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Abstract: This paper deals with monic orthogonal polynomials orthogonal with a perturbation
of classical Meixner–Pollaczek measure. These polynomials, called Perturbed Meixner–Pollaczek
polynomials, are described by their weight function emanating from an exponential deformation
of the classical Meixner–Pollaczek measure. In this contribution, we investigate certain properties
such as moments of finite order, some new recursive relations, concise formulations, differential-
recurrence relations, integral representation and some properties of the zeros (quasi-orthogonality,
monotonicity and convexity of the extreme zeros) of the corresponding perturbed polynomials.
Some auxiliary results for Meixner–Pollaczek polynomials are revisited. Some applications such
as Fisher’s information, Toda-type relations associated with these polynomials, Gauss–Meixner–
Pollaczek quadrature as well as their role in quantum oscillators are also reproduced.

Keywords: orthogonal polynomials; Meixner; perturbed Meixner–Pollaczek; moments; recurrence coef-
ficients; difference equations; differential equations; zeros

1. Introduction

First, let us define some terminologies, notations and conventions that we will use
throughout this paper. The set of complex numbers will be denoted by C and i will stand
for the imaginary number (i2 = −1); the set of positive integers will be denoted by N,
and N0 will denote the set of non-negative integers. All polynomials considered will
be real-valued in one real variable, and P will stand for the set of all such polynomials.
For each n ∈ N0, the subset of P of all polynomials of degree not greater than n will be
denoted by Pn. By a system of monic polynomials, we will mean a sequence {Φn}∞

n=0 of

polynomials satisfying Φ(n)
n = n! for each n ∈ N0.

A sequence of real polynomials {Φn}∞
n=0, where Φn is of exact degree n, is orthogonal

with respect to a (positive) measure µ supported on an interval [a, b], if the scalar product

〈Φm, Φn〉 =
∫ b

a
Φm(x) Φn(x) dµ(x) = 0, m 6= n.

If µ(x) is absolutely continuous, then it can be represented by a real weight function
w(x) > 0 so that dµ(x) = w(x)dx. If µ(x) is discrete with support in N0, then it can be
represented by a discrete weight w(x) ≥ 0 (x ∈ N0), and the scalar product given by

〈Φm, Φn〉 =
∞

∑
x=0

Φm(x)Φn(x)w(x) .

The orthogonal polynomial families under consideration in this paper are the follow-
ing ones (see [1]):
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• Meixner polynomials ([1], Section 9.10)

Mn(x; β, c) = 2F1

 −n,−x

β

∣∣∣∣∣∣1− 1
c

 , (1)

are orthogonal with respect to the discrete weight ρ(x) = cx(β)x
x! on (0, ∞), for 0 < c < 1

and β > 0, with β 6= −1,−2, . . . ,−n + 1. Here, 2F1 is the hypergeometric function
defined by

2F1

( p, q
r

∣∣∣ s
)
=

∞

∑
k=0

(p)k(q)k
(r)k

sk

k!
, (2)

where the Pochhammer symbol, or rising factorial, (z)n, takes the form

(z)n := (z)(z + 1) · · · (z + n− 1) =
n

∏
i=1

(z + i− 1). (3)

• Monic Meixner polynomials ([1], Section 9.10) are given by

Mn(x; β, c) = (β)n

(
c

c− 1

)n

2F1

 −n,−x

β

∣∣∣∣∣∣1− 1
c

 = (β)n

(
c

c− 1

)n
Mn(x; β, c).

(4)

• Meixner–Pollaczek polynomials ([1], Section 9.7)

p(λ)n (x; φ) =
(2λ)n

n!
einφ

(
e2iφ

e2iφ − 1

)n

2F1

 −n, λ + ix

2λ

∣∣∣∣∣∣1− 1
e2iφ

, (5)

are orthogonal with respect to the continuous weight

w(x; φ) = |Γ(λ + ix)|2 e(2φ−π)x, (6)

on the interval (−∞, ∞), for n ∈ N, λ > 0 and 0 < φ < π. Note that the complex
Gamma function in Equation (6) takes the form [2]∣∣∣Γ(λ + ix)

∣∣∣2 = Γ(λ + ix) Γ(λ− ix).

• Monic Meixner–Pollaczek polynomials ([1], Section 9.7) are given by

P(λ)
n (x; φ) = in(2λ)n

(
e2iφ

e2iφ − 1

)n

2F1

 −n, λ + ix

2λ

∣∣∣∣∣∣1− 1
e2iφ

 =
n! in

einφ
p(λ)n (x; φ). (7)

For some properties of Meixner–Pollaczek polynomials including asymptotics, we
refer to [3–9].

We recall the following essential facts.

Definition 1 ([8]). Let {ηn}∞
n=0 be a sequence of complex numbers and let L be a complex valued

function on the linear space of all polynomials by{
L [xn] = ηn, n ∈ N0,
L [α f1(x) + β f2(x)] = L [α f1(x)] +L [β f2(x)],
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for α, β ∈ C and fi(x) (i = 1, 2). Then L is said to be the moment functional determined by the
moments ηn of order n.

Let P(x; t) denote R(t)[x], the linear space of all polynomials with rational function
(in t) coefficients in one variable x. We call such polynomials, parameterized polynomials.
We extend the classical orthogonality results in [3,8,10] to parameterized polynomials. We
denote the linear subspace of degree m parameterized polynomials by Pm[t]. The following
is an extension of ([8], Theorem 2.1).

Lemma 1. Consider a moment functional L and a parameterized polynomial sequence {Ψn(x; t)}∞
n=0.

Then the following are equivalent (cf. [8], Theorem 2.1):

(i) {Ψn(x; t)}∞
n=0 is an orthogonal polynomial sequence with respect to L ,

(ii) L [π(x; t) Ψn(x; t)] = 0 for every polynomial π(x; t) of degree m < n; while
L [π(x; t) Ψn(x; t)] 6= 0 if m = n,

(iii) L [xm Ψn(x; t)] = ζn(t) δm,n where ζn(t) 6= 0, for 0 ≤ m ≤ n.

In [11], Meixner–Pollaczek polynomials are used to explore thermodynamic suscep-
tibilities in the thermodynamic relations of Hermitian Ensembles. One can apply an
exponential modification of the measure µ and to investigate orthogonal polynomials for
the measure dµt(x) = e−xt dµ(x), whenever all the moments of this modified measure
exist, and this leads to a new class of semi-classical (non-classical) orthogonal polynomials
with respect to the modified measure.

Definition 2. Perturbed Meixner–Pollaczek polynomials {Q(λ,ϕ)
n (x; t)}∞

n=0 are monic real poly-
nomials which are orthogonal with respect to the weight function

w(λ,ϕ)(x; t) :=
1

2π
e(2ϕ−π)x |Γ(λ + ix)|2 e−axt, x ∈ R, (8)

with parameters λ > 0, a > 0 and 0 ≤ t < 2ϕ
a .

Chen and Ismail [11] also discussed Toda lattice equations in the context of Coulomb
fluid relations. Perturbed Meixner–Pollaczek polynomials have some applications as shown
in ([11], pp. 12–13). In the context of Physics literature, the parameter ϕ in Equation (8) is
the phase of an oscillation, t is time and a can be perceived as a positive angular frequency
(in Hertz) (angular velocity or angular speed) of a wave, an oscillation (in cycle per second
or 2π rad per second) or a field (electromagnetic). For example, a > 0 in the mathematical
model of (nonlinear) tornado system as the wave speed of frequency of tornadoes is
so huge.

The objective of this paper is to unravel some properties of monic orthogonal polyno-
mials with respect to the perturbed Meixner–Pollaczek measure (8) and to explore some of
their practical applications.

The structure of the paper is as follows. In Section 1, certain properties and auxiliary
results of Meixner–Pollaczek polynomials are given. This section also introduces perturbed
Meixner–Pollaczek polynomials with some properties. Section 2 gives the relation between
Meixner–Pollaczek and Perturbed Meixner–Pollaczek polynomials. In Section 3, we investigate
some results of perturbed Meixner–Pollaczek polynomials with proofs. Certain properties
of these polynomials such as orthogonality, concise formulation, new recursive relations
and some properties of the zeros (convexity and monotonicity of the extreme zeros) are
discussed. Section 4 provides some practical applications; in particular, the applicability
of the monic perturbed Meixner-Pollaczek polynomials in the study of Toda lattices in
Random Matrix theory, Fisher information, Gaussian quadrature using Meixner-Pollaczek
weight and solution to a quantum oscillator in quantum physics [12]. Section 5 ends with
conclusions of this work.
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1.1. Some Auxiliary Results for the Meixner and Meixner–Pollaczek Weight

In this Subsection, we revisit some properties of Meixner and Meixner–Pollaczek
polynomials. The following proposition gives some properties of Meixner polynomials.

Proposition 1. For Meixner polynomials, we have

(i) Orthogonality:

〈Mm, Mn〉 :=
∞

∑
x=0

(β)x

x!
cx Mm(x; β, c)Mn(x; β, c) =

c−n n!
(β)n(1− c)β

δm,n , m, n ∈ N0 ;

(ii) Forward shift operator identity:

∆Mn(x; β, c) := Mn(x + 1; β, c)−Mn(x; β, c) =
n
β

c− 1
c

Mn−1(x; β + 1, c) ;

(iii) Three-term recursion relation:

(n + β)Mn(x; β + 1, c) = β Mn(x; β, c) + n Mn−1(x; β + 1, c);

(iv) Expansion formula:

Mn(x; β + 1, c) =
n!

(β + 1)n

n

∑
k=0

(β)k
k!

Mk(x; β, c) , n ∈ N0 . (9)

Proof. • For the proof of (i) and (ii), we refer to ([1], (1.9.2), (1.9.6)).
• Property (iii) follows, by considering z = 1− 1

c , from the formulae for Mn(x; β + 1, c)
and Mn(x; β, c):

Mn(x; β + 1, c) = 1 +
n

∑
k=1

(
n
k

)
x(x− 1) · · · (x− k + 1)
(β + 1)(β + 2) · · · (β + k)

zk (10)

Mn(x; β, c) = 1 +
n

∑
k=1

(
n
k

)
x(x− 1) · · · (x− k + 1)
β(β + 1) · · · (β + k− 1)

zk (11)

If we take β multiplied by Equation (11) and then subtract it from Equation (10)
multiplied by n + β, the required result immediately follows.

• For the proof of property (iv), we use mathematical induction on n. One can see
easily that Equation (9) holds for n = 0. We assume it holds true for some n ∈ N0.
By applying induction hypothesis and Equation (9), we have

Mn+1(x; β + 1, c) =
β

n + 1 + β
Mn+1(x; β, c) +

n + 1
n + 1 + β

Mn(x; β + 1, c)

=
β

n + 1 + β
Mn+1(x; β, c) +

(n + 1)!
(β + 1)n+1

n

∑
k=0

(β)k
k!

Mk(x; β, c)

=
(n + 1)!

(β + 1)n+1

n+1

∑
k=0

(β)k
k!

Mk(x; β, c) .

This completes the inductive result.

