43 ± 1.64 (2) +− 34 (8.04%)
TG 194.49 ± 78.31 (3) + 29 (6.86%)

T-Cho 204.55 ± 37.69 (4) ++ 16 (3.78%)
HDL-C 47.36 ± 9.98 (5) +++ 11 (2.60%)
LDL-C 123.30 ± 34.39 (6) ++++ NA

C/H 4.42 ± 0.85

GU

(1) non 405 (95.74%)
HC 99.28 ± 6.22 (2) +− 7 (1.65%)

WHR 0.91 ± 0.06 (3) + 3 (0.71%)
SGOT 28.61 ± 13.88 (4) ++ 2 (0.47%)
SGPT 34.19 ± 21.16 (5) +++ 6 (1.42%)
BMD 0.35 ± 1.43 (6) ++++ NA

RBCs 4.84 ± 0.54

CS

(1) Never 292 (69.03%)
Hb 14.48 ± 1.47 (2) Passive smoking 15 (3.55%)

MCV 43.19 ± 4.34 (3) Quit 57 (13.48%)
UR 1.1 ± 0.55 (4) Occasional 13 (3.07%)

(5) Addicted 46 (10.87%)

Variables n (%)

AD

(1) Never 327 (77.3%)

MS

(1) Single 12 (2.84%) (2) Quit 22 (5.2%)
(2) Married, remarried, cohabiting 332 (78.49%) (3) 1–2 times a week 44 (10.4%)
(3) Divorced 13 (3.07%) (4) 3–4 times a week 17 (4.02%)
(4) Widowed 66 (15.60%) (5) 5–6 times a week NA

EL

(1) No formal education 30 (7.09%) (6) Addicted 13 (3.07%)

(2) Elementary school 101 (23.88%)

CBN

(1) Never 376 (88.89%)
(3) Secondary school 51 (12.06%) (2) Quit 36 (8.51%)
(4) High school 64 (15.13%) (3) 1–3 times a week 3 (0.71%)
(5) College 55 (13.00%) (4) 4–5 times a week 3 (0.71%)
(6) University 74 (17.49%) (5) Addicted 5 (1.18%)

(7) Graduate school 48 (11.35%)
CKD

(1) CKD stage 3a 375 (88.65%)

(2) CKD stage 3b 48 (11.35%)

Note: BMI, body mass index; BF, body fat; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic
blood pressure; FPG, fasting plasma glucose; L-IOP, left intraocular pressure; R-IOP, right intraocular pressure;
r-GT, gamma glutamyl transpeptidase; BUN, blood urea nitrogen; UA, uric acid; TG, triglyceride; T-Cho, total
cholesterol; HDL-C, high density lipoprotein-cholesterol; LDL-C, low density lipoprotein-cholesterol; CH, T-
Cho/HDL-C; MS, marital status; EL, educational level; FI, family income; HC, hip circumference; WHR, waist–hip
ratio; LEE, lower extremity edema; SGOT, serum glutamic-oxaloacetic transaminase; SGPT, serum glutamic-
pyruvic transaminase; BMD, bone mass density; RBCs, red blood cells; Hb, hemoglobin; MCV, mean cell volume;
UP, urine protein; GU, glucose urine; CS, current smokers; AD, alcohol drinkers; CBN, chewing “betel nut”/“areca
catechu”; CKD, chronic kidney disease.

2.2. Proposed Hybrid Risk Factor Evaluation Scheme

On the basis of the six ML methods, including RF, LGR, MARS, XGBoost, CatBoost,
and LightGBM, this study developed a hybrid important risk factor identification scheme
for the subjects with MetS and CKD stage 3a or 3b. The six ML methods used are based
on different concepts and characteristics to develop the classification models [40–45]. RF,
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XGBoost, CatBoost, and LightGBM are tree-based algorithms. LGR and MARS are non-
parametric methods. Since they are based on different characteristics to construct effective
algorithms and identify important risk factors for medical data analysis, the important
variables identification results of the six methods are integrated to provide more stable and
robust results. Figure 2 shows the proposed hybrid risk factor evaluation scheme.
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As shown in Figure 2, the first step was to sample the MetS subjects who were
diagnosed with CKD stage 3a or 3b from through the MJPD health examination database.
Next, we defined the predictor variables and target variable. We used 33 risk factors as our
predictor variables and CKD as the target variable. After consolidating the data, we built
the RF, LGR, MARS, XGBoost, CatBoost, and LightGBM predictive models.

RF is a decision tree approach based on ensemble technology [40]. Its principle is to
construct several unpruned decision trees, aggregate all the trees into a forest, and then
generate the final model by taking the majority vote or average value of the trees. LGR
is the typically most used ML method that generalizes linear models with canonical link
functions [41]. Its aim is to minimize the relative cost function using a logistic function and
perform model fitting using a maximum likelihood function.

