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Abstract: Technologies utilizing cutting-edge methodologies, including artificial intelligence (AI), ma-
chine learning (ML) and deep learning (DL), present powerful opportunities to help evaluate, predict,
and improve patient outcomes by drawing insights from real-world data (RWD) generated during
medical care. They played a role during and following the Coronavirus Disease 2019 (COVID-19)
pandemic by helping protect healthcare providers, prioritize care for vulnerable populations, predict
disease trends, and find optimal therapies. Potential applications across therapeutic areas include
diagnosis, disease management and patient journey mapping. Use of fit-for-purpose datasets for
ML models is seeing growth and may potentially help additional enterprises develop AI strategies.
However, biopharmaceutical companies often face specific challenges, including multi-setting data,
system interoperability, data governance, and patient privacy requirements. There remains a need
for evolving regulatory frameworks, operating models, and data governance to enable further de-
velopments and additional research. We explore recent literature and examine the hurdles faced
by researchers in the biopharmaceutical industry to fully realize the promise of AI/ML/DL for
patient-centric purposes.

Keywords: artificial intelligence; biopharmaceutical industry; Coronavirus Disease 2019; data science;
deep learning; digital innovation; machine learning; patient-centricity; randomized controlled trials;
real-world data

1. Introduction

The biopharmaceutical industry is increasingly realizing the potential values of artifi-
cial intelligence (AI), machine learning (ML), and deep learning (DL) to evaluate, predict,
and improve patient outcomes by deriving insights from both randomized controlled trial
(RCT) data and real-world data (RWD) generated from clinical or medical settings [1].

Earlier on, seminal works in AI/ML offered a historical perspective stemming from
Computer Science and Information Science since the 1950s [2–5], followed by recent works
on DL/AI [6–8]. Diverse data sources may yield useful insights through treatment pattern
analysis, patient journey mapping, and longitudinal follow-ups. While classical statisti-
cal methods and tools still play an important role in healthcare analytics and regulatory
pathways, data science and digital innovation are increasingly used nowadays to examine
the relationships between variables. ML and DL models are increasingly used, especially
for medical devices, for their ability to work with very large datasets for predictive accu-
racy [9–12].

Recent studies illustrate compelling applications of AI/ML/DL for diagnosis, treat-
ment, disease management, and patient journey mapping in several non-communicable dis-
eases, which are generally chronic diseases. As the Coronavirus Disease 2019 (COVID-19)
pandemic took hold in the United States (US), there were signs that these technologies may
help in infectious diseases too.

This paper explores a selection of these studies and the hurdles that researchers in
industry and academia may need to overcome to fully realize the promise of AI/ML/DL
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for patients. Several key abbreviations, particularly those defined by the United States’
Food and Drug Administration (FDA) or European Union’s (EU) European Medicines
Agency (EMA), are listed (Table 1).

Table 1. Key abbreviations in health data analytics via AI, ML and DL.

Abbreviation Terminology Source Reference

AI Artificial Intelligence FDA [13]

BYOD Bring Your Own Device EMA [14]

CDS Clinical Decision Support FDA [15]

CDM Common Data Model

National Coordinator for
Health Information Technology
(HealthIT.gov,
accessed on 6 October 2022)

[16]

DL Deep Learning FDA [17]

DTC Decentralized Clinical Trial FDA [18]

DTx Digital Therapeutics EU [19]

GDPR General Data Protection
Regulation GDPR.EU [20]

HIPAA
The Health Insurance
Portability and Accountability
Act of 1996

U.S. Department of Health and
Health Services (HHS) [21]

ML Machine Learning FDA [17]

PCT Pragmatic Clinical Trial National Institute of Aging [22]

PHI Protected Health Information HHS.gov [23]

R&D Research and Development Congressional Budget Office [24]

RCT Randomized Controlled Trial National Cancer Institute [25]

RWD Real-World Data FDA [26]

RWE Real-World Evidence FDA [26]

SDOH Social Determinants of Health HHS [27]

2. Patient-Centricity

Patient-centered care focuses on improving an individual patient’s health outcomes,
not on improving a population’s health outcomes, patient-reported outcomes, nor on
measuring the performance of a healthcare institution or provider [28,29]. The term “patient-
centered outcomes” was included in the US federal legislation US H.R.1865—Further
Consolidated Appropriations Act, 2020 [30], and was a focus of the National Academies of
Sciences, Engineering, and Medicine in their reports [31].