We note from Equation (4) that

P(λ)
n (x; φ) = inMn(−λ− ix; 2λ, e2iφ), (12)
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and Meixner polynomials and Meixner–Pollaczek polynomials are the same polynomials,
with a discrete variable in the first case and a continuous variable in the second (cf. [13]).
Monic Meixner polynomials satisfy the three-term recurrence relation

Mn(x; β, c) =
(

x +
c(β + n− 1) + n− 1

c− 1

)
Mn−1(x; β, c)− c(n− 1)(β + n− 2)

(c− 1)2 Mn−2(x; β, c)

and when we substitute x with −λ− ix, β with 2λ and c with e2iφ, multiply by in and apply
Equation (12), we obtain the three-term recurrence relation for the Meixner–Pollaczek polynomials

P(λ)
n (x; φ) =

(
x + α

(λ,φ)
n

)
P(λ)

n−1(x; φ)− CnP(λ)
n−2(x; φ). (13)

where

α
(λ,φ)
n :=

λ + n− 1
tan φ

; Cn := C(λ,φ)
n =

(n− 1)(2λ + n− 2)
4 sin2 φ

, (14)

with Pλ
−1(x) = 0, P(λ)

0 (x) = 1 and α
(λ, π

2 )
n = lim

φ→ π
2

α
(λ,φ)
n = 0. We note that the coeffi-

cient of P(λ)
n−2(x; φ), behaves like O(n2) as n → ∞ and using Carleman’s condition [8],

the uniqueness of the orthogonality measure holds ([1], Section 9.7).
Let’s recall the following result [14] (see also [6]).

Proposition 2 ([14]). For λ > 0, the moments for Meixner–Pollaczek measure are finite; i.e.,∫
R

xn e(2φ−π)x|Γ(λ + ix)|2dx < ∞.

Proof. The finiteness of the moments follow from [14]∫ ∞

−∞
e(2φ−π)x|Γ(λ + ix)|2dx =

πΓ(2λ)

(2 sin φ)2λ
, (15)

and by differentiating Equation (15) n-times with respect to φ ([15], Lemma 1); i.e.,∫
R

xn e(2φ−π)x|Γ(λ + ix)|2dx = 2−n π Γ(2λ)
dn

dφn (2 sin φ)−2λ.

We now consider some results on quasi-orthogonality and interlacing of the zeros of
the Meixner–Pollaczek polynomials.

Definition 3. A polynomial Φn of exact degree n ≥ r, is quasi-orthogonal of order r on [a, b] with
respect to a weight function w(x) > 0, if (cf. ([16], p. 159))

∫ b

a
xjΦn(x)w(x)dx

{
= 0, for j = 0, 1, . . . , n− r− 1,
6= 0, for j = n− r.

For a more general definition of quasi-orthogonality, we refer to [8].
Since the Meixner–Pollaczek polynomials are orthogonal on the real line, zeros de-

parting from the interval of orthogonality will do so in complex conjugate pairs. (This
fact is later checked with numerical experiments of the zeros of these polynomials). The
quasi-orthogonality of the monic Meixner-Pollaczek polynomials is therefore of even order,
as detailed in the next result ([17], Theorem 3.3).

Theorem 1. Let n ∈ N, k ∈ {1, 2, . . . , b n
2 c} and 0 < φ < π. For 0 < λ < 1, the sequence

of polynomials {Pλ−k
n }∞

n=1 is quasi-orthogonal of order 2k with respect to the weight function
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e(2φ−π)x|Γ(λ + ix)|2 on (−∞, ∞) and the polynomials have at least n − 2k real zeros on the
real line.

By a change in the variable λ, the result in Theorem 1 can be rephrased by stating
that P(λ)

n (x; φ), with −k < λ < −k + 1, is quasi-orthogonal of order 2k with respect to
e(2φ−π)x|Γ(λ + k + ix)|2 on the interval (−∞, ∞).

We can say the following about the interlacing of the zeros of polynomials P(λ−1)
n and

P(λ)
n−1, λ > 0.

Lemma 2. Let n ∈ N, λ > 0 and 0 < φ < π.

(a) If λ > 1, the n zeros of P(λ−1)
n (x; φ) interlace with the (n− 1) zeros of P(λ)

n−1(x; φ).

(b) If 0 < λ < 1, then (n− 2) zeros of the order two quasi-orthogonal polynomial P(λ−1)
n (x; φ)

interlace with the (n− 1) zeros of P(λ)
n−1(x; φ).

Proof. The polynomial P(λ−1)
n (x; φ) can be expressed as follows ([17], Equation (2).2):

P(λ−1)
n (x; φ) = P(λ)

n (x; φ)− n
tan φ

P(λ)
n−1(x; φ) + bnP(λ)

n−2(x; φ) (16)

with bn = n(n−1)
4 sin2 φ

.

(a) Let λ > 1. Then the polynomial P(λ−1)
n (x; φ) is part of an orthogonal sequence and all

its zeros are real. Furthermore, bn < Cn, where Cn, given in (14), is obtained from the
three-term recurrence relation satisfied by the Meixner–Pollaczek polynomials and
the result follows from (16) and ([18], Theorem 15 (i)).

(b) Let 0 < λ < 1. From Theorem 1 we see that at least (n− 2) zeros of P(λ−1)
n (x; φ) are

real. Furthermore, bn > Cn when 0 < λ < 1, and the result follows from (16) and
([18], Theorem 15 (i)).

For a detailed discussion on the quasi-orthogonality and location of the zeros of the
Meixner polynomials, we refer the reader to [19].

1.1.1. Some Numerical Experiment on the Zeros of P(λ)
n (x; δ), δ ∈ R

We now validate the above results related to the zeros of Meixner–Pollaczek polynomi-
als by considering pictorial representations of the first few polynomials. Let δ = cot φ ∈ R
and φ ∈ (0, π), the first few polynomials P(λ)

n (x; δ) are obtained from Equation (13) using
symbolic packages (Maple) as follows.

P(λ)
0 (x; δ) = 1;

P(λ)
1 (x; δ) = x + δλ;

P(λ)
2 (x; δ) = x2 + (δ λ + λ + 1)x− 2 δ2λ + δ λ2 + δ λ− 2 λ;

P(λ)
3 (x; δ) = x3 + (δ λ + 2 λ + 3)x2 +

(
−6 δ2λ + 2 δ λ2 − 2 δ2 + 3 δ λ + λ2 − 3 λ

)
x

− 4 δ3λ2 − 2 δ3λ− 2 δ2λ2 + δ λ3 − 4 δ2λ− δ λ2 − 2 λ2 − 4 λ.

Let’s consider the following cases:
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Case I: When φ = π
6 , (δ = cot(π

6 ) =
√

3 ≈ 1.73) and λ = 0.55.

The first few Meixner–Pollaczek polynomials in this case are given by

P(0.55)
1 (x;

√
3) = x + 0.95262,

P(0.55)
2 (x;

√
3) = x2 + 2.502627944 x− 2.923426687,

P(0.55)
3 (x;

√
3) = x3 + 5.052627944 x2 − 13.34172543 x,

P(0.55)
4 (x;

√
3) = x4 + 8.602627944 x3 − 32.60489624 x2 − 163.9197723 x + 25.47242210,

P(0.55)
5 (x;

√
3) = x5 + 13.15262794 x4 − 59.06293911 x3 − 643.7244434 x2 + 154.8546466 x + 1654.802543,

and their corresponding real zeros are tabulated as follows.
Table 1 and Figure 1 show that the zeros of {P(0.55)

n (x;
√

3)}5
n=1 are real and simple,

which confirms the classical result for φ ∈ (0, π) and λ > 0 [6].

Table 1. Real zeros for P(λ)
n (x; δ) for λ = 0.55 and δ =

√
3.

P(0.55)
n (x;

√
3) Corresponding (Real) Zeros

P(0.55)
1 (x;

√
3) −0.95262

P(0.55)
2 (x;

√
3) [−3.370090351, 0.8674624068]

P(0.55)
3 (x;

√
3) [−6.5436518550, − 1.2893767698, 2.7804006808]

P(0.55)
4 (x;

√
3) [−10.1996365410, − 3.40704030, 0.1510418707, 4.853007027]

P(0.55)
5 (x;

√
3)

[−14.088331505, − 6.1197704981,
− 1.6483271898, 1.650996725, 7.052804527]

(a) (b)

Figure 1. Plots for the real zeros of P(λ)
n (x; δ) (with λ = 0.55, and δ =

√
3) for n = 2, 3. (a) Plots for

the (real) zeros of P(0.55)
2 (x;

√
3). (b) Plots for the (real) zeros of P(0.55)

3 (x;
√

3).

Case II: When φ = π
8 ∈ [0, π

4 ], (δ = cot(π
8 ) = 1 +

√
2 ≈ 2.41) and λ = −2.75.

For λ < 0 and δ > 0, we see that real orthogonality fails as complex zeros appear in
conjugate pairs for the first few polynomials. For extended orthogonality, see [20] for more
details. The first few monic polynomials for case II are given by

P(0.55)
1 (x; 2.41) = x− 6.6275,

P(−2.75)
2 (x; 2.41) = x2 − 8.389087296 x + 49.17475195,

P(−2.75)
3 (x; 2.41) = x3 − 9.139087296 x2 + 116.9224115 x,

P(−2.75)
4 (x; 2.41) = x4 − 8.889087296 x3 + 186.3361245 x2 − 1017.146023 x + 3414.532260,
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and their corresponding zeros with plots in the complex plane are given as follows.
Figure 2 demonstrates the pictorial representation of the complex zeros of P(−2.75)

n (x; 2.41)
for n = 2, 3, whereas Table 2 shows that the zeros of the polynomials {P(−2.75)

n (x; 2.41)}4
n=1

exhibit one real and remaining complex zeros in conjugate pairs except P(−2.75)
1 (x; 2.41).

This may likely suggest that for λ < 0 and δ > 0, complex zeros appear in conjugate pairs
for n > 1.

Table 2. The zeros for P(λ)
n (x; δ) when λ = −2.75 and δ = 2.41.

P(−2.75)
n (x; 2.41) Corresponding (Real/Complex) Zeros

P(−2.75)
1 (x; 2.41) 6.6275

P(−2.75)
2 (x; 2.41) [4.194543648− 5.619657955I, 4.194543648 + 5.619657955I]

P(−2.75)
3 (x; 2.41) [2.253498955− 9.537679842I, 2.2534989556 + 9.5376798424I, 4.6320893848]

P(−2.75)
4 (x; 2.41)

[1.188253595− 12.0969643912I, 1.1882535946 + 12.096964391I, 3.2562900534−
3.5365254217I, 3.25629005341 + 3.5365254217I]

(a) (b)

Figure 2. Plots for the complex zeros of P(λ)
n (x; δ) (with λ = −2.75 and δ ≈ 2.41) for n = 2, 3. (a) Plots

for the complex zeros of P(−2.75)
2 (x; 2.41). (b) Plots for the complex zeros of P(−2.75)

3 (x; 2.41).

Case III: When φ = −π
3 ∈ [−π

2 , 0], (δ = cot(−π
3 ) = 0.577), λ = −3.67.

