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Abstract: Acute lymphoblastic leukemia (ALL) is a rare type of blood cancer caused due to the
overproduction of lymphocytes by the bone marrow in the human body. It is one of the common
types of cancer in children, which has a fair chance of being cured. However, this may even occur in
adults, and the chances of a cure are slim if diagnosed at a later stage. To aid in the early detection of
this deadly disease, an intelligent method to screen the white blood cells is proposed in this study.
The proposed intelligent deep learning algorithm uses the microscopic images of blood smears as the
input data. This algorithm is implemented with a convolutional neural network (CNN) to predict
the leukemic cells from the healthy blood cells. The custom ALLNET model was trained and tested
using the microscopic images available as open-source data. The model training was carried out
on Google Collaboratory using the Nvidia Tesla P-100 GPU method. Maximum accuracy of 95.54%,
specificity of 95.81%, sensitivity of 95.91%, F1-score of 95.43%, and precision of 96% were obtained by
this accurate classifier. The proposed technique may be used during the pre-screening to detect the
leukemia cells during complete blood count (CBC) and peripheral blood tests.

Keywords: acute lymphoblastic leukemia (ALL); blood smear; convolutional neural networks; deep
learning; white blood cells

1. Introduction

ALL (acute lymphoblastic leukemia) is a lymphoid blood cell malignancy character-
ized by the development of immature lymphocytes [1]. These impaired white blood cells
harm the entire body and bone marrow, putting the immune system as a whole at risk. It
also inhibits the bone marrow’s capacity to generate red blood cells and platelets. Moreover,
these cancerous cells can enter the bloodstream and cause serious harm to other regions
of the human body, including the kidney, liver, brain, heart, and other organs, leading to
the development of other deadly cancers. According to worldwide statistics by the World
Health Organization (WHO)’s International Agency for Research on Cancer, they reported
437,033 cases of leukemia and 303,006 deaths as of 2022 [2]. The blood, bone marrow,
and extramedullary sites all show signs of ALL. This deadly disease is categorized into
T-lymphoblastic leukemia (Pre-T), B-lymphoblastic leukemia (Pre-B), and B lymphoblastic
leukemia according to the WHO [3]. Mature-B lymphoblastic leukemia starts in the bone
marrow and releases an abnormal quantity of white blood cells in the body. These dan-
gerously formed cells are known as “leukemia cells” or “blasts” because they are severely
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undeveloped. Leukemia is defined by Khullar et al. [4] as an abnormal hyper-proliferation
of polymorphonuclear leukocytes which do not produce solid tumor aggregates, i.e., liquid
cancer. Acute leukemia cells mature fast and can be lethal if not detected early.

Machine learning plays a crucial part in the battle against various life-threatening
diseases [5–7]. It also contributes significantly to educational and clinical studies [8–11].
Machine learning has shown significant potential in medical, engineering, psychology,
multi-disciplinary science, earth sciences, analytical practices, healthcare, and other do-
mains. Using blood smear images and CNN, this article provides an early filtering deep
learning strategy for correctly identifying ALL. This algorithm can assist clinicians and
medical personnel to a great extent. Acute lymphoblastic leukemia is a type of malignant
blood cell cancer that affects mostly children and adults above age 65 [12]. Leukocytes, or
white blood cells as they are commonly known, make up around one percent of all blood
cells. It can be observed in the bone marrow, blood, and extramedullary sites. In this type of
leukemia, the immature leukocytes proliferate in the body rapidly, bringing about the need
for early detection. Usually, the diagnosis is done based on a bone marrow examination.
This method is labor intensive, time-consuming, and might generate inaccurate results.
Therefore, there is a need for automation. The peripheral blood smear (PBS) test is one
of the methods used for screening for leukemia [13]. A blood samples smear is analyzed
under the microscope. To automate the process of recognizing ALL, deep learning is
already playing a significant role and will help in reducing manual error as well. Over the
past, several strategies have been used to expedite the process of detecting leukemia using
artificial intelligence. Automated analysis of PBS introduces a smart healthcare facility by
screening a sample for diagnostic purposes [14,15].