3. Adoptions
3.1. Disease Diagnoses

Challenges in diagnoses in terms of accuracy and reliability can lead to repeated
diagnoses via multiple modalities, poor choices of therapies, and consequently high-cost
burdens on the healthcare system for conditions that are difficult to diagnose and lacking
in pathognomonic signs and symptoms, as well as overlapping comorbid conditions, and
these negative consequences can be amplified.

Radiology, especially medical imaging, is indeed one of the fields in medicine that
has had the most successful applications of AI. Over the years, it has become an essential
part of medical imaging. In fact, the lead author worked in the early time of applying AI
to medical imaging for several years and coauthored multiple articles, including the ones
listed below. There are many publications and use-case examples of AI applications in

HealthIT.gov
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radiology and medical imaging. Since the field is rapidly expanding and evolving, the tools
and best practices to minimize biases of AI in radiology or medical imaging have been
proposed [32–34]. For example, we obtained the numbers of PubMed-listed articles [35]
by limiting publications until the end of a full year of 2021, with an understanding that
2022 is not yet a full year: using Boolean operators, and let String A alone; String R alone;
Strings A and R (simply denoted as AR), where D = (“Artificial Intelligence” or “Machine
Learning” or “Deep Learning”) and R = (“Radiology” or “Medical Imaging). A PubMed
search of DR = D and R, yielded 4290 articles since the first article appearing in 1998 until
the end of 2021. The trend based on this literature search is displayed (Figure 1).
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Figure 1. Number of articles on AI/ML/DL and Radiology (Medical Imaging) from 1998 to 2021.

There are a range of ways in which AI/ML/DL can support more accurate and reliable
diagnosis of conditions that can severely impair patients’ quality of life. Since big data are
mostly unstructured, natural language processing of texts [36], as well as medical image
analysis of CAT scans, magnetic resonance images or ultrasound images [37], can be useful.
AI-based diagnostic approaches could complement physicians’ efforts, creating macro
efficiencies in the healthcare system and significant quality-of-life benefits for individual
patients. In Section 6.2, methodological details on the applications of ML in fibromyalgia
are reviewed.

3.2. Treatment Patterns

AI/ML/DL is opening the door to identify effective treatment options and better
outcomes by predicting which treatment protocols are likely to succeed based on patient
characteristics, comorbid conditions, and treatment rationales. Recent studies show that
different approaches to cluster and subgroup analysis can support more effective treatment
choices to treat difficult conditions, as illustrated by overactive bladder [38] or erectile
dysfunction (ED) [39]. In particular, researchers identified natural clusters of male char-
acteristics per country, quantified ED dynamics in these profiles and compared profiles.
Clusters were mainly predicted by unhealthy behaviors, risk factors, and ED, regardless of
positive health characteristics and behaviors. Subgroups of men with heightened ED risk
factors were identified for precision medicine for optimal targeted therapies [40]. These
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examples in noncommunicable diseases (NCDs) show a range of possibilities for making
more effective treatment decisions and better managing patient treatment over the course
of the disease.

3.3. Disease Management

Digital health management has offered long-held hope for extending clinical resources
in understanding and managing diseases by virtually connecting patients and healthcare
providers through digital technology, such as mobile applications in a bring-your-own-
device (BYOD) setting [9,14,41,42]. Data from personal devices can be gathered to support
just-in-time adaptive interventions and health behaviors. Such digital tools with usability
can help patients receive personalized support and engage with health care providers.

4. Data Volume

Approaches are promising to generate insights from large-scale and high-volume
big data, such as those in the form of RWD [26]. There are a set of characteristics needed
for trustworthy AI, including “accuracy, explainability and interpretability, privacy, reli-
ability, robustness, safety, and security resilience—and that harmful biases are mitigated
or controlled” [43]. However, limited data that do not well represent the populations
of interest likely lead to biased models and conclusions since patient diversity might be
lacking in historical trials [44,45], which could be due to various social determinants of
health (SDOH) [27]. However, it is difficult to achieve without sufficiently large volume
of data.