MARS is a nonparametric and nonlinear statistical method in which several linear
segments with different gradients are used to automatically examine the nonlinearity and
dependency between multidimensional input and output variables, and then generate the
final optimum nonlinear prediction model [42]. XGBoost is a decision tree-based approach
that applies gradient boosting to generate multiple weak models. When each weak model
is generated, the defects or shortcomings of the previous model are corrected. Finally,
accuracy categorization is achieved by aggregating all the generated weak models [43].

LightGBM is a decision tree-based distributed gradient boosting framework that
utilizes advanced histograms. In an iteration, it learns the approximate value of decision
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tree residuals based on one-side sampling and negative gradient fitting [44]. CatBoost
is a gradient-boosting decision tree technique in which sequential boosting methods are
combined with gradient boosting and multiple categorical features [45]. In CatBoost,
the tree combinations and categorical features generated through gradient boosting are
aggregated into a sequence to generate the final model.

For constructing each ML model, we randomly divided the whole dataset into 80%
training data set and 20% testing dataset. The ten-fold cross validation (CV) method was
used to perform hyperparameter tuning. The selected final model is the model of the best
hyperparameter configuration. This process was performed ten times.

Balanced accuracy (BA), sensitivity, specificity, and area under the receiver operating
characteristic (ROC) curve (AUC), are four well-known metrics [46–48] utilized to assess
the six ML models’ performance. To identify the convincing ML models, the widely used
LGR was viewed as the baseline model in this study. The ML model’s performance that is
greater than or equal to that of the LGR model is considered as the convincing model.

To rank the importance of each predictor variable, we applied the “caret” R package of
version 6.0-90 [49] to each of the six methods to produce each variable’s importance value.
In each model, the most important predictor variable is set as ranking 1, whereas the least
important predictor variable is defined as 33, because we used 33 predictor variables in
this study. Different ML methods may produce different importance rankings for each
predictor variable, due to their different specific characteristics. To obtain more stable and
integrable ranking results, we hybridized the importance of each variable by averaging its
ranking values from the convincing ML models.

In the last step, the research findings regarding the identified important risk factors
were discussed to present the conclusions of our study.

This study utilized the RStudio of version 1.1.453 and R programming language of
version 3.6.2 for modeling (http://www.R-project.org, accessed on 1 September 2022; https:
//www.rstudio.com/products/rstudio/, accessed on 1 September 2022). In addition, each
model was constructed using an R-based software package. Model construction in RF, LGR,
MARS, XGBoost, CatBoost, and LightGBM was through randomForest version 4.7-1.1 [50],
stats version 3.6.2, earth version 5.3.1 [51], XGBoost version 1.6.0.1 [52], catboost version
0.25.1 [53], and lightgbm version 3.3.2 [54], respectively. During the model construction
process, the best hyperparameter was found using caret version 6.0-93 [49].

3. Results

This study applied six ML techniques, including RF, LGR, MARS, XGBoost, CatBoost,
and LightGBM, to build predictive models for patients with MetS and CKD stage 3. Table 4
depicts the mean prediction performances of the six models after ten learning cycles, as
well as the means and standard deviations (SDs) of the four performance metrics used.
Figure 3 demonstrates the ROC curves of the six models. From Table 4, it can be observed
that the prediction performances of the six models were similar, and the AUC of each
model was greater than 0.657. The LGR has the highest AUC value of 0.670 and the RF has
the lowest AUC value of 0.657.

Table 4. Model performance in predicting the subjects with MetS and CKD stage 3a or 3b.

Methods Balanced Accuracy
Mean (SD) Sensitivity Mean (SD) Specificity

Mean (SD)
AUC

Mean (SD)

RF 0.698 (0.09) 0.697 (0.21) 0.700 (0.17) 0.657 (0.12)
LGR 0.719 (0.06) 0.678 (0.19) 0.761 (0.25) 0.670 (0.09)

MARS 0.690 (0.07) 0.774 (0.21) 0.606 (0.26) 0.658 (0.09)
XGBoost 0.685 (0.09) 0.615 (0.16) 0.755 (0.16) 0.658 (0.14)
CatBoost 0.710 (0.19) 0.698 (0.17) 0.722 (0.18) 0.667 (0.13)

LightGBM 0.660 (0.12) 0.624 (0.26) 0.697 (0.27) 0.662 (0.14)

RF—random forest; LGR—logistic regression; MARS—multivariate adaptive regression splines; XGBoost—
extreme gradient boosting; LightGBM—Light Gradient Boosting Machine; CatBoost—Gradient Boosting with
Categorical Features Support.