The robustness and the performance of CNN inspired our research [16]. Therefore,
we developed customized CNN architecture to classify ALL. According to the study, the
accuracy and reliability of prediction have improved. In this research, we put forward a
method to automate the process of lymphoblast (blast cell) detection in the single-celled
image to help in the detection of leukemia. The C_NMC_2019 dataset was used to train the
model, and evaluation was done on the same [17]. Deep learning eliminates the process
of using hand-crafted features for classification. Instead, the classification is done using a
CNN custom architecture. The average accuracy after 6-fold cross-validation on the reliable
C_NMC_2019 dataset was 94.95%. A computer-aided diagnosis system can be built on this
result, potentially reducing the time and error required for the same.

Over the years, several approaches have been utilized to automate the process of
detecting ALL. Many of the methodological procedures resolve the utilization of various
machine and deep learning algorithms. Jiang et al. [18] applied Vit-CNN ensemble mod-
els to diagnose ALL. An accuracy of 89% was obtained by the models, claims the study.
Differentiate enhancement-random sampling (DEES) was used to prevent data imbalance.
Leukemia subtypes identification using CNN and microscopic images were researched
in [19]. Two image datasets, ASH-Image-Bank and ALL-IDB, were used. The accuracy ob-
tained was 88.25% and 81.74%, respectively. This algorithm was compared with traditional
ML algorithms, such as support vector machine, decision tree, and KNN. Ghaderzadeh
et al. [20] used CNN to diagnose B-ALL and its further subtypes from peripheral smear
images. Ten well-known CNN architectures were used. These models obtained good
results with accuracy, specificity, and sensitivity of 99.85%, 99.89%, and 99.82%, respectively.
The dataset was obtained from a Kaggle competition. Qiao et al. [21] used a compact CNN
model for the preliminary screening of ALL. Two datasets, APL-Cytomorphology-JHH and
APL-Cytomorphology-LMU, were used. They yielded a precision of 96.53% and 99.20%,
respectively. Promyelocytes were distinguished from normal leukocytes in this study. A
hybrid model that used mutual information was used to diagnose ALL [22]. The Deep
CNN classifier achieved an accuracy of 98%. The AA-IDB2 database was considered for
this study. The rest of the research is described in Table 1.
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Table 1. Existing research that diagnoses ALL using deep learning.

Research Dataset Algorithm Used Accuracy Precision Recall

[23] Three hybrid image
databases CNN and SVM 99% 99% 99%

[24] IDB dataset AlexNet 96% - 96.74%

[25] DNA Sequence images CNN and other ML models 75% - -

[26] GRTD dataset VCGNet 96% 93% 93%

[27]

BCCD
ALL-IDB2

JTSC
CellaVision
databases

CNN 97% 80% 94%

[28] LISC and Dhruv dataset CNN 97% 80% 94%

[29] Amreek Clinical
Laboratory CNN 97.75% - -

To further support our claim, the remainder of the article has been described in the
following manner. The following section describes the workflow and image processing
techniques used, and the network is explained. Section 3 presents the results produced by
our classifier along with a comparison of the outcomes from other established studies. The
conclusion of the article is described in Section 4.

2. Materials and Methods

This section explains the workflow, image processing techniques, and network archi-
tecture developed for leukemia classification. Figure 1 describes the workflow followed for
this work. After acquiring the dataset, augmentation was carried out to increase the size
as well as the robustness. Afterward, the image data was fed to the CNN for automated
feature extraction. The network then managed to classify the images as either ALL (blast
cell) or HEM (healthy cell).
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2.1. Input Data

The dataset used in this research belongs to the “ALL Challenge dataset of ISBI,
2019” [30–33]. The dataset contained cell images of both normal individuals and patients
diagnosed with ALL. As shown in Figure 2, the original images acquired from a digital
microscope having various components of the blood smear are pictorially depicted. The
CNN classification for leukemia is done using segmented white blood cell (WBC) regions.
This requires preprocessing and color segmentation. The subsequent process involves
finding better segmentation of the region of interest. The HSI color space-based images of
blood smears are shown in Figure 3. The white blood cells are seen to have better contrast
than the other components of the image. To further localize the white blood cells, we
selected the saturated component as it describes the intensity of the color, which is shown
in Figure 4. This was then converted to a binary image by performing thresholding, as
shown in Figure 5. The thresholding was performed on the gray scale image in such a way
that all pixels in the range of (180–255) were converted to white, while all pixels belonging
to values below this threshold were converted to black. The segmented image was obtained
by finding the product of the original image and the segmented image, which was then
used for further processing, as shown in Figure 6.
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Figure 6. Image after segmentation.