The first few polynomials in this case are

P(−3.67)
1 (x;−0.577) = x + 3.8412,

P(−3.67)
2 (x;−0.577) = x2 − 0.551124512 x + 4.129269119,

P(−3.67)
3 (x;−0.577) = x3 − 2.221124512 x2 + 21.95631373 x + 28.92724218,

P(−3.67)
4 (x;−0.577) = x4 − 2.891124512 x3 + 44.80446716 x2 + 2.44449240 x + 68.81993616,

and their corresponding zeros are given as follows.
Table 3 shows that all the zeros of {P(−3.67)

n (x;−0.577)}4
n=1 are complex in conjugate

pairs, and plots for the complex zeros of P(−3.67)
n (x;−0.577) for n = 2, 3 are given below in

Figure 3.
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Table 3. Complex zeros for P(λ)
n (x; δ) for λ = −3.67 and δ = −0.577.

P(−3.67)
n (x;−0.577) Corresponding Zeros

P(−3.67)
2 (x;−0.577) [4.194543648− 5.619657955I, 4.194543648 + 5.619657955I]

P(−3.67)
3 (x;−0.577)

[2.25349895559073−
9.53767984236043I, 2.25349895559073 +
9.53767984236043I, 4.63208938481853]

P(−3.67)
4 (x;−0.577)

[1.188253590− 12.09696440I, 1.1882536 +
12.0969644I, 3.256290053− 3.53652542I, 3.25629005 +

3.5365254I]

(a) (b)

Figure 3. Plots for complex zeros of P(λ)
n (x; δ) (with λ = −3.67 and δ ≈ −0.577) for n = 2, 3. (a) Plots

for the complex zeros of P(−3.67)
2 (x;−0.577). (b) Plots for the complex zeros of P(−3.67)

3 (x;−0.577).

Remark 1. The above numerical experiments elaborate how the restriction of parameter values
influence real orthogonality and these numerical findings also likely verify the results given in
Lemma 1 and Theorem 1.

2. Relation between the Monic Polynomials P(λ)
n and Q(λ,ϕ)

n

It is known that classical orthogonal polynomials, namely the polynomials of Jacobi,
Laguerre, and Hermite, obey numerous well-known properties corresponding to their
several explicit relations [3]; nevertheless, when the conditions on such relations are less
restricted, semi-classical (non-classical) orthogonal polynomials [21] are obtained. For
mathematical completeness and applications of polynomials in numerous fields, one
requires polynomials that are orthogonal with respect to shifting of the weight function in
transcendental forms. For semi-classical measure modification from classical weights, we
refer to some works [21–24].

It is known that the classical polynomial P(λ)
n is orthogonal with respect to the

weight [1,3]

w(x; λ, φ) =
1

2π
e(2φ−π)x|Γ(λ + ix)|2, x ∈ R, λ > 0, ϕ ∈ (0, π). (17)

However, the polynomial Q(λ,ϕ)
n is orthogonal with the weight in Equation (17) per-

turbed by e−axt. This perturbation leads to the phase shift from phase ϕ to (ϕ− at
2 ), which

likely turns out to guarantee certain shared properties such as orthogonality, three-term
recurrence relation, generating functions, etc. In this sense, P(λ)

n and Q(λ,ϕ)
n behave like the

same polynomials with different parameters involved in their respective weight function
as parameter restrictions in the weight greatly affect some properties of the corresponding
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polynomials; for e.g., certain properties of the zeros (such as monotonicity, convexity,
quasi-orthogonality, etc.), concise formulation of the recurrence coefficients, etc are some
that may deviate as shown in literature [22,25–27]. This work also signifies the need for
time-dependent orthogonal polynomials, mainly in terms of their practical applications.
We believe that there are few works in related literature that treated certain properties and
applications of perturbed classical weights and we hope this work would then contribute
to filling this gap.

3. Main Results of the Perturbed Meixner–Pollaczek Weight
3.1. Finite Moments

It is shown in Proposition 2 that the moments of the Meixner–Pollaczek measure
are finite. We now present a result proving the finiteness of moments of the perturbed
Meixner–Pollaczek measure.

Theorem 2. Suppose a > 0, t > 0, ϕ ∈ (0, π) and x ∈ R. The moments ηj(t; ϕ) associated with
the weight Equation (8) are finite of all orders.

Proof. For the weight given in Equation (8), the moments ηj(t; ϕ) take the form

ηk

(
w(λ,ϕ)

)
=

1
2π

∫ ∞

−∞
xk e(2ϕ−π)x|Γ(λ + ix)|2 e−axtdx, k ∈ N0. (18)

Now, using the fact that
∫ ∞

−∞
f (x)dx =

∫ ∞

0
[ f (x) + f (−x)]dx, Equation (18) gives

ηk

(
w(λ,ϕ)

)
=

1
2π

∫ ∞

0
xk|Γ(λ + ix)|2

(
e(2ϕ−π−at)x + (−1)k e−(2ϕ−π−at)x

)
dx, k ∈ N0. (19)

From Stirling’s approximation (cf. [28]) for the complex Gamma function, we have

Γ(z) ≈
√

2π

z

( z
e

)z
,

and from the fact that Γ(z) is a holomorphic function for <(z) > 0, Γ(z̄) = Γ(z), we obtain

|Γ(z)|2 = Γ(z)Γ(z̄) ≈ 2π√
zz̄

( z
e

)z
(

z̄
e

)z̄
=

2π

|z|

( z
e

)z
(

z̄
e

)z̄
.

By employing z = reiθ = λ + ix, we have

|Γ(z)|2 ≈ 2π

r
(re−1+iθ)z(re−1−iθ)z̄ = 2πrz+z̄−1 exp(z(−1 + iθ)− z̄(1 + iθ)).

Using z + z̄ = 2λ, z− z̄ = 2ix and r2 = λ2 + x2, we obtain

|Γ(z)|2 ≈ 2π
(

λ2 + x2
) (2λ−1)

2 exp(−2λ− 2xθ).

By assuming that x � λ & x � 1, we have λ2 + x2 ≈ x2 and using θ ≈ π

2
gives

|Γ(z)|2 = |Γ(λ + ix)|2 ≈ 2πx2λ−1 exp(−πx),

in which the term 2λ in the argument of the exponential vanishes since 2λ is negligible
compared to πx. Since 2 cosh x = ex + e−x ≈ ex for large x, we finally attain that

|Γ(λ + ix)|2 ≈ πx2λ−1

cosh(πx)
. (20)
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Substituting Equation (20) into Equation (19) yields

ηk

(
w(λ,ϕ)

)
≈ 1

2π

∫ ∞

0
xk πx2λ−1

cosh(πx)

(
e(2ϕ−π−at)x + (−1)k e−(2ϕ−π−at)x

)
dx ≈ 1

2

∫ ∞

0

xk+2λ−1

cosh(πx)

(
eMx + (−1)k e−Mx

)
dx, (21)

where M := 2ϕ− π − at, with M < 0 for the weight to be defined.
By using Equation (21), the even and odd moments are given as follows.

(i) The even moments (η2n):

η2n

(
w(λ,ϕ)

)
≈ 1

2

∫ ∞

0

x2n+2λ−1

cosh(πx)

(
eMx + e−Mx

)
dx ≈ 1

2

∫ ∞

0
x2n+2λ−1 2 cosh(Mx)

cosh(πx)
dx, (22)

By employing the following cosh inequality: ex−e−x

2 = cosh x ≤ e
x2
2 , ∀ x ∈ R, we write

cosh(Mx)
cosh(πx)

≤ eM2x2/2

eπ2x2/2
= e(M2−π2)x2/2,

so that Equation (22) reduces to

η2n

(
w(λ,ϕ)

)
≈ 1

2

∫ ∞

0
x2n+2λ−1 2 cosh(Mx)

cosh(πx)
dx ≤

∫ ∞

0
x2n+2λ−1e(M2−π2)x2

dx =
1

(M2 − π2)(n+λ)
Γ(n + λ) < ∞. (23)

(ii) Similarly, for the odd moments (η2n+1), we use the following sinh inequality:

sinh(x) =
ex − e−x

2
≤ ex

2
, as e−x > 0, ∀ x ∈ R,

to obtain

η2n+1

(
w(λ,ϕ)

)
≈ 1

2

∫ ∞

0

x2n+2λ

cosh(πx)

(
eMx − e−Mx

)
dx =

∫ ∞

0
x2n+2λ sinh(Mx)

cosh(πx)
dx,

≤ 1
2

∫ ∞

0
x2n+2λeMx− π2 x2

2 dx =
1
2

∫ ∞

0
x2n+2λ e−

π2
2

(
− M

π4 +(x− M
π2 )

2
)

dx < ∞. (24)

Thus, from Equations (22)–(24), we see that the moments associated with the weight
in Equation (8) are finite of all orders.

3.2. Orthogonality and Generating Function

We now present some result related to orthogonality of the perturbed Meixner–
Pollaczek weight given in (8).

Proposition 3. Let λ > 0, t > 0 and ϕ > 0. The orthogonality relation of the monic perturbed
Meixner–Pollaczek polynomials is given by

L [xmQ(λ,ϕ)
n (x; t)] =

∫ ∞

−∞
Q(λ,ϕ)

n (x; t) xm w(λ,ϕ)(x; t) dx = ζ
(λ,ϕ)
n (t) δn,m, n, m ∈ N0, (25)

where the weight w(λ,ϕ)(x; t) is as given in Equation (6) with

ζ
(λ,ϕ)
n (t) = L

[
xnQ(λ,ϕ)

n (x; t)
]
6= 0, n ≥ 0. (26)

Proof. The result immediately follows from Lemma 1 together with fact that the param-
eter t, which likely leads to shifting the phase ϕ to ϕ − at

2 . Equation (26) also follows

from the positivity condition of the coefficient β
(λ,ϕ)
n (t) > 0 of the recurrence relation for

orthogonality to occur [3]. The constant ζ
(λ,ϕ)
n (t), n ≥ m ≥ 0, takes the form

ζ
(λ,ϕ)
n (t) =

∫ ∞

−∞

(
Q(λ,ϕ)

n (x; t)
)2

w(λ,ϕ)(x; t) dx = ζ
(λ,ϕ)
m (t)

n

∏
j=m+1

β j(t) = ζ
(λ,ϕ)
0 (t)

n

∏
j=1

β j(t), (27)
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where ζ
(λ,ϕ)
0 > 0; in particular, ζ

(λ,ϕ)
0 = 1. We see, for λ > 0, that

ζ
(λ,ϕ)
n (t) =

n

∏
j=1

β j(t) =
n

∏
j=1

1
4

j(j + 2λ− 1) csc2
(

ϕ− at
2

)
= (n!)

(
1
2

csc
(

ϕ− at
2

))2n n

∏
j=1

(j + k) > 0,

with k = 2λ − 1, and using the fact that
n

∏
j=1

j = n! and
n

∏
j=1

j2 = (n!)2 and hence the

result holds.

