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Abstract: This paper considers the estimation of ruin probability in an insurance risk model with
stochastic premium income. We first show that the ruin probability can be approximated by the
complex Fourier series (CFS) expansion method. Then, we construct a nonparametric estimator of
the ruin probability and analyze its convergence. Numerical examples are also provided to show the
efficiency of our method when the sample size is finite.

Keywords: compound Poisson insurance risk model; stochastic processes; ruin probability; nonpara-
metric estimation; complex Fourier series expansion

1. Introduction

In the classical insurance risk model, the premium rate is a constant and the premium
collection is a linear function of time. Obviously, this assumption is not in line with
the actual operation of the company. So, it is natural to extend the classical risk model
by replacing the constant premium income with a compound Poisson process. For this
purpose, this paper considers the following risk model that the premium income is no
longer a linear function of time, but a stochastic process represented by a random sum,
that is,

U(t) = u +
Mt

∑
i=1

Yi −
Nt

∑
i=1

Xi, (1)

where, u ≥ 0 is the initial surplus, the counting process of premium collection Mt obeys
the homogeneous Poisson process with parameter µ > 0, claim counting process Nt obeys
the homogeneous Poisson process with parameter λ > 0. In addition, the amount of a
single claim X1, X2, . . . is a series of continuous random variables which are independent
and identically distributed in the random variable X, and the distribution function is
FX, the density function is fX, the mean value is µX. Similarly, the amount of a single
premium Y1, Y2, . . . is a series of continuous random variables which are independent
and identically distributed in the random variable Y, and the distribution function is
FY, the density function is fY, the mean value is µY. In this model, we assume that
{Mt}t≥0, {Nt}t≥0, {Xi}i≥0, {Yi}i≥0 are independent of each other, and the single premium
income obeys the exponential distribution of parameter β, that is, the corresponding
density function is g(y) = βe−βy, y > 0, and β is unknown. Of course, we also need safe
load conditions:

µ · µY > λ · µX .
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Define the ruin time τ = inf{t ≥ 0 : U(t) < 0}, that is, the moment when U(t) be-
comes negative for the first time. If U(t) ≥ 0 for all t ≥ 0, let τ = ∞. When the initial
capital U(0) = u is given, we give the definition of the ruin probability:

ψ(u) = P(τ< ∞|U(0) = u), u ≥ 0. (2)

Obviously, our model is more practical and more complex. We will continue to
consider the approximation and estimation of ruin probability by using CFS expansion
method in this model.

Ruin probability is the core content of risk theory, and its research has always been
an enduring hot topic, related literature can be found Albrecher et al. [1], Mitric et al. [2],
Li and Sendova [3], Bayraktar and Zhang [4], Li et al. [5], Mitric and Trufin [6], Li [7] and
Han et al. [8]. Most of the above studies start from the convenience of model construction
and solution, assuming that the company’s surplus process satisfies a certain probability
characteristic distribution, using Laplace transform, martingale, Hamilton-Jacobi-Bellman
equation, dynamic programing principle and other methods to give the integro-differential
equations satisfied by the relevant actuarial quantities or some specific expressions. In the
actual business process of an insurance company, its surplus process, claim information,
and other probability characteristics are unknown. Insurance companies only obtain a large
amount of complex observational data through operations. Therefore, in recent years, some
scholars have gradually begun to use statistical methods to study the calculation and non-
parametric estimation of the relevant actuarial quantities of the classical risk model under
the unknown probability characteristics. Zhang et al. [9] constructed the nonparametric
estimation of the ruin probability for the classical risk model through the inverse Fourier
transform and the kernel estimation method. Chau et al. [10] used the Fourier–Cosine series
expansion method to estimate the uniform ruin probability and the Gerber–Shiu function.
Goffard et al. [11] used the Laguerre method to study the nonparametric estimation of the
ruin probability of the compound Poisson risk model. Yang et al. [12] estimated the severity
of the ruin deficit through the Fourier–Cosine series expansion method. Wang et al. [13,14]
estimated the Gerber–Shiu function and the expected discounted penalty function in a
compound Poisson insurance risk model with stochastic premium income. Huang et al. [15]
estimated the Gerber–Shiu expected discounted penalty function for Lévy risk model. For
approximating the ruin probability and other risk measures, there are also some other
methods. See for example Yu et al. [16], Zhang et al. [17], Su and Yu [18], Ai et al. [19],
Wang et al. [20] and Cheung and Zhang [21].

Regarding the CFS expansion method, Chan [22] applied it to actuarial field for the
first time, obtained the explicit pricing formula of European options, and proved the
exponential convergence rate of this method. Chan [23] extended this method to the
pricing calculation of price options with early movement characteristics under the index
Lévy asset dynamics. The results show that this new method can quickly and accurately
calculate early sports options. Through numerical analysis, the article also concludes that
the CFS expansion method is computationally more comparable and superior than the
current methods. We know that the current research on ruin theory, for example, the
very popular Fourier–Cosine series expansion method is actually called real Fourier series
methods. They decompose a given periodic function into sin(nx) and cos(nx) form. The
CFS expansion method is another special alternative method, which uses complex numbers
to decompose a given periodic function into the form of einx. Li et al. [24] considered the
nonparametric estimation of ruin probability by complex Fourier series expansion in the
compound Poisson model. Wang et al. [20] studied the valuation problem of equity-linked
annuity with guaranteed minimum death benefit by complex Fourier series method under
regime-switching jump diffusion models.

