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Abstract: Developing new and efficient numerical integration techniques is of great importance in
applied mathematics and computer science. Among the variety of available methods, multistep ODE
solvers are broadly used in simulation software. Recently, semi-implicit integration proved to be an
efficient compromise between implicit and explicit ODE solvers, and multiple high-performance
semi-implicit methods were proposed. However, the computational efficiency of any ODE solver can
be significantly increased through the introduction of an adaptive integration stepsize, but it requires
the estimation of local truncation error. It is known that recently proposed extrapolation semi-implicit
multistep methods (ESIMM) cannot operate with existing local truncation error (LTE) estimators,
e.g., embedded methods approach, due to their specific right-hand side calculation algorithm. In
this paper, we propose two different techniques for local truncation error estimation and study
the performance of ESIMM methods with adaptive stepsize control. The first considered approach
is based on two parallel semi-implicit solutions with different commutation orders. The second
estimator, called the “double extrapolation” method, is a modification of the embedded method
approach. The introduction of the double extrapolation LTE estimator allowed us to additionally
increase the precision of the ESIMM solver. Using several known nonlinear systems, including stiff
van der Pol oscillator, as the testbench, we explicitly show that ESIMM solvers can outperform both
implicit and explicit linear multistep methods when implemented with an adaptive stepsize.

Keywords: differential equations; semi-implicit methods; multistep method; extrapolation; adap-
tive stepsize

1. Introduction

Many real-world processes can be mathematically described by systems of ordinary
differential equations. One of the common ways to implement the solution of ODEs
in discrete computers is numerical integration. The increasing complexity and scale of
simulated systems requires a corresponding increase in the efficiency of ODE solvers. Thus,
the development of novel numerical integration methods is of great interest in applied
mathematics. In the last decade, many highly efficient solvers were proposed, including
Falkner-type block methods [1,2], symmetric multistep methods [3], Störmer–Cowell
methods [4], and single-step composition schemes [5]. Great attention is usually paid to the
convergence and stability of designed methods, especially in the case of partial differential
equations solvers [6]. Long-term simulations are also of great interest in the field, and many
highly efficient and stable multistep schemes were developed recently [7,8]. The latest
studies show that semi-implicit methods provide a reasonable compromise between highly
stable implicit solvers and computationally efficient explicit solvers [9]. Moreover, being
implemented in composition [5] and splitting [10] schemes, semi-implicit methods possess
some properties of geometric integrators [11], e.g., time-reversibility and symmetry [9].
It is also possible to construct highly efficient single-step ODE solvers using the Aitken–
Neville extrapolation [12]. In paper [13], the authors proposed a novel extrapolation semi-
implicit multistep method (ESIMM), which combines the strengths of multistep schemes
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with the benefits of the extrapolation solvers, using the semi-implicit method as a basic
integrator. It has been shown that ESIMM methods outperform classical multistep solvers,
such as Adams–Bashforth (AB), Adams–Moulton (AM) and backward differentiation
formula (BDF) being implemented with a fixed integration stepsize. However, the most
advanced approaches for solving ODEs usually involve adaptive stepsize techniques [1,4].
Conventional local truncation error (LTE) estimators, such as the embedded methods
approach [14], appeared to be barely suitable for ESIMM due to its specific method of
right-hand side (RHS) calculation. Each step of the ESIMM solver in the variable–stepsize
version requires recalculating all extrapolation coefficients due to their explicit dependency
on the stepsize values used in previous iterations. Therefore, a new efficient LTE estimator
and step control algorithm are needed to perform the ESIMM with an adaptive stepsize
efficiently. In this paper, we propose two new techniques of adaptive stepsize control
for ESIMM solvers. We develop a formula for recalculating the method’s coefficients
for an arbitrary sequence of stepsizes and propose two algorithms for local truncation
error estimation. The first LTE estimator is based on the difference between two parallel
solutions with different commutation orders [15] and the second, more efficient approach
uses the double-extrapolation technique. Simulating chaotic systems is of great interest
in applied mathematics due to the complex behavior and high sensitivity of their finite-
difference models to the truncation error accumulation. Thus, we have chosen Rössler [16],
Dadras-Momeni [17], Nose-Hoover [18–20] and van der Pol nonlinear systems [21] as test
ODEs. In several computational experiments, we have shown that the ESIMM methods
with adaptive stepsizes outperform both explicit and implicit linear multistep solvers,
while simulating dissipative and conservative chaotic systems, as well as stiff nonlinear
equations. The rest of the paper is organized as follows: in Section 2, the basic architecture
of ESIMM methods is recalled, and a formula to recalculate the coefficients of the method
is given. Section 3 introduces the novel LTE estimators and step control technique for
ESIMM methods and provides the experimental estimation of the computational efficiency
of the proposed method using a test set of dynamical systems. Finally, in Section 4, some
conclusions are given.