It now follows that the sequence of monic polynomials
{
Q(λ,ϕ)

n (x; t)
}∞

n=0 obey the
three-term recurrence relation

xQ(λ,ϕ)
n (x; t) = Q(λ,ϕ)

n+1 (x; t) + α
(λ,ϕ)
n (t) Q(λ,ϕ)

n (x; t) + β
(λ,ϕ)
n (t) Q(λ,ϕ)

n−1 (x; t), n ≥ 1, (28)

with initial conditionsQ(λ,ϕ)
−1 = 0; Q(λ,ϕ)

0 = 1, where the recurrence coefficients are given by αn(t) := α
(λ,ϕ)
n (t) = −(λ + n) cot

(
ϕ− at

2
)
,

βn(t) := β
(λ,ϕ)
n (t) = 1

4 n(n + 2λ− 1) csc2(ϕ− at
2
)
.

(29)

Lemma 3. Let λ > 0, a > 0, 0 ≤ t < 2ϕ
a , fixed. The following holds for the monic perturbed

Meixner-Pollaczek polynomials Q(λ,ϕ)
n (x; t):

(i) The generating function

∞

∑
n=0
Q(λ,ϕ)

n (x; t) sn = (1− ei(ϕ− at
2 )s)−λ+ix(1− e−i(ϕ− at

2 )s)−λ−ix, |e±i(ϕ− at
2 )s| < 1, (30)

(ii) The hypergeometric representation

Q(λ,ϕ)
n (x; t) =

ein(ϕ− at
2 ) (2λ)n

n! 2F1

 −n, λ + ix

2λ

∣∣∣∣∣∣1− e−2i(ϕ− at
2 )

. (31)

Proof. (i) This result follows from the modification of the weight

W(λ,ϕ)(x) := e(2ϕ−π)x|Γ(λ + ix)|2 −→W(λ,ϕ)(x)e−axt := w(λ,ϕ)(x; t),

which leads to the modification P(λ)
n (x; ϕ)→ P(λ)

n (x; ϕ− at
2 ) := Q(λ,ϕ)

n (x; t), and hence
Equation (30) is immediate from the hypergeometric formulation of Meixner–Pollaczek
polynomials ([1], Section 9.7).

(ii) In order to prove the result in Equation (31), we employ the generating function (30)
together with the identity ([29], p. 82)

(1− u)a−b(1− u + uz)−a =
∞

∑
n=0

(b)n

n! 2F1

(
−n, a

b

∣∣∣∣∣z
)

un,

with u = sei(ϕ− at
2 ), a = λ + ix, b = 2λ, z = 1− e−2i(ϕ− at

2 ) to obtain

(
1− ei(ϕ− at

2 )s
)−λ+ix(

1− e−i(ϕ− at
2 )s
)−λ−ix

=
∞

∑
n=0

ei(n+1)(ϕ− at
2 ) (2λ)n

n! 2F1

 −n, λ + ix

2λ

∣∣∣∣∣∣∣1− e−2i(ϕ− at
2 )

 sn ,

and later comparing the coefficients of the power series of both sides to arrive at the
desired result.



Mathematics 2021, 9, 955 13 of 28

3.3. Concise Formulation

In the sequel, we use Lemma 3 to obtain concise formulations of the perturbed
Meixner–Pollaczek polynomials.

Theorem 3. Let λ > 0, a > 0, 0 ≤ t < 2ϕ
a , fixed. The following formulations hold for the monic

perturbed Meixner–Pollaczek polynomials Q(λ,ϕ)
n (x; t):

(i) Q(λ,ϕ)
n (x; t) = (−1)nein(ϕ− at

2 )
n

∑
k=0

(
−λ + ix

n− k

)(
−λ− ix

k

)
e−2ik(ϕ− at

2 )

=
n

∑
k=0

(
n
k

)
(λ− ix)n−k (λ + ix)k

n!
ei(n−2k)(ϕ− at

2 ),

(ii) Q(λ,ϕ)
n (x; t) =

n

∑
`=0

1
n!

(
n
`

)
(λ + ix)n−` (2λ + n− `)` ei(n−`)ϕe−

i(n−`)at
2

[
e−2i(ϕ− at

2 ) − 1
]n−`

ei(ϕ− at
2 )`.

Proof. (i) The proof for (i) uses generalized binomial Theorem

(1 + x)α =
∞

∑
n=0

(
α

n

)
xn

on the generating function in Equation (30) and applying Cauchy’s product of the
series by using the identity(

−a
n

)
=

(−1)n (a)n

n!
, a ∈ C,

where (a)n is the Pochhammer symbol given in Equation (3).

(ii) By considering ([1], Equation (1.7.11)) and upon some rearrangement as in ([10],
p. 172), the generating function takes the form

∞

∑
n=0

P(λ)
n (x; ϕ) sn =

∞

∑
n=0

(λ + ix)k
k!

eikϕ
(

e−2iϕ − 1
)k(

1− seiϕ
)−2λ−k

sk, (32)

where P(λ)
n (x; ϕ) is the Meixner–Pollaczek polynomial. Since Q(λ,ϕ)

n (x; t) := P(λ)
n (x,

ϕ− at
2 ), it follows that

∞

∑
n=0
Q(λ,ϕ)

n (x; t) sn =
∞

∑
n=0

(λ + ix)k
k!

eik(ϕ− at
2 )
(

e−2i(ϕ− at
2 ) − 1

)k(
1− sei(ϕ− at

2 )
)−2λ−k

sk

=
∞

∑
n=0

(λ + ix)k
k!

eikϕe
−ikat

2

(
e−2i(ϕ− at

2 ) − 1
)k(

1− sei(ϕ− at
2 )
)−2λ−k

sk. (33)

Expanding
(

1− sei(ϕ− at
2 )
)−2λ−k

using Pochhammer’s identity (−λ)k = (−1)k (λ)k
k! gives

(
1− sei(ϕ− at

2 )
)−2λ−k

=
∞

∑
`=0

(
−2λ− k

`

)(
−sei(ϕ− at

2 )
)`

=
∞

∑
`=0

(−1)`(2λ + k)`
`!

(−1)`ei(ϕ− at
2 )`s` =

∞

∑
`=0

(2λ + k)`
`!

eiϕ`e−
iat`

2 s`. (34)

By substituting Equations (34) into (33) and using the summation identity

∞

∑
n=0

∞

∑
k=0

f (k, n) =
∞

∑
n=0

n

∑
k=0

f (k, n− k),
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we obtain

∞

∑
n=0
Q(λ,ϕ)

n (x; t) sn =
∞

∑
k=0

∞

∑
`=0

(λ + ix)k
k!

(2λ + k)`
`!

eikϕe−
ikat

2

[
e−2i(ϕ− at

2 ) − 1
]k

eiϕ`e−
iat`

2 s`sk

=
∞

∑
k=0

k

∑
`=0

(λ + ix)k−`
(k− `)!

(2λ + k− `)`
`!

ei(k−`)ϕe−
i(k−`)at

2

[
e−2i(ϕ− at

2 ) − 1
](k−`)

eiϕ`e−
iat`

2 sk. (35)

By writing n instead of k in Equation (35), we may write

∞

∑
n=0
Q(λ,ϕ)

n (x; t)sn =
∞

∑
n=0

n

∑
`=0

(λ + ix)n−`
(n− `)!

(2λ + n− `)`
`!

ei(n−`)ϕe−
i(n−`)at

2

[
e−2i(ϕ− at

2 ) − 1
]n−`

eiϕ`e−
iat`

2 sn

=
∞

∑
n=0

(
n

∑
`=0

1
n!

(
n
`

)
(λ + ix)n−` (2λ + n− `)` ei(n−`)ϕe−

i(n−`)at
2

[
e−2i(ϕ− at

2 ) − 1
]n−`

ei(ϕ− at
2 )`

)
sn. (36)

Thus, the required result follows by comparing the coefficients of s on both sides of
the last equality.

3.4. Some New Recursive Relations

In this Subsection, let’s now denote, for notational convenience, the perturbed Meixner–
Pollaczek polynomials by Q(λ,a)

n (x; ϕ, t) in order to show the role of the parameters in
Equation (8). We may also sometimes omit some parameters for simplicity. We can now
state one of our main results giving new recursive relations fulfilled by the perturbed
polynomials using hypergoemetric identities.

Theorem 4. Let a > 0, ϕ > 0 and t > 0. Then the following recursive relations hold for monic
perturbed Meixner–Pollaczek polynomials Q(λ,a)

n (x; ϕ, t):

(i)

2i(λ + ix) sin ϕ Q(λ+ 1
2 ,a)

n

(
x− 1

2
i; ϕ, t

)
= eiϕ(n + 2λ) Q(λ,a)

n (x; ϕ, t)− 2 sin ϕ Q(λ,a)
n+1 (x; ϕ, t), (37)

(ii)

eiϕ Q(λ+ 1
2 ,a)

n

(
x− 1

2
i; ϕ, t

)
− eiϕQ(λ,a)

n (x; ϕ, t) =
n

2 sin ϕ
Q(λ+ 1

2 ,a)
n−1

(
x− 1

2
i; ϕ, t

)
. (38)

Proof. (i) In order to prove the result in (37), let’s rewrite the monic perturbed Meixner–
Pollaczek polynomials

Q(λ,a)
n (x; ϕ, t) =

n!
(2 sin ϕ)n P(λ)

n

(
x; ϕ− at

2

)
=

(2λ)n

(2 sin ϕ)n einϕ
2F1

 −n, λ + ix

2λ

∣∣∣∣∣∣∣1− e−2iϕ

. (39)

Now, by using the 2F1-hypergeometric formulation given in Equation (39), we rewrite
Equation (37) as

2i(λ + ix) sin ϕ

{
(2λ + 1)n

(2 sin ϕ)n einϕ
2F1

 −n, λ + ix + 1

2λ + 1

∣∣∣∣∣∣∣1− e−2iϕ

}

= eiϕ(n + 2λ)

{
(2λ)n

(2 sin ϕ)n einϕ
2F1

 −n, λ + ix

2λ

∣∣∣∣∣∣∣1− e−2iϕ

}

− 2 sin ϕ

{
(2λ)n+1

(2 sin ϕ)n+1 einϕeiϕ
2F1

 −n, λ + ix

2λ

∣∣∣∣∣∣∣1− e−2iϕ

}. (40)
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Simplifying Equation (40) and using the identities in ([30], Theorem 9.2)

(2λ + 1)n = n+2λ
2λ (2λ)n,

(2λ)n = (2λ)n+1
n+2λ ,

sin ϕ = 1
2i
(
eiϕ − e−iϕ),

 (41)

we obtain the following relations:

(λ + ix) (1− e−2iϕ) (2λ + 1)n 2F1

 −n, λ + ix + 1

2λ + 1

∣∣∣∣∣∣∣1− e−2iϕ


= (n + 2λ) (2λ)n 2F1

 −n, λ + ix

2λ

∣∣∣∣∣∣∣1− e−2iϕ

− (2λ)n+1 2F1

 −n− 1, λ + ix

2λ

∣∣∣∣∣∣∣1− e−2iϕ

. (42)

Thus, the result in Equation (37) immediately follows from Equation (42) together
with the 2F1-contagious hypergeometric identity (cf. [31], Equation (2.11))

2F1

 a, b

c

∣∣∣∣∣∣z
 = 2F1

 a− 1, b

c

∣∣∣∣∣∣z
+

bz
c 2F1

 a, b + 1

c + 1

∣∣∣∣∣∣z
, (43)

where a = −n, b = λ + ix, and c = 2λ.