In the ruin theory, the calculation, approximation and estimation of the probability of
ruin has been a hot topic for a long time. The study of such problems provides effective
early warning and technical support for the actual operation of insurance companies.
Considering that the explicit formula of the probability of ruin can only be obtained under
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certain assumptions, in the face of more general situations, its explicit expression is usually
not easy to obtain, and the approximation can only provide some rough information
about ruin. In recent years, statistical estimation and inference have become an important
means to deal with the problem of ruin probability. In recent years, a large number of
studies use statistical methods of parametric and nonparametric estimation to study the
ruin probability, and the sample data information used in them, such as the number of
claims, the scale of individual claims, etc., are also obtained through observation in the
actual operation of insurance companies. This method also gives the research certain
feasibility and important practical significance. In this context, we hope to propose a
nonparametric estimation method based on discrete observation data to estimate the ruin
probability. At the same time, this method has good estimation properties, convergence
speed and universal applicability. The general applicability here includes two aspects. On
the one hand, we hope that the proposed estimation method can be applied to different
risk models and different claim distribution assumptions. On the other hand, we hope that
this estimation method can be extended to more risk models. If the above expectations
can be met, it can be said that the research in this article is meaningful and valuable. It
can not only provide corresponding theoretical guidance for different actual operating
conditions, but also provide directions and references for further research by more scholars
in the future.

In this paper, we shall use the CFS expansion method to estimate ruin probability in
an insurance risk model with stochastic premium income. In fact, in most calculations,
the expansion of CFS can make the problem simple and the formula refined, and only
need to convert it to real Fourier series at the end. This paper applies this new method to
the ruin field, and hopes that it can continue and enrich the research results in the field.
The remainder of this paper is organized as follows. In Section 2, we introduce the CFS
expansion method. In Section 3, we show how to approximate ruin probability by CFS
expansion method. In Section 4, we give a nonparametric estimation of ruin probability.
In Section 5, we study the approximation error caused by CFS approximation of ruin
probability. In Section 6, some simulation results are given to show the effectiveness of our
estimator. Finally, conclusions are given in Section 7.

2. CFS Expansion Method

In this section, we first give a basic introduction to the CFS expansion method. Define
the function f (x) on [−π, π] to satisfy the following Dirichlet condition:

(1) f (x) has a finite number of discontinuities on [−π, π];
(2) f (x) has a finite number of extreme values on [−π, π];
(3)

∫ π
−π | f (x)|dx < ∞.

Then, such a function f (x) has the following CFS expansion expression:

f (x) =
∞

∑
k=−∞

Akeikx,

where, the Fourier coefficients are given by

Ak =
1

2π

∫ π

−π
f (x)e−ikxdx, k = 0,±1,±2, . . . .

When faced with a more general situation, if the function f (x) is defined on [a, b] and
satisfies the corresponding Dirichlet condition, through simple variable substitution, we
similarly have:

f (x) =
∞

∑
k=−∞

Akei 2π
b−a kx,
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where

Ak =
1

b− a

∫ b

a
f (x)e−i 2π

b−a kxdx, k = 0,±1,±2, . . . .

In practice, by introducing an appropriate truncated integer K, we can get an approxi-
mation of the function f (x), namely:

f (x) ≈ fK(x) :=
K

∑
k=−K

Akei 2π
b−a kx.

Since f (x) is a real-valued function, take the real part of both sides of the equation at
the same time, we get:

f (x) ≈ fK(x) := <
{

K

∑
k=−K

Akei 2π
b−a kx

}
= 2

K

∑
k=0
′<
{

Akei 2π
b−a kx

}
(3)

where, <{·} represents the real part of the formula, ∑′ represents the summation form
where the weight coefficient of the first summation item is 1/2.

Equation (3) gives an approximation of the real-valued function that satisfies the
Dirichlet condition. In the next section, we will use this conclusion to approximate and
estimate the probability of ruin.

3. Approximate Ruin Probability by CFS Expansion Method

In this section, we will introduce how to apply the CFS method to approximate the
probability of ruin.

First, we introduce the continuation of ψ as follows:

ψe(u) =
{

ψ(u), u ≥ 0,
ψ(−u), u < 0.

(4)

At the same time, define:

Fψ(s) =
∫ ∞

0
eisuψ(u)du, Fψe(s) =

∫ ∞

−∞
eisuψe(u)du, s ∈ R, (5)

respectively represent the Fourier transform of ψ(u) and ψe(u). On this basis, we have:

Fψe(s) =
∫ ∞
−∞ eisuψe(u)du

=
∫ ∞

0 eisuψ(u)du +
∫ 0
−∞ eisuψ(−u)du

=
∫ ∞

0 eisuψ(u)du +
∫ ∞

0 e−isuψ(u)du

= Fψ(s) +Fψ(s),

(6)

where, Fψ(s) represents the conjugate complex number of Fψ(s).
Next, we study the process of using CFS method to approximate the ruin probability

under the stochastic premium income insurance risk model. We define the function
ω(u) =

∫ ∞
u fX(x)dx, the Fourier transform and Laplace transform are respectively:

Fω(s) =
∫ ∞

0 eisu ∫ ∞
u fX(x)dxdu = E

(∫ X
0 eisudu

)
, s ∈ R,

Lω(s) =
∫ ∞

0 e−su ∫ ∞
u fX(x)dxdu = E

(∫ X
0 e−sudu

)
, R(s) ≥ 0.

On the basis of these definitions, we first give the Fourier expression of ψe(u).
From Equation (17) of Wang et al. [13], We know that the Fourier transform of ψ(u) is:

Fψ(s) =
FH(s)

1−FG(s)
, (7)
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where,
FH(s) := λ

λ+µ

[
Fω(s) + β

is (Fω(s)− µX)
]
,

FG(s) := λ
λ+µ

[
F f (s) + β

is (F f (s)− 1)
]
.