Clinical decision support (CDS) may be adopted early during the clinical evaluation
stage [15,46,47]. Increasingly, AI/ML/DL are used to enhance disease understanding and
the effectiveness of their therapies. At present, biopharmaceutical companies may face
significant barriers in terms of accessing comprehensive and timely patient data due to
the siloed nature of systems in terms of interoperability issues. Machine learning tools
tend to require large datasets to generate useful results, which would be challenging to
the biopharmaceutical companies, as they are mainly focused on RCT data in a much
smaller volume or speed. While big data would allow for training, data scientists may
apply newer techniques with fewer data points to mine and transfer them [48], despite
training on limited labeled information in the data [49,50]. Models for ML can be trained
with small datasets using few-shot and n-shot approaches [51,52]. Few-shot learning has
the potential to help clean and label datasets, as well as generate more data. This ability to
learn with limited labeled data could help re-evaluate unusable data. Few-shot approaches
reduce the need to amass a large volume of the right data and to invest in the computer to
train a model on those datasets. Zero-shot techniques have the ability to learn from related
data or from descriptions of data, rather than designated datasets [52]. These training
models generate results derived from limited data may be helpful but may still lack the
generalizability and representativeness, which big data would have the advantage of. Thus,
biopharmaceutical companies are tailoring their strategies to harness and maximize the
values of data, especially in the form of RWD besides RCT data [53–57]. Even with smaller
datasets becoming more useful, data sources may undergo standardization, which may be
critical for those generated from disparate systems. Common data models (CDMs) may be
used to solve the need for a standard format [16].

5. Patient Health Information Protection

Laws and regulations have been established over the privacy of protected health
information (PHI) [23]. Data privacy protections become critical [20–23], and data-sharing
practices, e.g., cross-Atlantic collaborations, must carefully regard this privacy protec-
tion [58–60]. Organizations may consider a risk-based approach that goes beyond simple
masking techniques in order to produce a high-quality dataset that meets their specific
needs for secondary use. These approaches use ML to determine the likelihood of patient
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re-identification, thus preserving as many critical data elements as possible to support rich
insight while still ensuring compliance.

6. Use-Case Examples

Biopharmaceutical companies have multiple use-case examples found in the public
domain that focused primarily in the following areas: drug discovery and development,
clinical trials, drug manufacturing, and patient care.

6.1. AI Adoptions

There are several existing use-case examples on the applications of digital endpoints
via crowdsourcing from biopharmaceutical study sponsors, which have been collected via
crowdsourcing [61]. In addition, the FDA has showcased 90 successful examples of RWE
used in medical devices [62,63]. According to the FDA, there were 18 (20%) premarket
notification (510[k]) submissions; 14 (15.6%) de novo classification requests; 2 (2.2%) hu-
manitarian device exemptions (HDE) applications; 20 (22.2%) premarket approval (PMA)
original applications; 37 (41.1%) PMA panel track supplements. A set of commonly used
ML algorithms, including supervised and unsupervised learning methods, has been pro-
vided [10].

According to the Deloitte’s 2022 RWE benchmark survey among 17 biopharmaceutical
executives, “AI/ML workbench” has been used by 41% of the companies, while 47% plan
to develop such a capability [56].

There are multiple examples of applications using AI by a number of pharma compa-
nies, focusing primarily in the following areas, including drug discovery and development,
clinical trials, drug manufacturing, and patient care [64–73] (Table 2). The potentials of
such innovations through AI/ML/DL can be multifold [74–78].

Table 2. Examples of Ten Biopharmaceutical Companies’ Harnessing AI/ML/DL via Publicly
Available Sources.

Example Organization Purpose Project Reference

1 AbbVie Compound Screening “ChemBeads: Improving Artificial
Intelligence Through Human Ingenuty.” [64]

2 Amgen Drug Discovery and
Development

“AI & Data Science:
Opening Up Vast New Frontiers in Drug
Discovery and Development.”

[65]

3 AstraZeneca Drug Discovery and
Delivery

“Data Science & Artificial Intelligence:
Unlocking New Science Insights.” [66]

5 GSK (with Massachusetts
Institute of Technology; MIT) Manufacturing “GSK Manufacturing Initiative.” [67]

6 Johnson & Johnson Drug Discovery “Can Artificial Intelligence Change How
We Discover Drugs?” [68]

7 Merck Drug Discovery and
Development

“Merck Announces the Launch of the Merck
Digital Sciences Studio to Help Healthcare
Startups Quickly Bring their Innovations to
Market.”

[69]

8 Novartis Disease Diagnosis “AI-powered Diagnostic Tool to Aid in the
Early Detection of Leprosy.” [70]

8 Pfizer (with CytoReason) Drug Discovery and
Development

“CytoReason Announces Expanded
Collaboration Deal with Pfizer to Deliver AI
for Drug Discovery and Development.”

[71]
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Table 2. Cont.

Example Organization Purpose Project Reference

9 Roche Biomarker Evaluation

“Roche Announces the Release of Its
Newest Artificial Intelligence (AI) Based
Digital Pathology Algorithms to Aid
Pathologists in Evaluation of Breast Cancer
Markers, Ki-67, ER and PR.”