(ii) To prove the second, we rewrite the left hand side of Equation (38), using Equation (39),
to obtain

eiϕ Q(λ+ 1
2 ,a)

n

(
x− 1

2
i; ϕ, t

)
− eiϕQ(λ,a)

n (x; ϕ, t)

=
ei(n+1)ϕ

(2 sin ϕ)n

{
(2λ + 1)n 2 F1

 −n, λ + ix + 1

2λ + 1

∣∣∣∣∣∣∣∣1− e−2iϕ

− (2λ)n+1 2 F1

 −n, λ + ix

2λ

∣∣∣∣∣∣∣∣1− e−2iϕ


}

. (44)

Besides, the right hand side of Equation (38) also takes the form

n
2 sin ϕ

Q(λ+ 1
2 ,a)

n−1

(
x− 1

2
i; ϕ, t

)
=

n
2 sin ϕ

{
(2λ + 1)n−1

(2 sin ϕ)n−1 ei(n−1)ϕ
2 F1

 −n, λ + ix + 1

2λ + 1

∣∣∣∣∣∣∣∣1− e−2iϕ


}

=
n

(2 sin ϕ)n (2λ + 1)n−1ei(n−1)ϕ
2 F1

 −n, λ + ix + 1

2λ + 1

∣∣∣∣∣∣∣∣1− e−2iϕ

. (45)

We now see that the result in Equation (38) follows by combining Equations (44) and
(45) together with the 2F1 hypergoemetric contagious identity (cf. ([31], Equation (2.6))

(a− c + 1) 2 F1

 a, b

c

∣∣∣∣∣∣∣∣z
+ (c− 1) 2 F1

 a, b− 1

c− 1

∣∣∣∣∣∣∣∣z
− a(1− z) 2 F1

 a + 1, b

c

∣∣∣∣∣∣∣∣z
 = 0, (46)

where a = −n, b = λ + ix + 1, c = 2λ + 1 and z = 1− e−2iϕ.

Our next proposition gives some properties of the perturbed Meixner–Pollaczek
polynomials.

3.5. Addition Formulation and Integral Representation

Proposition 4. Let λ > 0, a > 0 and 0 ≤ t < 2ϕ
a . The following properties hold for Q(λ,ϕ)

n (x; t):
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(i) Addition formulation

Q(α+β,ϕ)
n (x + y; t) =

n

∑
k=0
Q(α,ϕ)

n−k (x; t) Q(β,ϕ)
k (y; t). (47)

(ii) Integral representation

Q(λ,ϕ)
n (x; t) =

1
n!

ein(ϕ− at
2 )

|Γ(λ + ix)|2
∫ ∞

0

∫ ∞

0
e−(s+r) (sr)λ−1

(
s + e−2i(ϕ− at

2 )r
)n( r

s

)ix
ds dr. (48)

Proof. (i) By replacing λ → α + β, (α > 0, β > 0) and x → x + y in Equation (30) and
then applying Cauchy’s product, we obtain

∞

∑
n=0
Q(α+β,ϕ)

n (x + y; t) sn =

[
1− ei(ϕ− at

2 )s

]−(α+β−ix−iy)[
1− e−i(ϕ− at

2 )s

]−(α+β+ix+iy)

=

(
∞

∑
n=0
Q(α,ϕ)

n (x; t) sn

)(
∞

∑
n=0
Q(β,ϕ)

n (y; t) sn

)

=
∞

∑
n=0

∞

∑
k=0
Q(α,ϕ)

n (x; t)Q(β,ϕ)
k (y; t) sk+n

=
∞

∑
n=0

n

∑
k=0
Q(α,ϕ)

n−k (x; t)Q(β,ϕ)
k (y; t) sn . (49)

Thus, Equation (47) follows by comparing the coefficients of s on both sides of the
last equality.

(ii) In order to prove (48), we use the generating function in ([1], Equation (9.7.13)) (by
setting γ = 2λ) and by applying the definition of Gamma function

Γ(z) b−z =
∫ ∞

0
e−bttz−1dt, [<(z) > 0],

to obtain

∞

∑
n=0

e−in(ϕ− at
2 )Q(λ,ϕ)

n (x; t) un = (1− u)−(λ−ix)
(

1− ue−2i(ϕ− at
2 )
)−(λ+ix)

=
1

Γ(λ− ix)
1

Γ(λ + ix)

∫ ∞

0

∫ ∞

0
e−(1−u)ssλ−1−ixds e−(1−ue−2i(ϕ− at

2 )
)r rλ−1+ixdr

=
1

|Γ(λ + ix)|2
∫ ∞

0

∫ ∞

0
e−(s+r) (sr)λ−1 eu(s+e−2i(ϕ− at

2 )r) (sr)λ−1
( r

s

)ix
ds dr

=
∞

∑
n=0

1
n!

[
1

|Γ(λ + ix)|2
∫ ∞

0

∫ ∞

0
e−(s+r) (sr)λ−1

(
s + e−2i(ϕ− at

2 )r
)n( r

s

)ix
ds dr

]
un . (50)

Thus, (48) follows by comparing the coefficients of un on both sides of Equation (50).

3.6. Some Properties of the Zeros Associated with the Perturbed Weight in (8)

For ϕ ∈ (0, π) and λ > 0, the zeros of the Meixner–Pollaczek polynomials, {P(λ)
n (x; ϕ)}∞

n=0,
are simple and real, and consequently, the zeros interlace [3]. The monotonicity properties
of all the zeros with respect to a parameter of orthogonal polynomials associated with an
even weight function, specifically, the symmetric Meixner–Pollaczek case, are given in [26]
(see also [32]). In what follows, we state some fresh results related to certain properties of
the zeros of the perturbed Meixner–Pollaczek polynomials.

3.6.1. Monotonicity of the Zeros

Proposition 5. Let λ > 0, a > 0 and x ∈ R. The zeros
{

x(λ,ϕ)
nk (t)

}n

k=1
of the monic perturbed

Meixner–Pollaczek polynomials Q(λ,a)
n (x; ϕ, t) are

(i) monotone decreasing functions of t on the interval 2ϕ− 2π < at < 2ϕ, t > 0.
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(ii) monotone increasing functions of ϕ for 0 < ϕ− at
2 < π and fixed t > 0.

Proof. (i) By applying Markov’s monotonicity Theorem (cf. [10], Theorem 7.1.1), it is
easy to check that for the weight in Equation (8), we have

ln w(λ,ϕ)(x; t) = (2ϕ− π)x + ln
(
|Γ(λ + ix)|2

)
− axt, a > 0, x ∈ R. (51)

Differentiating Equation (51) with respect to t gives G(x; t) =
∂ ln w(λ,ϕ)(x; t)

∂t
= −ax,

and hence G(x; t) is decreasing function of x for x ∈ R since
∂G
∂x

= −a < 0 for
a > 0 and x ∈ R. We can easily infer from (cf. [10], Theorem 7.1.1) that the zeros of
Q(λ,a)

n (x; ϕ, t) decrease as a function of t, for t ∈ ( 2ϕ−2π
a , 2ϕ

a ).
(ii) It is easy to check that for the perturbed weight in Equation (8), we have

ln w(λ,ϕ)(x; t) = (2ϕ− π)x + ln
(
|Γ(λ + ix)|2

)
− axt, a > 0, x ∈ R. (52)

Differentiating Equation (52) with respect to t gives H(x; t) =
∂ ln w(λ,ϕ)(x; t)

∂ϕ
= 2x.

Since H(x; t) is monotone increasing of x for x ∈ R, as
∂H
∂x

> 0 for a > 0 and x ∈ R,

it is easy to deduce from ([10], Theorem 7.1.1) that the zeros of Q(λ,a)
n (x; ϕ, t) increase

as a function of ϕ, for ϕ ∈
( at

2 , π + at
2
)
, a > 0, with t ∈ ( 2ϕ−2π

a , 2ϕ
a ).

Our next result gives the connection between Hellmann–Feynman Theorem [33] and
the monotonicity of the zeros associated with the perturbed weight given in Equation (8).

Theorem 5. Let λ > 1
2 ,
{

xn,k(ϕ, t)
}n

k=1 be the zeros of Q(λ,a)
n (x; ϕ, t) in such a way that

xn,1(ϕ, t) > xn,2(ϕ, t) > · · · > xn,n(ϕ, t).

The following monotone properties of the zeros hold true for t ∈ [0, 2ϕ
a ):

(i) ∂xn,1(ϕ,t)
∂ϕ > 0 for π

2 < ϕ− at
2 < π, a > 0.

(ii) ∂xn,n(ϕ,t)
∂ϕ > 0 for 0 < ϕ− at

2 < π
2 , a > 0.

(iii) ∂xn,1(ϕ,t)
∂t < 0 for π

2 < ϕ− at
2 < π, a > 0.

(iv) ∂xn,n(ϕ,t)
∂t < 0 for ϕ− at

2 ∈
(
0, π

2
)
, a > 0.

Proof. To apply Hellmann–Feynman’s Theorem in terms of the three-term recurrence
relation (cf. [34], Theorem 1.1), we have to consider recurrence coefficients of the monic
perturbed Meixner–Pollaczek polynomials in Equation (28),

α
(λ,ϕ)
n (t) = −(λ + n) cot

(
ϕ− at

2

)
; β

(λ,ϕ)
n (t) =

n(n + 2λ− 1)
4

csc2
(

ϕ− at
2

)
.

(i) We now first consider the derivative of the coefficient αn(λ, ϕ); i.e., α′n(λ, ϕ) as

α′n(ϕ) :=
∂α

(λ,ϕ)
n (t)
∂ϕ

= −(λ + n) csc2
(

ϕ− at
2

)
, n ≥ 0, (53)

and we see from (53) that α′n(ϕ) < 0 for ϕ− at
2 ∈ (kπ, π + kπ), k ∈ Z. Hence the

coefficient αn(λ, ϕ), n ≥ 0 is a monotone decreasing function of ϕ in the interval
ϕ− at

2 ∈ (0, π) + kπ for k ∈ Z and fixed t > 0.
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Next, we examine the derivative of β′n(λ, ϕ). For n ≥ 1,

β′n(ϕ) :=
∂β

(λ,ϕ)
n (t)
∂ϕ

= −1
2
(n)(λ + n− 1) csc

(
ϕ− at

2

)
cot
(

ϕ− at
2

)
. (54)

From Equation (54), we see that β′n(ϕ) < 0 for ϕ− at
2 ∈

(
kπ, π

2 + kπ
)
, k ∈ Z with

fixed parameter t > 0; and β′n(ϕ) > 0 for ϕ− at
2 ∈

(
π
2 + kπ, kπ

)
, k ∈ Z. In particular,

for k = 0, we see that β′n(ϕ) < 0 if ϕ− at
2 ∈ (0, π

2 ) and β′n(ϕ) > 0 if ϕ− at
2 ∈ (π

2 , π)
for fixed positive t. Thus, the coefficient βn(λ, ϕ), n ≥ 0 is a monotone decreasing
function of the parameter ϕ in the interval ϕ ∈ (at, π

2 + at) for k ∈ Z and for fixed
positive t; and βn(λ, ϕ), n ≥ 0 is a monotone increasing function of ϕ in the interval
ϕ ∈ (π

2 + at, π + at), k ∈ Z and fixed t > 0. Thus, the assumptions of Hellman-
Feynman Theorem are fulfilled, and so is Theorem 5.