By taking them into Equation (6), we get

Fψe(s) =
FH(s)

1−FG(s)
+
FH(−s)

1−FG(−s)
. (8)

Similarly, for the extended ruin probability ψe(u), only considering that it is a function
on [−a, a], the CFS approximation of ψ(u) can be obtained by using CFS approximation
Equation (3):

ψ(u) ≈ ψK(u) := 2
K

∑
k=0
′<
{

Bkei kπ
a u
}

I(0 ≤ u ≤ a), (9)

where, I is an indicator function, and

Bk =
1
2a

∫ a

−a
ψe(u)e−i kπ

a udu, k = 0, 1, . . . , K.

Further, we have:

Bk ≈ B̃k :=
1
2a

∫ ∞

−∞
ψe(u)e−i kπ

a udu =
1
2a
Fψe

(
− kπ

a

)
, (10)

Finally, we get the approximate expression of ruin probability:

ψ(u) ≈ ψ̃K(u) := 2
K

∑
k=0
′<
{

B̃kei kπ
a u
}

I(0 ≤ u ≤ a). (11)

4. Nonparametric Estimation of Ruin Probability

In this section, we will give a nonparametric estimation of ruin probability based on
the approximate results in the previous section.

It is assumed that insurance companies can obtain the following data sets:
(1) Data set composed of claim number and claim amount{

NT , X1, X2, . . . , XNT

}
,

where NT is the total number of claims in the observation interval [0, T].
(2) Data set composed of random premium income number and premium amount{

MT , Y1, Y2, . . . , YMT

}
,

where MT is the total number of random premium income in the observation interval
[0, T].

On this basis, we estimate the ruin probability. First, from Equations (7), (8), (10) and
(11), we need to estimate the following parameters in order to construct the estimation of
ruin probability:

λ, µ, β, Fω(s), F f (s), µX .

For λ and µ, we use the following estimators:

λ̂ =
1
T

NT , µ̂ =
1
T

MT .
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Since the premium income Y follows the exponential distribution with parameter β,
then E[Y] = 1/β. From the moment estimation of expectation, we get the estimator of β
as follows:

β̂ =
1

1
MT

∑MT
i=1 Yi

.

It is easily seen that:

λ̂− λ = Op

(
T−

1
2

)
, µ̂− µ = Op

(
T−

1
2

)
, β̂− β = Op

(
T−

1
2

)
.

Similarly, we can also use the moment estimator of µX to construct the corresponding
estimator:

µ̂X =
1

NT

NT

∑
j=1

Xj.

For Fω(s),F f (s), according to the empirical characteristic function, we can get their
estimators, respectively:

F̂ f (s) =
1

NT

NT

∑
j=1

eisXj , ˆFω(s) =
1

NT

NT

∑
j=1

eisXj − 1
is

.

On this basis, according to Equations (7) and (8), we get the estimator of Fourier
transform Fψe as follows:

F̂ψe(s) =
ˆFH(s)

1− ˆFG(s)
+

ˆFH(−s)
1− ˆFG(−s)

, (12)

where,
ˆFH(s) := λ̂

λ̂+µ̂

[
ˆFω(s) + β̂

is
( ˆFω(s)− µ̂x

)]
,

ˆFG(s) := λ̂
λ̂+µ̂

[
F̂ f (s) + β̂

is

(
F̂ f (s)− 1

)]
.

Furthermore, combining with the Equations (10) and (11), we get the estimator expres-
sion of ruin probability:

ψ̂K(u) := 2
K

∑
k=0
′<
{

B̂kei kπ
a u
}

I(0 ≤ u ≤ a), (13)

where,

B̂k =
1
2a
F̂ψe

(
− kπ

a

)
, k = 0, 1, . . . , K.

Obviously, the estimator expression we get is as concise as that of other models, which
becomes a highlight of this estimation method.

5. Convergence Analysis of Estimation Methods

In this section, we will analyze the calculation error of the method proposed in the
previous section. First, we study the approximation error caused by CFS approximation of
ruin probability. The following proposition gives the corresponding conclusion.

Proposition 1. Suppose ψ(u) is second order continuous differentiable, and a = O(K), |isF fX(s)| < C,
then for a very large K, we have:

sup
u≥0

∣∣ψ̃K(u)− ψ(u)
∣∣ ≤ 2

a

∫ ∞

a
ψ(u)du +

a
3

(∣∣ψ′(a)
∣∣+ ∫ ∞

a
|ψ′′ (u)|du

)
+

c0a
π2K

+ ψ(a), (14)

where c0 is a constant defined in the process of proving the proposition, and C is also a constant.
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Proof. From the Equation (3.6) of Li et al. [24], we have

sup
u≥0

∣∣ψ̃K(u)− ψ(u)
∣∣ ≤ 2

∞

∑
k=0

∣∣∣B̃k − Bk

∣∣∣+ 2
∞

∑
k=K+1

∣∣∣B̃k

∣∣∣+ ψ(a). (15)

In order to further give the upper bound of the Equation (15), we first calculate the
residual sum ∑∞

k=K+1

∣∣∣B̃k

∣∣∣. Similarly, we need to study the Fourier transform Fψe(s). If we
take Equations (7) into (8), we have:

Fψe(s) =
FH(s)

1−FG(s) +
FH(−s)

1−FG(−s)

=
λ

λ+µ

[
Fω(s)+ β

is (Fω(s)−µx)
]

1− λ
λ+µ

[
F f (s)+ β

is (F f (s)−1)
] + λ

λ+µ

[
Fω(−s)− β

is (Fω(−s)−µx)
]

1− λ
λ+µ

[
F f (−s)− β

is (F f (−s)−1)
] (16)

Since

Fω(s) = E
∫ X

0
eisudu =

F fX(s)− 1
is

,

bring it into the Equation (16) and simplify it, there are:

Fψe(s) =
β
(
λµ− µX βλ2)(2−F fX(s)−F fX(−s)) + is

(
λµ− µX βλ2)(F fX(−s)−F fX(s))

[(λ + µ−F fX(s)λ)s + βλi(F fX(s)− 1)][(λ + µ−F fX(−s)λ)s + βλi(1−F fX(−s))]
.