http://www.R-project.org
https://www.rstudio.com/products/rstudio/
https://www.rstudio.com/products/rstudio/
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To evaluate the performance of the six methods, DeLong’s test was used since it is one
of the effective tests employed to evaluate the statistically significant difference between
two models’ AUC values [55]. We used DeLong’s test to compare AUC values between the
model with the highest AUC model (i.e., LGR model in this study) to each of the remaining
five ML methods. Table 5 depicts the results of DeLong’s test. It can be determined from
the table that the performance difference between the LGR model and each ML method is
not significant, since all p-values are greater than 0.05. Therefore, the six models’ prediction
performances were alike and can be viewed as the convincing models. However, it is still
worth noting that, from Table 4, the LGR was relatively the best ML model in this study
because it can generate the highest mean balanced accuracy, specificity, and AUC values of
0.719, 0.761, and 0.670, respectively.

Table 5. DeLong’s test between LGR and the five ML methods of this study.

RF MARS XGBoost CatBoost LightGBM

LGR 1.258 (0.208) 1.402 (0.160) 1.615 (0.106) 0.693 (0.488) 0.184 (0.853)
Note: The numbers in parentheses are the corresponding p-value; **: p < 0.05.

Because the six methods used are all considered to be convincing models, we used the
variable importance generated by all six methods as the basis for our risk factor ensemble.

Table 6 shows the overall importance ranking of each predictor variable based on the
six convincing models. Note that only the first 15 variables of Table 2 are shown. The
“Average ranking of RF” to “Average ranking of LightGBM” are the average rankings, with
the modeling of each of the six models repeated ten times. The different models produced
different variable importance ranking results based on their modeling rules. In order to
hybridize the findings of the six models, we summarized the ranking results of the six
models equally in the proposed scheme. We obtained the “Average ranking of the six
models” with simple averaging values from the six models.

To clarify the ranking, Figure 4 shows the ranked top ten important variables by
increasing order of the average ranking values of the six models. From Figure 4, to compactly
discuss the important predictor variables, based on physicians’ recommendations, the top
five important predictor variables, namely BUN, SBP, R-IOP, RBCs and C/H, were identified
as significant variables for assessing the subjects with MetS and CKD stage 3a or 3b.
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Table 6. Overall importance ranking of each predictor variable (only the first 15 variables of
Table 2 shown).

Variables
Average

Ranking of
RF

Average
Ranking of

LGR

Average
Ranking of

MARS

Average
Ranking of

XGBoost

Average
Ranking of

CatBoost

Average
Ranking of
LightGBM

Average
Ranking of the

Six Models (SD)

BMI 14 12 7 12 29 5 13.17 (8.47)

BF 12 14 22 15 20 25 18.00 (5.10)

WC 24 30 26 17 15 26 23.00 (5.80)

SBP 4 4 5 5 2 7 4.50 (1.64)

DBP 25 27 14 29 33 20 24.67 (6.77)

FPG 15 6 11 14 13 14 12.17 (3.31)

L-IOP 20 19 20 23 16 13 18.50 (6.35)

R-IOP 9 2 3 4 8 6 5.33 (6.60)

r-GT 18 37 9 20 22 12 19.67 (9.81)

BUN 1 1 1 1 1 1 1 (0)

UA 22 23 27 16 25 19 22.00 (4.00)

TG 10 33 19 9 7 9 14.50 (9.99)

T-Cho 13 8 23 10 6 15 12.50 (6.09)

HDL-C 7 17 12 8 18 2 10.67 (6.19)

LDL-C 17 16 6 13 28 22 17.00 (7.54)

. . . . . . . . . . . . . . . . . . . . . . . .
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4. Discussion

Most of the previous academic literature has confirmed the related risk factors of CKD,
including sex, age, race, obesity, smoking, unhealthy diets, family-related history, protein-
uria, and anemia. It is associated with chronic diseases including metabolic syndrome, type
2 diabetes, hypertension, cardiovascular disease, hyperlipidemia, hyperuricemia, etc., and
related indicators were also found to correlate with CKD. Based on the results of previous
studies, many important risk factors of CKD, such as BUN, creatinine (Cr.), UA, SBP, DBP,
WC, BMI, BF, FPG, T-Cho, and LDL were known [16,17,56–60], in addition to indicators
such as SGPT, SGOT [16], Education [16,56], RBCs, UP (Urine Protein) [17].