(ii) The proofs for (ii), (iii) and (iv) share similar approach.

3.6.2. Convexity of the Extreme Zeros

In the following, we shall now prove the convexity of zeros related to the perturbed
Meixner–Pollaczek weight (8).

Theorem 6. Let λ > 1
2 ,
{

xn,k(ϕ, t)
}n

k=1 be the zeros of Q(λ,a)
n (x; ϕ, t) in such a way that

xn,1(ϕ, t) > xn,2(ϕ, t) > · · · > xn,n(ϕ, t). The following convexity results of the extreme ze-
ros hold true:

(i) ∂2xn,1(ϕ,t)
∂ϕ2 > 0 and ∂2xn,1(ϕ,t)

∂t2 > 0 for ϕ− at
2 ∈

(
π
2 , π

)
, a, t > 0.

(ii) ∂2xn,1(ϕ,t)
∂ϕ2 < 0 and ∂2xn,1(ϕ,t)

∂t2 < 0 for ϕ− at
2 ∈

(
0, π

2
)
, a, t > 0.

Proof. (i) By following the idea of Dimitrov (cf. [35], Lemma 1), the convexity of the
extreme zeros follows from the derivatives

d2α
(λ,ϕ)
n

dt2 = −(n + λ)
d2

dϕ2

(
cot
(

ϕ− at
2

))
= −2(n + λ)a2 csc2

(
ϕ− at

2

)
cot
(

ϕ− at
2

)

=

< 0, if 0 < ϕ− at
2 < π

2 ,

> 0, if π
2 < ϕ− at

2 < π,
(55)

and

d2β
(λ,ϕ)
n

dϕ2 =
d2

dϕ2

(
csc2

(
ϕ− at

2

))
=

n(n + 2λ− 1)a2

4

[
4 csc2

(
ϕ− at

2

)
cot2

(
ϕ− at

2

)
+ 2 csc4

(
ϕ− at

2

)]

= n(n + 2λ− 1) a2

[
csc2

(
ϕ− at

2

)
cot2

(
ϕ− at

2

)
+

1
2

csc4
(

ϕ− at
2

)]
> 0, (56)

for all values of ϕ− at
2 , and in particular, 0 < ϕ− at

2 ∈ π for fixed t > 0 and a > 0. By com-
bining Equations (55) and (56) and applying ([35], Lemma 1), the above convexity result of
the largest zero of the perturbed Meixner–Pollaczek polynomials follows immediately.

(ii) The concavity of the smallest zero of the perturbed Meixner–Pollaczek polynomials also
follows from Equations (55) and (56), in a similar manner, by applying ([35], Lemma 1).
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Remark 2. A similar numerical experimentation of the zeros of the perturbed Meixner–Pollaczek
polynomials can be done to give analog results to the ones in Section 1.1.1 with careful restriction of
involved parameters.

4. Some Applications of the Polynomial Q(λ,a)
n (x;ϕ, t)

In this Section, certain applications of the perturbed Meixner-Pollaczek polynomials
are explored. These polynomials have wider applicability in the Random matrix theory
of level statistics using partition functions (via Toda molecule equation) [11], wave func-
tions in Quantum Mechanics, the Fisher information theory and in the study of Gaussian
quadrature (cf. [36]), to mention a few.

4.1. Exposition of Toda-Type Lattice/Molecule Equation

Toda lattice is a system of particles on the line with exponential interaction of nearest
neighbours [37]. Toda was the first to study such a system for infinitely many particles on
the line [38]. The Toda lattice equations are investigated from the Newtonian equations of
motion (see, for example, [37])

ẍn = exn−1−xn − exn−xn+1 , n ≥ 1,

when one takes αn = ẋn and βn = exn−1−xn for n ∈ N. (Note that αn and βn are the
recurrence coefficients for corresponding monic orthogonal polynomials on the real line [3,8]).

The fact that perturbed Meixner–Pollaczek polynomials are time-dependent orthogo-
nal polynomials, allows us to study the time-evolution equation related to Toda lattices.
The Perturbed Meixner–Pollaczek weight in (8) is obtained from deformation of classi-
cal Meixner–Pollaczek weight by exp(−axt). For similar measure deformation, we refer
to [21,23,27] (See also [39]). We now mention in the following result of the perturbed
Meixner–Pollaczek polynomials satisfying a similar scaled Toda lattice/molecule equation.

Proposition 6. The recurrence coefficients αn(t) and βn(t) in (29) associated with the monic
perturbed Meixner–Pollaczek polynomials Q(λ,ϕ)

n (x; t) for ϕ ∈
( at

2 , π + at
2
)
, obey a scaled Toda

molecule equation 
∂αn

∂t
= a(βn − βn+1),

∂βn

∂t
= aβn(αn−1 − αn), a > 0.

(57)

Proof. This result immediately follows from orthogonality and iterated recurrences,
see [21,39].

The proof of this result is given in Appendix A.1 of Appendix A just for the reader’s
convenience.

Remark 3. We now see that Equation (29) solves the differential-recurrence (Toda) equation in
Equation (57) associated with the monic perturbed Meixner–Pollaczek polynomials.

4.2. Fisher Information of the Monic Polynomial Q(λ,a)
n (x; ϕ, t)

Following the approach given in [36], the Fisher information of the Meixner–Pollaczek
polynomials is computed using the concept introduced for general orthogonal polynomials
by Sanchéz-Ruiz and Dehesa in [40]. They considered a sequence of real polynomials
orthogonal with respect to the weight function ρ(x) on the interval [a, b]

b∫
a

Pn(x) Pm(x) ρ(x) dx = ζn δn,m, n, m = 0, 1, . . . ,
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with deg(Pn) = n. Introducing the normalized density functions

ρn(x) =
[Pn(x)]2ρ(x)

ζn
, (58)

they in fact defined the Fisher information corresponding to the densities in Equation (58)

I(n) =
b∫

a

[ρ′n(x)]2

ρn(x)
dx. (59)

Applying the formula in Equation (59) to the classical hypergeometric polynomials,
the authors in [41] evaluated I(n) for Jacobi, Laguerre and Hermite polynomials. We quote
the following result by Dominici from [36]:

Theorem 7 ([36]). The Fisher information of the Meixner–Pollaczek polynomials is given by

Iϕ

(
P(λ)

n

)
=

∞∫
−∞

[
∂

∂ϕ
ρn(x)

]2 1
ρn(x)

dx =
2
[
n2 + (2n + 1)λ

]
sin2(ϕ)

, n ∈ N0,

where the normalized function ρn(x) is as defined in Equation (58).

Based on the above discussion, we shall now reproduce the following application of
the monic perturbed Meixner–Pollaczek polynomials.

Theorem 8. The Fisher information of the monic perturbed Meixner–Pollaczek polynomials with
respect to the parameter ϕ is given, in terms of the recurrence coefficients, by

Iϕ

(
Q(λ,ϕ)

n (x; t)
)
=

∞∫
−∞

[
∂

∂ϕ
ρn(x; t)

]2 1
ρn(x; t)

dx = 4
(

β
(λ,ϕ)
n + β

(λ,ϕ)
n + [α

(λ,ϕ)
n ]2

)

+ 4(2n + 2λ− 1)α(λ,ϕ)
n + (2n + 2λ− 1)2

(
cot
(

ϕ− at
2

))2

, (60)

where the normalized function ρn(x; t) is as given in Equation (58).

Proof. By employing the three-term recurrence relation in Equation (28) associated with
the weight in (8) and using the orthogonality relation in Equation (25) with its (monic)
normalization constant, we have normalized function

ρn(x; t) =

[
Q(λ,ϕ)

n (x; t)
]2

w(λ,ϕ)(x; t)

ζ
(λ,ϕ)
n

=
e(2ϕ−π)x |Γ(λ + ix)|2 e−axt[2 sin(ϕ− at

2 )
]2n+2λ

[
Q(λ,ϕ)

n (x; t)
]2

2πΓ(n + 2λ)Γ(n + 1)
(61)

and we note that
∫
R

ρn(x; t) = 1 for n ∈ N0.

By taking the derivatives of ρn with respect to ϕ and using the perturbed weight (8)

∂w(λ,ϕ)

∂ϕ
= (2x) w(λ,ϕ), (62)

together with the result in ([36], Equation (12)) gives

∂Q(λ,ϕ)
n (x; t)

∂ϕ
=

∂

∂ϕ

(
n!

(2 sin ϕ)n P
(λ)
n

(
x; ϕ− at

2

))
=
−n(n + 2λ− 1)
2 sin2(ϕ− at

2

) Q(λ,ϕ)
n−1 (x; t). (63)
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Using Equation (61), it follows that

∂ρn(x; t)
∂ϕ

=
Q(λ,ϕ)

n (x; t)w(λ,ϕ)(x; t)

ζ
(λ,ϕ)
n

{
−n(n + 2λ− 1)

sin2(ϕ− at
2

) Q(λ,ϕ)
n−1 (x; t) + 2xQ(λ,ϕ)

n (x; t)−
(

1

ζ
(λ,ϕ)
n

∂ζ
(λ,ϕ)
n

∂ϕ

)
Q(λ,ϕ)

n (x; t)

}
(64)

From the orthogonality of Meixner-Pollaczek polynomials [1], we note here that

ζ
(λ,ϕ)
n (t) =

2π(n!)Γ(n + 2λ)[
2 sin(ϕ− at

2 )
]2n+2λ

=
2πΓ(n + 1)Γ(n + 2λ)[

2 sin(ϕ− at
2 )
]2n+2λ

, (65)

for the perturbed Meixner-Pollaczek polynomials. It then follows from Equation (65) that

1

ζ
(λ,ϕ)
n

∂ζ
(λ,ϕ)
n

∂ϕ
=

(−2π)(2n + 2λ− 1)Γ(n + 1)Γ(n + 2λ)
( 1

2

)2n+2λ[
2 csc(ϕ− at

2 )
]2n+2λ cot(ϕ− at

2 )

Γ(n + 1)Γ(n + 2λ)
( 1

2

)2n+2λ[
2 csc(ϕ− at

2 )
]2n+2λ

= −(2n + 2λ− 1) cot
(

ϕ− at
2

)
. (66)

By using Equations (66) and (61), Equation (64) becomes

∂ρn(x; t)
∂ϕ

=
1

ζ
(λ,ϕ)
n

Q(λ,ϕ)
n (x; t)w(λ,ϕ)(x; t)

{
−n(n + 2λ− 1)

sin2
(

ϕ− at
2

) Q(λ,ϕ)
n−1 (x; t) + 2xQ(λ,ϕ)

n (x; t)−
(

1

ζ
(λ,ϕ)
n

∂ζ
(λ,ϕ)
n
∂ϕ

)
Q(λ,ϕ)

n (x; t)

}

=
ρn(x; t)

Q(λ,ϕ)
n (x; t)