Due to

|2−F fX(s)−F fX(−s)| ≤ 4, |isF fX(s)| < C, |isF fX(−s)| < C,

thus, we have∣∣β(λµ− µX βλ2)(2−F fX(s)−F fX(−s)) + is
(
λµ− µX βλ2)(F fX(−s)−F fX(s))

∣∣
< (4β + 2C)

(
λµ + µX βλ2).

Similarly, when |s| > 2βλ/µ, for the denominator, there is:

|[(λ + µ−F fX(s)λ)s + βλi(F fX(s)− 1)][(λ + µ−F fX(−s)λ)s

+βλi(1−F fX(−s))]|
≥ (|(λ + µ−F fX(s)λ)s|−βλ|(F fX(s)− 1)|)(|(λ + µ−F fX(−s)λ)s|

−βλ|(1−F fX(−s))|) ≥ (µ|s| − 2βλ)2.

Thus, when |s| > 2βλ/µ, we can get:

|Fψe(s)| ≤
(4β + 2C)

(
λµ + µX βλ2)

(µ|s| − 2βλ)2 .

In other words, when |s| → ∞ , there is |Fψe(s)| = O|s|−2, or in other words, there is
a certain constant c0 > 0, so that for a sufficiently large |s|, there is:

|Fψe(s)| ≤ c0|s|−2.

Thus, the coefficient B̃k can be scaled to

|B̃k | ≤
1
2a

∣∣∣∣Fψe

(
− kπ

a

)∣∣∣∣ ≤ c0a
2k2π2 .
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On this basis, when a = O(K), we can immediately get:

∞

∑
k=K+1

∣∣∣B̃k

∣∣∣ ≤ c0a
2π2

∞

∑
k=K+1

1
k2 ≤

c0a
2π2

∞

∑
k=K+1

1
k(k− 1)

=
c0a

2π2K
. (17)

For the first formula on the right side of the inequality in Equation (15), Equation (3.14)
of Li et al. [24] has already given the corresponding scaling result:

2
∞

∑
k=0
|B̃k − Bk | ≤

2
a

∫ ∞

a
ψ(u)du +

a
3

(∣∣ψ′(a)
∣∣+ ∫ ∞

a
|ψ′′ (u)|du

)
. (18)

Thus, integrating the Equations (15), (17) and (18), we finally get:

sup
u≥0
|ψ̃K(u)− ψ(u) | ≤ 2

∞
∑

k=0
|B̃k − Bk |+ 2

∞
∑

k=K+1
|B̃k |+ ψ(a)

≤ 2
a
∫ ∞

a ψ(u)du + a
3
(
|ψ′(a)|+

∫ ∞
a |ψ′′ (u)|du

)
+ c0a

π2K + ψ(a). �

Note: The assumption |isF fX(s)| < C is reasonable for commonly used distributions,
such as:

(1) When X follows an exponential distribution with a parameter of α(α > 0), there is

|isF fX(s)| =
∣∣∣ isα

α−is

∣∣∣ = α√
α2+s2 |s |

|s |→∞
−−−→ α, and thus |isF fX(s) | < C.

(2) When X obeys the Erlang distribution with parameter (k, λ)(k ∈ N+, λ > 0),

there is |isF fX(s) | =
∣∣ is
(1−is/λ)k

∣∣ = ∣∣ isλk(λ+is)k

(λ2+s2)
k

∣∣ |s |→∞
−−−→ 0, k ≥ 2, or λ, k = 1. Thus we get

|isF fX(s)| < C.
Next, we study statistical errors. Two theorems are proposed here, and the conclusion

will help us get the final proof result.

Theorem 1. Assuming EXk < ∞, k ∈
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, and a = O(K), ||H1(x)||P,1 < ∞,
∣∣∣∣Hj(x)

∣∣∣∣
P,2 < ∞,

j = 1, 2, then for sufficiently large K and T, we have:

sup
s∈K

∣∣ ˆFH(s)−FH(s)
∣∣ = Op

(√
log(K/a)

T

)
, (19)

where, K =
{

kπ
a : k = 0,±1, . . . ,±(K + 1)

}
.

Proof. From the expressions of ˆFH(s) and FH(s), we know:

ˆFH(s)−FH(s) = λ̂
λ̂+µ̂

ˆFω(s) − λ
λ+µFω(s) + λ̂

λ̂+µ̂

β̂
is
( ˆFω(s)− µ̂x

)
− λ

λ+µ
β
is (Fω(s)− µx) := L1 + L2.

For L1, we have

L1 =
λ̂

λ̂ + µ̂
ˆFω(s)− λ

λ + µ
Fω(s)

=
λ̂

λ̂ + µ̂

1
NT

NT

∑
j=1

(∫ Xj

0
eisudu− E

∫ X

0
eisudu

)
+

(
λ̂

λ̂ + µ̂
− λ

λ + µ

)
E
∫ X

0
eisudu.