A total of 10,661 images were collected from 73 participants from the C NMC 2019
dataset. There were 7272 images of blast cells and 3389 images of healthy cells in total. The
images in this dataset were uniform with a size of 450 × 450 × 3 and had been pre-processed
such that only the object of interest (WBC) was included, and everything else was padded
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with black. Figure 2 gives a glimpse of the kind of image available in the dataset. Figure 7a
represents the deadly blast cell, and Figure 7b represents a normal white blood cell. This
dataset is reliable since expert oncologists have done the blast/healthy cell classification.
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2.2. Data Augmentation

The number of images provided to the neural network plays a pivotal role in the
feature extraction procedure. The dataset used had an imbalance of images of the two
classes. This would make the classification process biased. So, to remove the bias, the
images were subjected to auto orientation and resizing. Augmentation steps involved
were: (1) vertical horizontal flipping, (2) clockwise and anti-clockwise rotation, (3) random
brightness adjustments (4) random Gaussian blur with the addition of pepper and salt
noise to the pixels. The final dataset consisted of 12,000 images, with 6000 images in each
class. Figure 8 depicts the images obtained after augmentation.
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2.3. CNN

A CNN has a sequence of layers that transforms an image volume into an output
volume through a differential function. The architecture of CNN was inspired by the visual
cortex of the brain. The architecture fits the data better because of the reduction in the
number of parameters involved and the reusability of weights. There are different types of
layers in a convolutional network which includes: convolution (CONV), pooling (Pool),
and fully connected (FC).

• Convolution (CONV) Layers The convolution layers are the main building blocks of
CNN. They comprise a set of independent filters, which are convolved with the input
volume to compute an activation map made of neurons. The useful features from the
input images are extracted by having multilayered architecture. Each of the filters can
be of a different type, and they extract different features, such as vertical lines, horizontal
lines, and edges. The CNN layers help in extracting features through convolution. The
extracted deep features play a major role in the decision support system.

The 2D convolution is given by Equations (1) and (2), respectively.

y[m, n] = x[m, n]× h[m, n] (1)

y[m, n] =
∞

∑
i=−∞

∞

∑
j=−∞

x[i, j]. h[m − i, n − j] (2)

where, x[m, n] = Input
m, n = no. of rows, no. of columns, respectively
i, j = row index and column index
Similarly, the size of the image after convolution is given by Equation (3):

Size =

⌊(
m + 2p − n

s
+ 1,

m + 2p − n
s

+ 1
)⌋

(3)

where m = number of input features
n = convolution kernel size
p = padding
s = stride

• Pooling (POOL) Layer Convolutional neural networks often use pooling layers to de-
crease the representation size and increase the speed of computation. A pooling layer
summarizes the activities of local patches of nodes in the convolutional layers. Pooling
can be done in two ways: max pooling and average pooling. In max pooling, the
maximum value for each patch of the feature map is stored, while others are discarded.
The intuition behind using max pooling is that the maximum value indicates that it
has the most impact on that patch of the image. Hence other patches can be discarded.
Average pooling follows a similar procedure, except in the place of the maximum
value, the average value of the patch is taken, and all other values are discarded.

• Fully Connected (FC) Layer The FC input layer takes the output of the previous
layers and turns them into a single vector that can be connected to the input layer
of the next stage. This layer contains a softmax layer at the end, which predicts the
correct label (0, 1). The output layer gives the final probability for each layer. The fully
connected part of the CNN determines the most accurate weights by going through
its backpropagation. The weights that each node receives are used to determine
their respective labels. Since this project is of binary classification, the nodes will be
prioritized to either 1 or 0.