{
−n(n + 2λ− 1)

sin2
(

ϕ− at
2

) Q(λ,ϕ)
n−1 (x; t) + 2xQ(λ,ϕ)

n (x; t) + (2n + 2λ− 1) cot
(

ϕ− at
2

)
Q(λ,ϕ)

n (x; t)

}

=
ρn(x; t)

Q(λ,ϕ)
n (x; t)

{[
2x + (2n + 2λ− 1) cot

(
ϕ− at

2

)]
Q(λ,ϕ)

n (x; t)− 4β
(λ,ϕ)
n Q(λ,ϕ)

n−1 (x; t)

}
. (67)

Thus, using Equation (67), we attain that

(
∂ρn

∂ϕ

)2 1
ρn

=
ρn(x; t)[

Q(λ,ϕ)
n (x; t)

]2

{[
2x + (2n + 2λ− 1) cot

(
ϕ− at

2

)]2[
Q(λ,ϕ)

n (x; t)
]2

− 8β
(λ,ϕ)
n [2x + (2n + 2λ− 1) cot

(
ϕ− at

2

)
]Q(λ,ϕ)

n−1 (x; t)Q(λ,ϕ)
n (x; t) + 16

[
β
(λ,ϕ)
n

]2[
Q(λ,ϕ)

n−1 (x; t)
]2
}

=
w(λ,ϕ)(x; t)

ζ
(λ,ϕ)
n

{[
4x2 + 4(2n + 2λ− 1) cot

(
ϕ− at

2

)
x + (2n + 2λ− 1)2

(
cot
(

ϕ− at
2

))2
][
Q(λ,ϕ)

n (x; t)
]2

− 16β
(λ,ϕ)
n xQ(λ,ϕ)

n−1 (x; t)Q(λ,ϕ)
n (x; t)− 8β

(λ,ϕ)
n (2n + 2λ− 1) cot

(
ϕ− at

2

)
Q(λ,ϕ)

n−1 (x; t)Q(λ,ϕ)
n (x; t)

+ 16
[

β
(λ,ϕ)
n

]2[
Q(λ,ϕ)

n−1 (x; t)
]2
}

. (68)

By integrating Equation (68) and using the orthogonality relation in Equation (25) and
iterating the recurrence (28)

xQ(λ,ϕ)
n (x; t) = Q(λ,ϕ)

n+1 (x; t) + αn(t)Q(λ,ϕ)
n (x; t) + βn(t)Q(λ,ϕ)

n−1 (x; t),

x2Q(λ,ϕ)
n (x; t) = Q(λ,ϕ)

n+2 (x; t)(αn + αn+1)Q
(λ,ϕ)
n+1 (x; t) +

(
βn+1 + βn + α2

n

)
Q(λ,ϕ)

n (x; t)

+ βnαn−1Q
(λ,ϕ)
n−1 (x; t) + βnβn−1Q

(λ,ϕ)
n−2 (x; t), (69)

we obtain
(

∂ρn
∂ϕ

)2 1
ρn

=
1

ζ
(λ,ϕ)
n

∫
4x2
[
Q(λ,ϕ)

n (x; t)
]2

w(λ,ϕ)(x; t) dx

+
1

ζ
(λ,ϕ)
n

∫
4(2n + 2λ− 1) cot

(
ϕ− at

2

)
x
[
Q(λ,ϕ)

n (x; t)
]2

w(λ,ϕ)(x; t) dx

+
1

ζ
(λ,ϕ)
n

∫
(2n + 2λ− 1)2

(
cot
(

ϕ− at
2

))2[
Q(λ,ϕ)

n (x; t)
]2

w(λ,ϕ)(x; t) dx

− 16β
(λ,ϕ)
n

1

ζ
(λ,ϕ)
n

∫
xQ(λ,ϕ)

n−1 (x; t)Q(λ,ϕ)
n (x; t)w(λ,ϕ)(x; t) dx + 16

[
β
(λ,ϕ)
n

]2 1

ζ
(λ,ϕ)
n

∫ [
Q(λ,ϕ)

n−1 (x; t)
]2

w(λ,ϕ)(x; t) dx

= 4
(

β
(λ,ϕ)
n + β

(λ,ϕ)
n + [α

(λ,ϕ)
n ]2

)
+ 4(2n + 2λ− 1)α(λ,ϕ)

n + (2n + 2λ− 1)2
(

cot
(

ϕ− at
2

))2
, (70)
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and this completes the proof.

Remark 4. The Fisher information of the classical orthogonal polynomials with respect to a pa-
rameter is given in [41]. In our case, the Fisher information of the perturbed Meixner-Pollaczek
polynomials with respect to the parameter a > 0 can also be obtained in a similar procedure, using
the fact that

∂w(λ,ϕ)

∂a
= (−tx) w(λ,ϕ).

4.3. Guass–Meixner–Pollaczek Quadrature

Let’s first recall a quadrature rule,

∫
R

f (x)dµ(x) ≈
n

∑
ν=1

ωj f (xj),

where the integral of a function f relative to some (in general positive) measure dµ is
approximated by a finite sum involving n values of f at suitably selected distinct nodes xj,
where these nodes are obtained from the zeros of orthogonal polynomials Φn(x; w) and
the quadrature weights ωj, j = 1, 2, . . . , n can also be given by [42]

ωj =
〈Φn−1, Φn−1〉w

Φn−1(xj) Φ′n(xj)
. (71)

where the prime denotes differentiation with respect to x.
Just for simplicity, this Subsection emphasizes to explore Gaussian quadrature rule

related to symmetric monic Meixner-Pollaczek polynomials, which are special cases of the
perturbed Meixner-Pollaczek polynomials Q(λ,ϕ)

n (x; t) when t = 0 and ϕ = π
2 . As given in

([1], Section 9.7), symmetric monic Meixner-Pollaczek polynomials, are defined by

S (λ)n (x) := P(λ)
n

(
x;

π

2

)
=

(2λ)n

n! 2F1

 −n, λ + ix

2λ

∣∣∣∣∣∣2
 , (72)

and are orthogonal on R for λ > 0 with respect to the continuous weight

W(x; λ) =
1

2π
| Γ(λ + ix)|2, λ > 0, x ∈ R. (73)

Since the sequence of monic polynomials {S (λ)n }∞
n=0 defined in Equation (72) are

symmetric with respect to the origin, it follows from orthogonality that they obey symmetric
recurrence relation [6]{

xS (λ)n (x) = S (λ)n+1(x) + βn(λ) S (λ)n−1(x), n ∈ N,

S (λ)0 (x) ≡ 1, S (λ)−1 (x) ≡ 0,
(74)

where the coefficient βn(λ) from Equation (74) is given by [6]

βn(λ) =
(n)(2λ + n− 1)

4 sin2(π
2 )

=
(n)(n + 2λ− 1)

4
, n ≥ 1. (75)

It now follows from [1] that the normalization constant associated with the weight in
(73) is given by

ζ
(λ)
n =

2π Γ(n + 1) Γ(n + 2λ)

22n+2λ
. (76)
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We note that, for λ = 1
2 , taking into account of Euler’s duplication formula ([2],

Equation (5.5.5)), we have from (73)

W
(

x;
1
2

)
=

1
2π

∣∣∣Γ(1
2
+ ix

)∣∣∣2 =
1

2π

(
π

cosh(πx)

)
=

1
2 cosh(πx)

.

Similarly, if we take λ = 1, again using Euler’s duplication formula [2], we obtain

W(x; 1) =
1

2π

∣∣∣Γ(1 + ix)
∣∣∣2 =

1
2π

Γ(1 + ix) Γ(1− ix) =
1

2π

(
πx

sin(πx)

)
=

x
2 sin(πx)

.

We now establish the following result, which is an application of Gaussian quadrature
formula based on (symmetric) Meixner-Pollaczek weight (74).

Proposition 7. The Gauss quadrature rule for a continuous function f (x) associated with sym-
metric Meixner-Pollaczek weight in (73) is given by

∫ ∞

−∞
f (x) W(x; λ) dx ≈

j

∑
k=1

ω
(λ)
j,k f (x(λ)j,k ) , (77)

where f (x) can be a polynomial, and the quadrature weights are given by

ω
(λ)
j,n =

∫
R

∣∣∣Γ(λ + ix)
∣∣∣2[ j

∏
n 6=k
k=1

 x− x(λ)j,k

(x(λ)j,n − x(λ)j,k

]dx ,

for n = 1, 2, 3, . . . , j and
{

x(λ)j,1 , x(λ)j,2 , . . . , x(λ)j,j

}
are the zeros of Meixner-Pollaczek polynomials S (λ)j .

Proof. Suppose f ∈ P2j−1. Then, by using division algorithm, we have

f = S (λ)j (x) V(x) + Rj(x) , (78)

where the degree of Rj(x) is (j− 1) and S (λ)j (x) is orthogonal to any polynomials of degree

<j, and V(x) is of degree (j − 1) and then we have 〈S (λ)j , V(x)〉 = 0. Now, by using
orthogonality property and Equation (78), we have

∫
R

f (x) W(x; λ) dx =
∫
R

W(x; λ)

[
S (λ)j (x) V(x) + Rj(x)

]
dx

=
∫
R

W(x; λ) S (λ)j (x) V(x) dx +
∫
R

W(x; λ) Rj(x) dx

=
∫
R

W(x; λ)Rj(x) dx .

However, by orthogonality, and since Rj(x), a polynomial of degree (j− 1), is approx-
imated by using Lagrange interpolating polynomial, Lj(x), and it is given as ,

Rj(x) ≈ Lj(x) =
j

∑
k=1

`j,k(x) Rj(x) , where `j,k(x) =
j

∏
`=1
k 6=`

 x− x(λ)j,`

x(λ)j,k − x(λ)j,`

 .

Now,
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∫
R

W(x; λ) f (x) dx =
∫
R

W(x; λ) Rj(x) dx =
∫
R

W(x; λ)

[ j

∑
k=1

`j,k(x) Rj(xk)

]
dx

=
j

∑
k=1

∫
R

W(x; λ) `j,k(x) Rj(xk) dx =
j

∑
k=1

Rj(xk)
∫
R

W(x; λ) `j,k(x) dx

=
j

∑
k=1

Rj(xk) ω
(λ)
j,k

(
where ω

(λ)
j,k =

∫
R

W(x; λ) `j,k(x) dx
)

=
j

∑
k=1

ω
(λ)
j,k f (x(λ)j,k )

(
since f (x(λ)j,k ) = Rj(xk)

)
.

Therefore,
∫
R

f (x) W(x; λ) dx =
j

∑
k=1

ω
(λ)
j,k f (x(λ)j,k ) where ω

(λ)
j,k =

∫
R
`j,k(x) W(x; λ) dx .

In order to implement Proposition 7, the first few monic polynomials S (λ)n (x), for some
values of λ, are shown in the following Table 4.

Table 4. S (λ)n (x) for 0 ≤ n ≤ 4 and λ = 1, 1
2 , 1

4 .

λ = 1 λ = 1
2 λ = 1

4

n = 0 1 1 1

n = 1 x x x

n = 2 x2 − 1
2 x2 − 1

4 x2 − 1
8

n = 3 x3 − 2x x3 − 5
4 x x3 − 7

8 x

n = 4 x4 − 5x2 + 3
2 x4 − 7

2 x2 + 9
16 x4 − 11

4 x2 + 15
64

n = 5 x5 − 10x3 +
23
2

x x5 − 15
2 x3 + 89x

16 x5 − 25 x3

4 + 211 x
64

The following example elaborates the applicability of Proposition 7.