Let g1,s(x) =
∫ x

0 eisudu = eisx−1
is , then L1 can be further expressed as

L1 =
λ̂

λ̂ + µ̂

1
NT

NT

∑
j=1

(
g1,s
(
Xj
)
− Eg1,s(X)

)
+

(
λ̂

λ̂ + µ̂
− λ

λ + µ

)
Eg1,s(X). (20)
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Since

sup
s∈K
|Eg1,s(X)| = sup

s∈K

∣∣∣∣E ∫ X

0
eisudu

∣∣∣∣ ≤ sup
s∈K
|EX| = |EX| < ∞,

then according to λ̂− λ = Op

(
T−

1
2

)
, µ̂− µ = Op

(
T−

1
2

)
, the second formula on the right

side of Equation (20) can be further proved as:

sup
s∈K

∣∣∣∣∣
(

λ̂

λ̂ + µ̂
− λ

λ + µ

)
Eg1,s(X)

∣∣∣∣∣ ≤
∣∣∣∣∣ λ̂

λ̂ + µ̂
− λ

λ + µ

∣∣∣∣∣sup
s∈K
|Eg1,s(X)| = Op

(
T−

1
2

)
. (21)

In addition, from the Lemma 3.1 of Li et al. [24], the first formula on the right side of
Equation (20) can be further processed as:

sup
s∈K

∣∣∣∣∣ λ̂
λ̂+µ̂

1
NT

NT
∑

j=1

(
g1,s
(
Xj
)
− Eg1,s(X)

)∣∣∣∣∣ = sup
s∈K

∣∣∣∣∣ λ̂
λ̂+µ̂

1
NT

NT
∑

j=1

(
eisXj−1

is − E eisX−1
is

)∣∣∣∣∣
= sup

s∈K

∣∣∣∣∣ λ̂
λ̂+µ̂

1
NT

NT
∑

j=1

(
eisXj−1

is − E eisX−1
is

)∣∣∣∣∣ = sup
s∈K

∣∣∣∣∣ λ̂
λ̂+µ̂

1
NT

NT
∑

j=1

(
eisXj−EeisX

is

)∣∣∣∣∣
= sup

s∈K

∣∣∣∣∣ λ̂
λ̂+µ̂

1
NT

NT
∑

j=1

(
eisXj−EeisX

is

)∣∣∣∣∣= sup
s∈K

∣∣∣∣ λ̂
λ̂+µ̂

F fX(s)−F̂ f X(s)
is

∣∣∣∣
= sup

s∈K

∣∣∣∣ λ̂
λ̂+µ̂

F fX(s)−F̂ f X(s)
is

∣∣∣∣ = Op

(√
log(K/a)

T

)
.

(22)

Combining Equation (21), we get:

sup
s∈K
|L1| = Op


√

log
(

K
a

)
T

. (23)

Next consider L2. Bringing the specific expressions of ˆFω(s), µ̂x and Fω(s) into L2,
we get the following formula:

L2 =
λ̂β̂

λ̂ + µ̂

1
NT

NT

∑
j=1

∫ Xj
0 eisudu− Xj

is
− λβ

λ + µ
E

(∫ X
0 eisudu− X

is

)
.

Let g2,s(x) =
∫ x

0 eisudu−x
is , then

L2 = λ̂β̂

λ̂+µ̂
1

NT

NT
∑

j=1
g2,s
(
Xj
)
− λβ

λ+µ Eg2,s(X)

= λ̂β̂

λ̂+µ̂
1

NT

NT
∑

j=1

(
g2,s
(
Xj
)
− Eg2,s(X)

)
+
(

λ̂β̂

λ̂+µ̂
− λβ

λ+µ

)
Eg2,s(X).

(24)

For the second equation on the right side of the last equation, considering:

g2,s(X) =
∫ X

0 eisudu−X
is =

∫ X
0

eisu−1
is du

=
∫ X

0

∫ u
0 eis(u−y)dydu ≤

∫ X
0

∫ u
0 dydu = 1

2 X2,

then combined with λ̂− λ = Op

(
T−

1
2

)
, µ̂− µ = Op

(
T−

1
2

)
, β̂− β = Op

(
T−

1
2

)
, we know:

sup
s∈K

∣∣∣∣∣
(

λ̂β̂

λ̂ + µ̂
− λβ

λ + µ

)
Eg2,s(X)

∣∣∣∣∣ ≤ 1
2

sup
s∈K

∣∣∣∣∣ λ̂β̂

λ̂ + µ̂
− λβ

λ + µ

∣∣∣∣∣∣∣∣EX2
∣∣∣ = Op

(
T−

1
2

)
. (25)
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At the same time, for the first formula on the right side of the last equation of
Equation (24), we need to refer to the proof ideas in the appendix of Zhang [25], then
we have:

sup
s∈K

∣∣∣∣∣ 1
NT

NT

∑
j=1

(
g2,s
(
Xj
)
− Eg2,s(X)

)∣∣∣∣∣ = Op

(√
log(K/a)

T

)
,

then

sup
s∈K

∣∣∣∣∣ λ̂β̂

λ̂ + µ̂

1
NT

NT

∑
j=1

(
g2,s
(
Xj
)
− Eg2,s(X)

)∣∣∣∣∣ = Op


√

log
(

K
a

)
T

. (26)

Combining Equations (25) and (26), we get:

sup
s∈K
|L2| = Op


√

log
(

K
a

)
T

. (27)

Finally, it is proved by Equations (19), (23) and (27). �

Theorem 1 shows that the estimation error of FH(s) has logarithmic convergence. In
order to further give the estimated error convergence rate of ψ̃K(u), we need to analyze
FG(s) next. The following theorem will solve our considerations well.

Theorem 2. Assuming EXk < ∞, k ∈
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, for sufficiently large a, K and T, we have:

sup
s∈K

∣∣ ˆFG(s)−FG(s)
∣∣ = Op

(√
log(K/a)

T

)
,

where, K = {kπ/a : k = 0,±1, . . . ,±(K + 1)}.