• Batch Normalization Batch normalization decreases the covariance shift, i.e., the
amount by which the hidden unit values shift. If the algorithm is trained to map
some input x to some output y, and if the distribution of x changes, the prediction
will not work as well, and retraining might be required. Batch normalization allows
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the learning of each layer in an independent manner. An advantage of using batch
normalization is that learning rates can be set higher as it makes sure that no activation
goes high or low. Batch normalization also reduces overfitting as it has regularization
effects. To improve the stability of the neural network, batch normalization normalizes
the previous activation layers’ outputs. This process adds two parameters to each
layer, so the normalized output gets multiplied by gamma (standard deviation) and
beta (mean). Mathematically, the mini-batch mean is given by Equation (4):

µB =
1
m

m

∑
i=1

xi (4)

Mini-batch variance is shown in Equation (5):

σ2
B =

1
m

m

∑
i=1

(xi − µB) (5)

Normalization is given by Equation (6):

x̂i =
xi − µB√

σ2
B + ε

(6)

• Dropout Deep neural networks are likely to overfit early on any given dataset.
Dropout is a method of regularization that approximates training a large number
of neural networks with different architectures in parallel. While training, some
dropout layers are randomly ignored. This simulates the effect of a new layer, making
the neural network treat it in such a way. In effect, each update is performed with a
new outlook on the layer. This method makes the network more robust as additional
noise is introduced.

• Loss function In the model, the categorical cross-entropy loss function has been
implemented. The performance of this binary classification model, i.e., whose output
lies between 0 and 1, is measured by the mentioned loss function. Categorical cross-
entropy compares the distribution of the predictions with the true distribution, where
the probability of the class in consideration is set to 1 and the probability of the other
classes is set to 0. Categorical cross-entropy is shown in Equation (7):

L(y, ŷ) = −
M

∑
j=0

N

∑
i=0

[
yij × log

(
ŷij

)]
(7)

where y-hat is the predicted expected value and y is the observed value.
• Optimizer Optimizers are algorithms used to change the attributes of the neural

network such as learning rates and weights to reduce the loss. In the model, adaptive
movement estimation (Adam) has been incorporated. Adam is a combination of the
root mean square propagation (RMSProp) and adaptive gradient algorithm (AdaGrad).
The proposed convolution neural network architecture is shown in Figure 2, which
makes use of pooling layers, fully connected layers, convolutional layers, dropout and
batch normalization. Features were automatically extracted from the input images
by the CNN. Feature extraction is then performed by the convolutional layers and
the pooling layers. Four convolutional layers, four max-pooling layers, and 3 fully
connected layers were utilized. Batch normalization and Dropout were applied to
account for overfitting, vanishing, and exploding of gradients. This model consisted
of 95,099,266 parameters in total. The architecture for the designed model can be seen
in Figure 9. A more detailed description of the model is described in Table 2.
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Table 2. ALLNet Architecture.

Layer (Type) Layer Shape Number of Parameters

Conv2D (450, 450, 3) 1792
Max_Pooling_2D (150, 150, 64) -

Conv2D (150, 150, 256) 147,712
Max_Pooling_2D (50, 50, 256) -

Conv2D (50, 50, 384) 885,120
Batch_Normalization (50, 50, 384) 1536

Max_Pooling (17, 17, 384) -
Dropout (17, 17, 384) -
Conv2D (17, 17, 512) 1,769,984

Batch Normalization (17, 17, 512) 2048
Max_Pooling (6, 6, 512) -

Dropout (6, 6, 512) -
Flatten 18,232 -
Dense 4096 75,501,568

Dropout 4096 -
Dense 4096 16,781,312

Dropout 4096 -
Output 2 8194

Total Parameters:—95,099,266, Trainable Parameters:—95,097,474, Non-Trainable Parameters:—1792.

3. Results and Discussion
3.1. Performance Metrics

The performance metrics estimated include accuracy, precision, recall, and F1 score:
Accuracy: It is the ratio of true positive predictions to the total number of predictions

and is given in Equation (8).

Accuracy =
True positive + True Negative

Total samples
× 100 (8)

Precision: It is the ability of the model to return only relevant instances, given by
Equation (9).