Example 1. Construct a two-point Gauss quadrature rule for the symmetric Meixner-Pollaczek

weight W(x; λ) =
∣∣∣Γ(1 + ix)

∣∣∣2 with parameters (λ = 1
2 and λ = 1) and also compute the specific

zeros x(λ)j,k and the quadrature weights ω
(λ)
j,k of this quadrature rule.

Solution: By considering the zeros of symmetric Meixner-Pollaczek polynomials, S (λ)n (x)
with parameter (λ = 1

2 and λ = 1) and by recalling that f ∈ P2j−1, we compute the Gauss
quadrature rule, as given in (77), as follows.

The case when λ = 1:
The zeros of S (1)2 (x) = x2 − 1

2 are x(1)2,1 = 1√
2

and x(1)2,2 = − 1√
2

and the corresponding
quadrature weights are given by

ω
(1)
2,1 =

∫
R

∣∣∣Γ(1 + ix)
∣∣∣2[ 2

∏
n 6=k
k=1

 x− x(1)2,k

(x(1)2,1 − x(1)2,k

]dx =
∫ ∞

−∞
πx

sin πx

 x− x(1)2,2

(x(1)2,1 − x(1)2,2

dx =
∫ ∞

−∞
πx

sin πx

 x + 1√
2√

2

dx, (79)

and

ω
(1)
2,2 =

∫
R

∣∣∣Γ(1 + ix)
∣∣∣2[ 2

∏
n 6=k
k=1

 x− x(1)2,k

(x(1)2,2 − x(1)2,k

]dx =
∫ ∞

−∞
πx

sin πx

 x− x(1)2,1

(x(1)2,2 − x(1)2,1

dx =
∫ ∞

−∞
πx

sin πx

 x− 1√
2

−
√

2

dx. (80)
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In order to determine the quadrature weights in Equations (79) and (80), we use Equations (71)
and (76) and Table 4 together with orthogonality, to obtain

ω
(1)
2,1 =

〈P1, P1〉W
2
(

1√
2

)2 =
2π Γ(n + 1) Γ(n + 2λ)

22n+2λ
,

ω
(1)
2,2 =

〈P1, P1〉W
2
(
− 1√

2

)2 =
2π Γ(n + 1) Γ(n + 2λ)

22n+2λ
.

(81)

Hence,∫
R

f (x) W(x; λ) dx =

(
2π Γ(n + 1) Γ(n + 2λ)

22n+2λ

)
f (x(1)2,1 ) + f (x(1)2,2 )

(
2π Γ(n + 1) Γ(n + 2λ)

22n+2λ

)
.

The case when λ = 1
2 : The computation of Gaussian nodes and weights can be done in a

similar manner.

Remark 5. For numerical computation of Gauss weights and nodes for an arbitrary weight function
using Matlab, see [43] and also [42].

4.4. Meixner-Pollaczek Polynomials as Solution for Cauchy Problem

It is shown in [12] that the Cauchy problem for the n-dimensional Schrödinger equa-
tion for a free particle

iψt + ∆ψ = 0

with

i
∂ψ

∂t
= Hψ, H = −∆ =

1
2

n

∑
s=1

(
as + a†

s

)2
, (82)

and the HamiltonianH takes the form

Hψ =

[
1
2

n

∑
s=1

(
−(1 + cos 2t)

∂2

∂x2
s
+ (1− cos 2t) x2

s

)
− i

2
sin 2t

n

∑
s=1

(
2xs

∂

∂xs
+ 1
)]

ψ,

the particular solution for Equation (82) is explained in terms of Meixner-Pollaczek polyno-
mials, which satisfies conditions in quantum mechanics (orthogonality and normalizability).
The result in [12] generalizes time-dependent simple harmonic motion oscillator and an-
gular momentum problem oscillator of quantum mechanics in a Cartesian and spherical
coordinate system.

5. Conclusions

By introducing a time variable to the Meixner–Pollaczek measure, we have found
certain interesting properties such as some recursive relations, moments of finite order,
concise hypergeometric formulae and orthogonality relation, certain analytic properties of
the zeros of the corresponding monic perturbed Meixner–Pollaczek polynomials. As prac-
tical applications, we have reproduced the scaled Toda molecule equation in Random
matrix theory, Fisher’s information with respect to some new parameter, and Gaussian-
type quadrature related to the perturbed Meixner–Pollaczek polynomials and also their
role as a solution to quantum oscillators.
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Appendix A

In this appendix, we provide the proof to Proposition 6 to aid the reader.

Appendix A.1. Proof for Proposition 6

Proof. The proof follows from orthogonality and the corresponding recurrence coefficients
for monic polynomials that are orthogonal with respect to the weight w(λ,ϕ)(x; t) given in
(8). Now, by considering the three-term recurrence relation in (29) and taking derivatives
of the coefficients in Equation (29) with respect to t, we have that

x
dQ(λ,ϕ)

n (x; t)
dt

=
dQ(λ,ϕ)

n+1 (x; t)
dt

+ α
(λ,ϕ)
n (t)

dQ(λ,ϕ)
n (x; t)

dt
+

dαn

dt
Q(λ,ϕ)

n (x; t) +
dβn

dt
Q(λ,ϕ)

n−1 + β
(λ,ϕ)
n

dQ(λ,ϕ)
n−1 (x; t)

dt
. (A1)

Multiplying Equation (A1) by Q(λ,ϕ)
n (x; t) and integrating with respect to the measure

w(λ,ϕ)(x; t) yields

dα
(λ,ϕ)
n

dt
ζ
(λ,ϕ)
n =

∫ dQ(λ,ϕ)
n (x; t)

dt
(xQn(x) w(λ,ϕ)(x; t) dx−

∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n+1 (x; t)
dt

w(λ,ϕ)(x; t)dx

− α
(λ,ϕ)
n

∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n (x; t)
dt

w(λ,ϕ)(x; t) dx− β
(λ,ϕ)
n

∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n−1 (x; t)
dt

w(λ,ϕ)(x; t)dx, (A2)

where we have used the orthogonality of
dQ(λ,ϕ)

n−1
dt

and Q(λ,ϕ)
n .

Again, employing the recurrence relation (29) and the orthogonality relation, (A2) is
equivalently given as

dαn

dt
ζ
(λ,ϕ)
n =

∫ dQ(λ,ϕ)
n (x; t)

dt

(
Q(λ,ϕ)

n+1 + α
(λ,ϕ)
n Q(λ,ϕ)

n + β
(λ,ϕ)
n Q(λ,ϕ)

n−1

)
w(λ,ϕ)(x; t) dx

−
∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n+1 (x; t)
dt

w(λ,ϕ)(x; t)dx− α
(λ,ϕ)
n

∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n (x; t)
dt

w(λ,ϕ)(x; t) dx

= β
(λ,ϕ)
n

∫
Q(λ,ϕ)

n−1 (x; t)
dQ(λ,ϕ)

n (x; t)
dt

w(λ,ϕ)(x; t)dx−
∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n+1 (x; t)
dt

w(λ,ϕ)(x; t) dx. (A3)

Now, if we consider the weight given in Equation (8) and if we differentiate the orthogonality
condition ∫

Q(λ,ϕ)
n (x; t)Q(λ,ϕ)

n±1 (x; t)w(λ,ϕ)(x; t) dx = 0

with respect to t, we obtain the following relations respectively:

∫
Q(λ,ϕ)

n−1 (x; t)
dQ(λ,ϕ)

n (x; t)
dt

w(λ,ϕ)(x; t)dx +
∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n−1 (x; t)
dt

w(λ,ϕ)(x; t)dx−
∫

xQ(λ,ϕ)
n (x; t)Q(λ,ϕ)

n−1 (x; t) w(λ,ϕ)(x; t)dx = 0, (A4)

∫
Q(λ,ϕ)

n+1 (x; t)
dQ(λ,ϕ)

n (x; t)
dt

w(λ,ϕ)(x; t)dx +
∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n+1 (x; t)
dt

w(λ,ϕ)(x; t)dx−
∫

xQ(λ,ϕ)
n+1 (x; t)Q(λ,ϕ)

n (x; t) w(λ,ϕ)(x; t)dx = 0. (A5)
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Now using iterated three -term recurrences, Equations (A4) and (A5) lead to

∫
Q(λ,ϕ)

n−1 (x; t)
dQ(λ,ϕ)

n (x; t)
dt

w(λ,ϕ)(x; t)dx =
∫

x Q(λ,ϕ)
n−1 (x; t)Q(λ,ϕ)

n (x; t)w(λ,ϕ)(x; t) dx = β
(λ,ϕ)
n ζ

(λ,ϕ)
n−1 . (A6)

and

∫
Q(λ,ϕ)

n (x; t)
dQ(λ,ϕ)

n+1 (x; t)
dt

w(λ,ϕ)(x; t)dx =
∫

xQ(λ,ϕ)
n+1 (x; t) Q(λ,ϕ)

n (x; t) w(λ,ϕ)(x; t) dx

= β
(λ,ϕ)
n+1 ζ

(λ,ϕ)
n . (A7)

Thus, using orthogonality, (A6) and (A7) into Equation (A3), we obtain the first equation
in (57).

Similarly, if we differentiate the normalization constant

ζ
(λ,ϕ)
n =

∫
Q(λ,ϕ)

n (x; t) w(λ,ϕ)(x; t) dx, where

(w(λ,ϕ)(x; t))′ = −xw(λ,ϕ)(x; t)

with the prime denoting differentiation with respect to x and if we use the orthogonality
relation and the recurrence relation, we find that

dζ
(λ,ϕ)
n
dt

= α
(λ,ϕ)
n ζ

(λ,ϕ)
n . (A8)

Now using (A8) and considering the derivative of β
(λ,ϕ)
n (t) with respect to t, we have that

dβ
(λ,ϕ)
n
dt

=
d
dt

 ζ
(λ,ϕ)
n

ζ
(λ,ϕ)
n−1

 =
1

ζ2
n−1

ζ
(λ,ϕ)
n−1

dζ
(λ,ϕ)
n
dt

−−ζ
(λ,ϕ)
n

dζ
(λ,ϕ)
n−1
dt


=

1
ζ2

n−1

(
ζ
(λ,ϕ)
n−1 α

(λ,ϕ)
n ζ

(λ,ϕ)
n − ζ

(λ,ϕ)
n α

(λ,ϕ)
n−1 ζ

(λ,ϕ)
n−1

)
= α

(λ,ϕ)
n β

(λ,ϕ)
n − α

(λ,ϕ)
n−1 β

(λ,ϕ)
n ,

which yields the second equation in Equation (57) and this completes the proof.

References
1. Koekoek, R.; Lesky, P.A.; Swarttouw, R.F. Hypergeometric Orthogonal Polynomials and Their q-Analogues; Springer: Berlin/Heidelberg,

Germany, 2010.
2. Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) DLMF Handbook of Mathematical Functions; Cambridge University

Press: Cambridge, UK, 2010.
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