Proof. From the expressions of ˆFG(s) and FG(s), we know:

ˆFG(s)−FG(s) = λ̂
λ̂+µ̂
F̂ f (s) − λ

λ+µF f (s) + λ̂
λ̂+µ̂

β̂
is

(
F̂ f (s)− 1

)
− λ

λ+µ
β
is (F f (s)− 1) := Π1 + Π2.

(28)

For Π1, let g3,s(x) = eisx, then further get:

Π1 = λ̂
λ̂+µ̂
F̂ f (s)− λ

λ+µF f (s)

= λ̂
λ̂+µ̂

1
NT

NT
∑

j=1

(
eisXj − EeisX

)
+
(

λ̂
λ̂+µ̂
− λ

λ+µ

)
EeisX ,

= λ̂
λ̂+µ̂

1
NT

NT
∑

j=1

(
g3,s
(
Xj
)
− Eg3,s(X)

)
+
(

λ̂
λ̂+µ̂
− λ

λ+µ

)
Eg3,s(X).

(29)

Since

sup
s∈K
|Eg3,s(X)| ≤ 1 < ∞, λ̂− λ = Op

(
T−

1
2

)
, µ̂− µ = Op

(
T−

1
2

)
,

thus, for the second term on the right side of the last equation in Equation (29), we have:

sup
s∈K

∣∣∣∣∣
(

λ̂

λ̂ + µ̂
− λ

λ + µ

)
Eg3,s(X)

∣∣∣∣∣ = Op

(
T−

1
2

)
. (30)
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For the first term on the right side of the last equation in Equation (29), we consider
introducing two real-valued function classes:

g3,k,R = {g : g = Re(g3,s), s ∈ K},
g3,k,I = {g : g = Im(g3,s), s ∈ K}.

Then

sup
s∈K

∣∣∣∣∣ 1
NT

NT

∑
j=1

(
g3,s
(
Xj
)
− Eg3,s(X)

)∣∣∣∣∣
≤ sup

g∈g3,k,R

∣∣∣∣∣ 1
NT

NT

∑
j=1

(
g
(
Xj
)
− Eg(X)

)∣∣∣∣∣+ sup
g∈g3,k,I

∣∣∣∣∣ 1
NT

NT

∑
j=1

(
g
(
Xj
)
− Eg(X)

)∣∣∣∣∣.
Refer to the proof of Wang et al. [13], we know:

sup
g∈g3,k,R

∣∣∣∣∣ 1
NT

NT
∑

j=1

(
g
(
Xj
)
− Eg(X)

)∣∣∣∣∣ = Op

(√
log(K/a)

T

)
,

sup
g∈g3,k,I

∣∣∣∣∣ 1
NT

NT
∑

j=1

(
g
(
Xj
)
− Eg(X)

)∣∣∣∣∣ = Op

(√
log(K/a)

T

)
.

Thus, we have

sup
s∈K

∣∣∣∣∣ λ̂

λ̂ + µ̂

1
NT

NT

∑
j=1

(
g3,s
(
Xj
)
− Eg3,s(X)

)∣∣∣∣∣ = Op


√

log
(

K
a

)
T

. (31)

Combining Equations (29), (30) and (31), the maximum boundary of Π1 can be obtained:

sup
s∈K
|Π1| = Op


√

log
(

K
a

)
T

. (32)

Next consider Π2. Let g4,s(x) = eisx−1
is , then:

Π2 = λ̂
λ̂+µ̂

β̂
is

(
F̂ f (s)− 1

)
− λ

λ+µ
β
is (F f (s)− 1)

= λ̂β̂

λ̂+µ̂
1

NT

NT
∑

j=1

eisXj−1
is − λβ

λ+µ E eisX−1
is

= λ̂β̂

λ̂+µ̂
1

NT

NT
∑

j=1

(
g4,s
(
Xj
)
− Eg4,s(X)

)
+
(

λ̂β̂

λ̂+µ̂
− λβ

λ+µ

)
Eg4,s(X).

(33)

Since

g4,s(x) =
eisx − 1

is
=
∫ x

0
eis(x−y)dy ≤ x,

then combined with λ̂−λ = Op

(
T−

1
2

)
, µ̂− µ = Op

(
T−

1
2

)
, β̂− β = Op

(
T−

1
2

)
, we can get:

sup
s∈K

∣∣∣∣∣
(

λ̂β̂

λ̂ + µ̂
− λβ

λ + µ

)
Eg4,s(X)

∣∣∣∣∣ ≤ sup
s∈K

∣∣∣∣∣ λ̂β̂

λ̂ + µ̂
− λβ

λ + µ

∣∣∣∣∣|EX| = Op

(
T−

1
2

)
. (34)
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Next consider the first equation on the right side of the last equation of Equation (33).
Due to the Lemma 3.1 of Li et al. [24], then we have:

sup
s∈K

∣∣∣∣∣ λ̂β̂

λ̂+µ̂
1

NT

NT
∑

j=1

(
g4,s
(
Xj
)
− Eg4,s(X)

)∣∣∣∣∣
= λ̂β̂

λ̂+µ̂
sup
s∈K

∣∣∣∣∣ 1
NT

NT
∑

j=1

eisXj−EeisX

is

∣∣∣∣∣
= λ̂β̂

λ̂+µ̂
sup
s∈K

∣∣∣∣F fX(s)−F̂ f X(s)
is

∣∣∣∣ = Op

(√
log( K

a )
T

)
.