Precision =
True Positive (TP)

True Positive(TP) + False Positive (FP)
× 100 (9)

Recall: It is the ability of the model to identify all relevant instances, as shown in
Equation (10). It emphasizes false negative results. This is also called the true positive rate
or sensitivity.

Recall =
True positive (TP)

True positive (TP) + FalseNegative (FN)
× 100 (10)
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Specificity: It is an important metric to identify false-positive results. It is described in
Equation (11)

Speci f icity =
True negative (TN)

True negative (TN) + FalsePositive (FP)
× 100 (11)

F1 Score: This is the harmonic mean of precision and recall and is used to indicate a
balance between Precision and Recall given in Equation (12).

F1 Score = 2 × Precision × Recall
Precision + Recall

(12)

3.2. Model Evaluation

The ALL-NET architecture consists of a total of 4 convolution layers alternated with
max pooling layers. This setting is followed by a total of 3 fully connected layers. The
reason for keeping a max pooling layer after every convolution is to maintain the size of the
processed image instance to a minimum. This can create a potential problem; if excessive
max pooling is done, then it can lead to potential loss of information or patterns which are
not spanning wide or large enough. Further, as observed previously, the data augmentation
step has already added noise to the image; such noise can also affect the operation of max
pooling. Batch normalization is carried out during every alternate max pooling to make
sure that the flowing data is normalized, and every neuron has some input to give. Finally,
to avoid any overfitting, we use dropout. These layers will ensure that multiple neurons
having similar weight vectors are not unintentionally learning the same pattern in the given
image instance. The learning rate was initially set at 1 × 10−3 initially, but it was observed
that 1 × 10−5 gave marginally better improvement during the learning phase. The batch
size for the training images was set at 16. While the epochs were initially selected to be in
the range of 50 to 100. As pointed out in the later sections, it was found that the model was
prone to overfitting if the epochs exceeded 70. Further fine tuning was done, and 65 epochs
were finally selected as the final parameter value.

After image augmentation, the number of test instances available as blast cell images
and healthy cell images was nearly the same as shown in Figure 10, so there was no
imbalance present.
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The dataset was initially given an 80–20 train test split. The training split was further
divided into 5-fold cross-validation. The best performing fold was then utilized for testing
on the holdout validation 20% test split. The cross-validation was carried out to overcome
any potential overfitting which might occur due to model exposure to one class of images.
The proposed model was trained on 12,000 images and tested on 2132 images. Each fold of
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5-fold cv was learned by the model for 65 epochs. We performed validation of this model by
training and conducting simultaneous test evaluations for five runs. The augmented data
was mixed along with the original data to provide a wide range of training samples, this
in turn helped the model to generalize better. The accuracy and loss curves are described
in Figures 11 and 12, respectively. From Figure 12, it can be noticed how the categorical
cross-entropy loss function starts to reduce heavily in the span of 10–30 epochs, referring to
Figure 11. The model is performing adequately but stopping the model training at this point
would have led to potential underfitting. Epochs after 35 do not provide many variations
in the loss, and a steady decrease in the loss function can be observed. This behavior
of the ALL-NET was observed in all 5 separate training processes. While increasing the
epoch number from 65 would have led to a decrease in the loss even further as well as
simultaneous increase in the accuracy, this would have led to overfitting as we will see
when the model is evaluated against the holdout test set.
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During the first instance, the accuracy, specificity, recall, F1-score, and specificity
were 94.94%, 94.87%, 94%, 94.96%, and 95.95%, respectively. When the model was run
again, the accuracy, specificity, recall, F1-score, and specificity obtained were 94.5%, 95.8%,
93.2%, 93.2% and 96%, respectively. When the model was run the third time, the above
metrics obtained were 94.72%, 95.8%, 93.2%, 93.2%, and 96%, respectively. During the
fourth iteration, the accuracy, specificity, recall, F1-score, and specificity obtained were 95%,
95.91%, 94%, 94.96 and 95.95%, respectively. In the last instance, the above metrics obtained
were 95.45%, 95%, 95.91%, 95.43% and 94.94%, respectively. In Figure 12, the accuracies are
plotted against epochs.