In recent years, three related studies have been published that use different analytical
tools and subjects to determine the risk factors for CKD in Taiwan [16,17,59]. Chang et al.
(2020) consulted the Elderly Health Examination Database and used 2006–2012 data from
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297,603 elderly people aged 65 years and older in Taipei City, Taiwan. Employing the
non-CKD criteria with the G1 and G2 stages (e-GFR > 60 mL/min/1.73 m2), their results
showed a 29.7% e-GFR reduction in the likelihood of CKD diagnosis. The study found
smoking to be significantly associated with an elevated risk of reduced e-GFR, and found
physical exercise and healthy lifestyle habits to be significantly associated with increased
e-GFR. Additionally, it found CVD, hypertension, obesity, and diabetes-related indicators
to be linked to an increased risk of developing CKD [59]. Another study published in China
used the same criteria (e-GFR > 60 mL/min/1.73 m2) to detect CKD among 15,229 subjects
(mean age: 62.8 years) from the Dongfeng–Tongji examination dataset (2008–2013). It found
that BMI and MetS are potential indicators of CKD risk among elderly people [60].

Shih et al. (2020) analyzed data from an adult health examination dataset, as well as
data on elderly adults they collected from three physical examination centers and 32 clinics
in Taiwan (2015–2019). However, this study features a notable limitation: the G2 stage was
not rigorous when it was used to represent and indicate CKD subjects. It was selected out of
14,169 non-CKD subjects (63.37 ± 11.56 years) and 5101 CKD subjects (69.19 ± 10.74 years)—
a total of 19,270 subjects—with effective records, but they determined CKD by using the
G1 stage (e-GFR ≥ 90 mL/min/1.73 m2) to indicate non-CKD. The study found the UP-Cr.
ratio, proteinuria (PRO), RBCs, FPG, TG, T-Cho, age, and gender to be important risk factors
for early CKD prediction [17]. Interestingly, they identified RBCs, in addition to UP, as an
important factor, though they did not elaborate on it. Previous research on UP features
supports data on the correlation with RBCs; in fact, some studies show that it may be a risk
factor for hypertension [48].

This study is the follow-up research to Chiu et al.’s (2021) study. The datasets were
collected from four major health screening centers in the northern, central, and southern
parts of Taiwan (2010–2015). A total of 65,394 subjects were included in the MJPD database
for the analysis of 18 risk indicators, CKD was determined by using the criteria with
the G2 stages (e-GFR > 60 mL/min/1.73 m2). The MJPD datasets were of the sub-health
population, including more young subjects, aged around 30 to 50 years old (y/o). The study
results showed that BUN and UA were identified as the first and second most important
indicators, and SBP, SGPT, SGOT, and LDL-C were also related risk factors. Interestingly,
socioeconomic status (SES)-related education was found to be the third important indicator
in this study [16].

From the perspective of preventive medicine, the knowledge of risk factors facilitates
early detection and, in turn, allows for targeting and improving relevant lifestyle habits,
enabling people to avoid serious chronic diseases. In this study, we continued to use MJPD
datasets [16], though notably with a younger sample. However, unlike the three most
prominent previous CKD-related studies in Taiwan [16,57,59], we raised the criteria for
CKD, asserting that CKD is stage 3b in the earliest stage of end-stage renal disease (e-GFR
> 45 mL/min/1.73 m2). At the same time, we increased the number of data-covered years
(2005–2017) to increase the sample size. The MJPD dataset excluded the subjects’ records
related to anything but MetS, CKD stage 3a, and CKD stage 3b. Out of a total of 423 subjects,
88.65% were diagnosed with stage 3a CKD, and 11.35% were diagnosed with stage 3b CKD.
BUN, SBP, R-IOP, RBCs, and C/H were identified as the five most important variables for
evaluating subjects with MetS, CKD stage 3a, and CKD stage 3b.

Limitations

In order to add the variables found in related studies and the variables that the
researcher is interested in, and because analyzing too many research variables may affect
the Area Under the Curve (AUC) of the algorithm, it is recommended that follow-up
studies appropriately reduce variable analysis, or integrate more relevant variables, such
as L-IOP and R-IOP, or T-Cho, HDL-C, LDL-C, and C/H related indicators. In addition,
for a smaller number of samples, follow-up research may be able to further advance the
analysis of the two risk factor values of relative importance value (RIV) or ordinal ranking
value (ORV).
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5. Conclusions

This study proposed innovative algorithms for the analysis of health-screening data
pertaining to the third stage of CKD: the earliest stage of ESKD. This study contributed
33 relevant research variables, including R-IOP, RBCs, and T-CHO/HDL-C, outlining their
varied associations with risk indicators identified in previous studies. This study suggested
that some factorial combinations could potentially be used to separate individuals with
stage 3a CKD from those with stage 3b CKD, facilitating the design of prospective studies
in the future. We believe that this study has made several valuable contributions to the
literature, including some that will aid in the prevention and treatment of CKD and the
evaluation of high-risk groups in the third stage.
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