(35)

Combining Equations (34) and (35), we get:

sup
s∈K
|Π2| = Op


√

log
(

K
a

)
T

. (36)

Finally, combining the conclusions of Equations (28), (32) and (36), the theorem
is proved. �

On the basis of the above two propositions, we propose the final estimation error
conclusion of the ruin probability:

Proposition 2. Assume EXk < ∞, k ∈
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(2) When 𝑋  obeys the Erlang distribution with parameter (𝑘, 𝜆)(𝑘 ∈ ℕ , 𝜆 > 0) , 

there is |𝑖𝑠ℱ𝑓 (𝑠)| = ( / ) = ( )( ) | |→⎯⎯ 0, 𝑘 ≥ 2 , or 𝜆, 𝑘 = 1 . Thus we get |𝑖𝑠ℱ𝑓 (𝑠)| < 𝐶. 
Next, we study statistical errors. Two theorems are proposed here, and the conclu-

sion will help us get the final proof result. 

Theorem 1. Assuming 𝐸𝑋 < ∞, 𝑘 ∈ 𝕫,  and 𝑎 = 𝑂(𝐾),  ||𝐻 (𝑥)|| , < ∞, ||𝐻 (𝑥)|| , <∞, 𝑗 = 1,2, then for sufficiently large 𝐾 and 𝑇, we have: 𝑠𝑢𝑝∈𝒦 ℱ𝐻(𝑠) − ℱ𝐻(𝑠) = 𝑂 𝑙𝑜𝑔(𝐾/𝑎)𝑇 , (19)

where, 𝒦 = : 𝑘 = 0, ±1, … , ±(𝐾 + 1) . 
Proof. From the expressions of ℱ𝐻(𝑠) and ℱ𝐻(𝑠), we know: ℱ𝐻(𝑠) − ℱ𝐻(𝑠) = 𝜆𝜆 + �̂� ℱω(𝑠) − 𝜆𝜆 + 𝜇 ℱω(𝑠) + 𝜆𝜆 + �̂� 𝛽𝑖𝑠 ℱω(𝑠) − �̂�  

    − 𝜆𝜆 + 𝜇 𝛽𝑖𝑠 (ℱω(𝑠) − 𝜇 ) ≔ 𝐿 + 𝐿 .   
For 𝐿 ，we have 𝐿 = 𝜆𝜆 + �̂� ℱω(𝑠) − 𝜆𝜆 + 𝜇 ℱω(𝑠) 

   = 𝜆𝜆 + �̂� 1𝑁 𝑒 𝑑𝑢 − 𝐸 𝑒 𝑑𝑢 + 𝜆𝜆 + �̂� − 𝜆𝜆 + 𝜇 𝐸 𝑒 𝑑𝑢. 
Let 𝑔 , (𝑥) = 𝑒 𝑑𝑢 = ，then 𝐿  can be further expressed as 

and a = O(K), ||H1(x)||P,1 < ∞,
∣∣∣∣Hj(x)

∣∣∣∣
P,2 < ∞,

j = 1, 2, then for very large a, K and T, we have:

sup
u≥0

∣∣ψ̃K(u)− ψ̂K(u)
∣∣ = Op

(
(K/a)

√
log(K/a)

T

)

Proof. According to the expressions of Fψe(s) and F̂ψe(s), we know

sup
s∈K

∣∣Fψe(s)− F̂ψe(s)
∣∣

= sup
s∈K

∣∣∣ FH(s)
1−FG(s) +

FH(−s)
1−FG(−s) −

ˆFH(s)
1− ˆFG(s)

− ˆFH(−s)
1− ˆFG(−s)

∣∣∣
≤ sup

s∈K

∣∣∣ FH(s)
1−FG(s) −

ˆFH(s)
1− ˆFG(s)

∣∣∣+ sup
s∈K

∣∣∣ FH(−s)
1−FG(−s) −

ˆFH(−s)
1− ˆFG(−s)

∣∣∣
= 2sup

s∈K

∣∣∣ FH(s)
1−FG(s) −

ˆFH(s)
1− ˆFG(s)

∣∣∣
= 2sup

s∈K

∣∣∣∣ (1−FG(s))(FH(s)− ˆFH(s))+FH(s)(FG(s)− ˆFG(s))
(1−FG(s))(1− ˆFG(s))

∣∣∣∣.

(37)

Because of
∣∣∣ 1−F̂ f (s)

is

∣∣∣ ≤ 1
NT

∑NT
j=1 Xj,

∣∣∣ 1−F f (s)
is

∣∣∣ ≤ EX,
∣∣∣F̂ f (s)

∣∣∣ ≤ 1,
∣∣∣Fω(s)−µx

is

∣∣∣ ≤ 1
2 EX2,

a simple conclusion can be drawn:

∣∣1− ˆFG(s)
∣∣ =

∣∣∣∣∣∣∣1−
λ̂

λ̂ + µ̂

 F̂ f (s)+

β̂
is

(
F̂ f (s)− 1

)

∣∣∣∣∣∣∣
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≥ 1− λ̂
λ̂+µ̂

(∣∣∣F̂ f (s)
∣∣∣+ β̂

∣∣∣ 1−F̂ f (s)
is

∣∣∣)
≥ 1− λ̂

λ̂+µ̂

(
1 + β̂ 1

NT

NT
∑

j=1
Xj

)
= C1,

|1−FG(s)| =
∣∣∣1− λ

λ+µ

[
F f (s) + β

is (F f (s)− 1)
]∣∣∣

≥ 1− λ
λ+µ

(
|F f (s)|+ β

∣∣∣ 1−F f (s)
is

∣∣∣)
≥ 1− λ

λ+µ (1 + βEX) = C2.