[72]

10 Takeda (with MIT) Human Health and
Drug Development

“MIT-Takeda Program Launches:
Research Projects Will Harness the Power of
Artificial Intelligence to Positively Impact
Human Health.”

[73]

The top three purposes for AI in RWD via use cases are to “enable a data-driven
understanding of disease progression for populations of interest”, “analyze subpopulations
to understand patient behaviors (e.g., switching patterns, adherence)”, and “segment
patients based on disease characteristics and health outcomes to match them to trials”.
An additional seven benefits are also summarized by Deloitte [56].

6.2. ML for Fibromyalgia and Pain

Magnetic resonance imaging has been used to distinguish the brain scans of individu-
als with and without fibromyalgia [79]. Characterization of individuals with fibromyalgia
was based on brain futures. Hierarchical clustering was used in another study to evalu-
ate chronic pain subgroups [80]. In addition, researchers found that ML could diagnose
fibromyalgia with nearly 90% accuracy using a composition of the microbiome [81]. Nearly
20 bacterial species were identified to increase or decrease among patients with fibromyal-
gia. Furthermore, an ML study involving neural networks indicated the best immune
biomarker for diagnosis [82]. Researchers analyzed a measure to assess alexithymia among
fibromyalgia patients [83]. Moreover, time-series analysis was conducted for predictive
analysis of pain among patients with painful diabetic peripheral neuropathy [84].

7. AI and COVID-19

The COVID-19 pandemic urgently demanded an accelerated pace in diagnostic, pre-
vention, and treatment breakthroughs. However, limited data initially made it challenging
for AI/ML/DL predictive algorithms to be developed and deployed. Open databases,
such as the COVID-19 Open Research Dataset Challenge (CORD-19) [85], facilitated the
use of text analysis to mine the literature, and consequently knowledge of the virus and
its mechanisms expanded. A confluence and relationship between patient characteristics
and comorbid conditions, such as NCDs, and the burden of this infectious disease helped
outcome predictions and disease management [86–88].

We obtained several numbers of PubMed-listed articles [32]. By using search terms
and limiting publications from 2019 to 2021 inclusive and Boolean operators, we focused
on: String A alone; String C alone; Strings AC = A and C, where A = “Artificial Intelligence”
with nearly 35,000 articles, and C = (“SARS-CoV-2” or “COVID” or “COVID-19” or “Coron-
avirus”) with nearly 320,000 articles. In addition, a Venn diagram was used to demonstrate
the overlap of AC with over 3000 articles in three years (Figure 2).

Similarly, we expanded the literature search using: String B alone; String C alone;
String BC = B and C, where B = (“Artificial Intelligence” or “Machine Learning” or “Deep
Learning”) to represent data science with over 64,000 articles, and again C = (“SARS-CoV-2”
or “COVID” or “COVID-19” or “Coronavirus”) with 320,000 articles. The overlap of BC
also yielded over 3000 articles during the same period (Figure 3).
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Due to the impact of the COVID-19 pandemic on global health, there was an explosion
of publications, most of them published in pre-print servers to be disseminated in a timely
fashion. For example, one of these articles showed the relationship between natural
language and viral evolution [36]. Additional pandemic-specific articles cover a wide range
of topics from contact tracing, detection, diagnosis, to drug repurposing (e.g., [89–92]).

8. Conclusions

Biopharma companies have placed a significant commitment in leveraging ML through
the use of RWD besides RCTs [53–56]. The need to address the COVID-19 pandemic over
the last several years has shown the need for advances in AI/ML/DL capabilities. There
remains a need for agreed regulatory approaches, operating models, and governance, as
well as data science talents who understand end-to-end R&D process and health technology
assessments in order to enable a much wider spectrum of successful use-case applications.

Developing these capabilities will be a core element in future patient-centric ap-
proaches, as one of the top 10 priorities for health economics and outcomes research in 2022
to 2023 [57]. Significant efforts and extensive strategies are needed for biopharmaceutical
industries to conduct such activities. As shown in the literature, AI/ML/DL can make
a meaningful difference and provide data-driven approaches for stakeholders across the
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healthcare ecosystem. Such an intersection between data science, AI/ML/DL algorithms,
and digital health innovation also presents opportunities for the biopharmaceutical in-
dustry, and more broadly, the healthcare industry, to enhance and improve patient care,
although with caution on how explainable AI may limit the benefits of black-box ML/DL
algorithms [9,93–98]. Finally, it is important to emphasize a holistic approach to AI [99], as
in the recent AI Bill of Rights in the US [100].
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