A confusion matrix was used to evaluate the number of true predictions. The predic-
tion was done on two possible classes, “ALL”, i.e., blast cells and “HEM” i.e., healthy cells.
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It was found that from a total of 2132 images, 1454 images were classified as blast cells,
and 667 images were classified as healthy cells. During prediction, the model predicted
1996 images, i.e., 94.2% images correctly, and 5.8% images incorrectly. Predictions made
per class are seen more clearly in Figure 13, depicting the confusion matrix. These results
can be seen in Table 3.
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Table 3. Model evaluation results.

Instance Accuracy (%) Specificity (%) Recall (%) F1-Score (%) Precision (%) Matthews Correlation
Coefficient (MCC)

Instance 1 94.94 94.87 94 94.96 95.95 89.42
Instance 2 94.5 95.8 93.2 93.2 96 89.53
Instance 3 94.72 95.8 93.2 93.2 96 88.76
Instance 4 95 95.91 94 94.96 95.95 88
Instance 5 95.45 95 95.91 95.43 94.94 89.5

Referring to Table 3, it can be observed that the F1 score obtained by the model in
each of the 5 running instances is up to par if not better than the current existing model
performances which we shall discuss later. A consistent F1 score of 90 plus in all 5 runs
indicates that the balance between the precision and recall is maintained. The balance
between precision and recall is quite pertinent for a model such as ALL-NET which can
potentially serve as a preliminary screening tool. Our approach of using a simple CNN
network for this dataset has given us good results across multiple performance metrics.

Many approaches have been used for classifying leukemia. Of the many, a few
approaches with good performance are discussed in Table 4. ALL was diagnosed using
Abunadi et al. [34] using an ensemble deep learning approach. The combined model
achieved an accuracy of 100%. For the C_NMC_2019 dataset, Yongsheng Pan et al. [35]
used a neighborhood correction technique to diagnose this fatal condition at an early stage.
An accuracy of 92% was obtained by this algorithm. Khandekar et al. [36] used the YOLOe4
algorithm to diagnose this fatal disease. A maximum recall of 96% was obtained by the
deep learning model. Christian et al. [37] have utilized an attention-based neural network
to detect ALL. A maximum F1-score of 82% was obtained by this efficient algorithm. Table 4
demonstrates the comparison of prior research with the suggested technique for a similar
dataset. The need for preprocessing to tackle this problem may be a slight drawback
in this research. The model could be made more robust if it were trained with more
data. The intelligent algorithms are promising with the optimized features for screening
various problems in digital pathology [38–40]. The improved telehealth framework with
the intelligent algorithm will enable the remote diagnosis facility [41–43].

Table 4. Comparison of results on the C_NMC_2019 dataset.

Reference Method Salient Features Performance Measure

[34] Bagging Ensemble with Deep
Learning Bagging ensembling was utilized F1-score of 88%

[35] Neighborhood Correction
Algorithm

Fine-tuning a pre-trained residual
network, constructing a Fisher vector
based on feature maps, and correction

using weighted majority.

F1-score of 92%

[37] CNN Regional proposal subnetwork. F1-score of 83%

Proposed CNN Improved accuracy F1-score of 96%

4. Conclusions

A method for early diagnosis of cancer from infinitesimal images of white blood cells
using CNN has been proposed in this research. Since the deep learning approaches do not
require manual feature engineering, the model performs exceptionally well when compared
to traditional image processing techniques. The good performance of blast cell detection is
supported by the accurate classification results. Maximum accuracy of 95% was obtained by
the custom deep learning ALL-NET classifier. It operates on all data available rather than a
portion specified by a feature vector, which is also a benefit. This work can help during the
screening, reducing the rate of error, as well as decreasing the computational time. As a
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result, this research can be used to provide a theoretical framework for a diagnosis support
tool for the detection of ALL. The future study includes expanding the dataset with noisy
images with very little pre-processing, to address the problem of using actual medical
images for prediction. Combining these models with explainabality models provides useful
inferences to practitioners. Algorithms such as Yolov4, Resnet, and AlexNet can also be
explored since they can perform better on these tasks.
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