Incorporating the above conclusions into Equation (37), we get:

sup
s∈K

∣∣Fψe(s)− F̂ψe(s)
∣∣ = Op

(√
log(K/a)

T

)
.

Combined with the Equation (3.15) of Li et al. [24], finally, we have:

sup
u≥0

∣∣ψ̃K(u)− ψ̂K(u)
∣∣ ≤ K+1

a sups∈K
∣∣Fψe(s)− F̂ψe(s)

∣∣
≤ K+1

a sups∈K
∣∣Fψe(s)− F̂ψe(s)

∣∣
= Op

(
(K/a)

√
log(K/a)

T

)
. �

6. Numerical Simulation

In this section, we will provide some simulation results to show the estimation effect of
our estimation method when the sample size is limited. We set the parameters λ = 2, µ = 5,
β = 1, K = 1024. In addition, let a = 30, that is 0 ≤ u ≤ 30. This is because when the
initial surplus u > 30, the value of ruin probability is very close to 0, then we consider the
following three claim density functions at the same time:

(1) Exponential density function: fX(x) = e−x, x > 0.
(2) Erlang (2) density function: fX(x) = 4xe−2x, x > 0.

(3) Gamma (1.5, 1.5) density function: fX(x) = 1.51.5x0.5e−1.5x

Γ(1.5) , x > 0, where Γ(·) is the
gamma function.

Note that the assumptions of the above three claim density functions all satisfy µX = 1,
and through the Laplace transform method, the true value of the ruin probability under
the first two claim distribution assumptions can be directly calculated, respectively:

(1) Exponential density function: ψ(u) = 0.5714e−0.4286u, u ≥ 0.
(2) Erlang(2)density function: ψ(u) = 0.5714e−1.8571u(cosh(1.3171u) + 1.2474sinh(1.3171u)),

u ≥ 0.

For the third density hypothesis Gamma (1.5, 1.5) density function, we also compare
the approximate simulation results with the estimated results. We will consider the case of
T = 120, 180, 360, and calculate the integral mean square error (IMSE), mean value and
average relative error respectively based on 300 independent repeated experiments.

First of all, Figures 1–3 show the simulation effect of 25 independent repeated ex-
periments under three kinds of claim distribution. At the same time, the corresponding
effect is compared with the true value curve to illustrate the stability and accuracy of the
program, and fully show the different variation bands of estimated values under different
observation intervals. It can be clearly observed from the Figures that with the increase of
observation time T, the estimation tends to be more and more stable.
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Figure 3. Estimation of the ruin probability for Gamma (1.5, 1.5) claim size density: (a) T = 120, (b) T = 180, (c) T = 360.

Next, based on the same 300 repeated experiments, Figure 4 shows the performance
of the average estimation of the corresponding ruin probability under three kinds of claim
distribution assumptions for different T, and compares it with the truth curve. It can
be seen that with the increase of parameter T, the average estimated value is more and
more close to the real value, and gradually coincides with the real value, which is difficult
to distinguish.
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To further illustrate the accuracy of the proposed method, we show the average relative
error curves under three claims distribution assumptions in Figure 5. Once again, we find
that with the increase of observation time T, the average relative error decreases, which
also means that when T increases, our estimation method performs well and becomes more
accurate. Of course, Figure 5c is different from the relative error curve of the other two
distributions. The main reason is that the reference truth value used in this paper under
the assumption of this distribution is our CFS approximation. More rigorous calculation
method of truth value needs further study. But from this Figure, we find that when the
initial surplus is in the range of 15–25, the average relative error fluctuates greatly. The
corresponding average estimated value curve is proposed separately, as shown in Figure 6.
It is found that in this interval, the estimated value begins to fluctuate, and there is a
smaller approximation with the reference true value, which makes the performance of the
corresponding relative error curve reasonable.
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Figure 5. Estimation of the ruin probability: mean relative error curves. (a) Exponential claim size density; (b) Erlang (2)
claim size density; (c) Gamma (1.5, 1.5) claim size density.
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Finally, based on the above 300 repeated experiments, we give a series of IMSE values
of ruin probability estimation under three kinds of claim distribution assumptions in
Table 1. For each claim distribution, we find that IMSE decreases with the increase of
T, which is consistent with our conclusion. This conclusion shows the stability of the
estimation method in this paper, gives us a reference to improve the accuracy of data
collection and provides the necessary basis for deeper application level analysis.

Table 1. IMSEs of ruin probability estimation for different claim distributions and T.

T=120 T=180 T=360

Exponential density 0.0097 0.0062 0.0026
Erlang (2) density 0.0052 0.0039 0.0021

Gamma (1.5, 1.5) density 0.0069 0.0042 0.0023
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All numerical experiments in this chapter are based on MATLAB software. Taking
the exponential density as an example, when T = 120, we completed 300 independent
repeated experiments in 68.096740 s.

7. Conclusions

This paper introduces how to use the CFS method to approximate the ruin probability
under the stochastic premium income insurance risk model and gives a nonparametric
estimation of the corresponding ruin probability. First, we approximate the ruin probability
under the model according to the principle and method of the CFS given. Then, using the
sample data set of the number of claims and the size of a single claim on the observation
interval, the data set consisting of the number of random premium income and the amount
of insurance premiums, a non-parametric estimation of the ruin probability is constructed.
Finally, we verify the effectiveness of the method in this paper through error analysis and
numerical experiments. The results show that even if it is extended to a more complex
model, as long as the Fourier transform of the specific claim distribution under the corre-
sponding model can be obtained, the method can be effectively applied. The conclusion
that the numerical simulation is extremely stable not only further demonstrates the superi-
ority of the estimation method in this paper, but also provides a necessary reference for
deeper application research.
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