2. Materials and Methods

Let us revisit the general idea of ESIMM solvers. These multistep methods use
an extrapolation of the values obtained on previous solution steps together with newly
calculated values, combining the multistep and extrapolation approaches to increase the
accuracy order of the resulting scheme.

Let H1 be a stepsize used to calculate the solution for IVP of order p at the point x(n+1)
from the point x(n). Then, the sequence of local error terms e is as follows:

x
(

t(n+1)

)
= x(n+1) + Hp+1

1 ep+1 + Hp+2
1 ep+2 + . . . (1)

In order to obtain the solution at the point x(n+1) by calculating the increment from
the point x(n−1) we will use the step value H2 = H1 + Hn, where Hn is a step value which
steps from point x(n−1) to x(n) (see Figure 1).
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Figure 1. The basic principle of choosing a stepsize in the ESIMM method. Figure 1. The basic principle of choosing a stepsize in the ESIMM method.

Now the sequence of local error terms can be calculated as follows:

x
(

t(n+1)

)
= x(n+1) + Hp+1

2 ep+1 + Hp+2
2 ep+2 + . . . (2)
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The further algorithm is described in [13] and generally follows the idea of the extrap-
olation methods [11,22] in multistep form.

The main idea of the ESIMM method is to use the solution with the stepsize H1 (denote
it as T1) and the solution at the same point with the stepsize H2 (denote it as T2) in the
following way:

x(n+1) = k1T1 + k2T2. (3)

Coefficients k1 and k2 are chosen in accordance with general extrapolation principles,
taking into account the ratio of truncation errors in adjacent stages so that the following
conditions are satisfied:  k1 + k2 = 1

k1 +
Hp+1

2

Hp+1
1

k2 = 0
, (4)

where H1 and H2 are the step values used to calculate the solutions at point x(n+1), x(n)
and x(n−1), respectively. Figure 2 illustrates the general scheme of the ESIMM method of
order 3.
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Following the same logic, one can describe the computational process for ESIMM of
order 4 (Figure 3), where Tij represents a component of the extrapolation table on the i-th
stage on the j-th line, and ku

ij is a coefficient by the first or the second term, respective to the
value of u, which can be either 1 or 2.
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and (2), the coefficients are as follows:

k12 =

(
k1

12
k2

12

)
;

(
1 1

Hp+1
1 Hp+1

2

)
k12 =

(
1
0

)
;

k22 =

(
k1

22
k2

22

)
;

(
1 1

Hp+1
1 Hp+1

3

)
k22 =

(
1
0

)
.
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After completing the first extrapolation step, the equations for two of our approxima-
tions for the point x(tn+1), which we will call T12 and T22, are as follows:

T12 = xn+1 + (k1
12Hp+2

1 + k2
12Hp+2

2 )ep+2 + . . . ;
T22 = xn+1 + (k1

22Hp+2
1 + k2

22Hp+2
3 )ep+2 + . . .

(6)

The vector form can be used to rewrite those expressions as follows:

T12 = xn+1 +
(
k1

12k2
12
)( Hp+2

1
Hp+2

2

)
ep+2 + . . . ;

T22 = xn+1 +
(
k1

22k2
22
)( Hp+2

1
Hp+2

3

)
ep+2 + . . .

(7)

Using a similar approach, one can obtain the final equations for k12 and k14:

k12 =

(
k1

13
k2

13

)
;

 1 1

kT
12

(
Hp+2

1
Hp+2

2

)
kT

22

(
Hp+2

1
Hp+2

3

) k13 =

(
1
0

)
;

k14 =

(
k1

22
k2

22

)
;


1 1

kT
13
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k14 =

(
1
0

)
.

(8)

Using this technique, one can obtain extrapolation coefficients for a “full” variation of
the ESIMM method, which requires solving the matrix equation at every step. It is possible
to significantly reduce the number of calculations using the so-called “short” version of
the same method, previously described in [13]. We will use the “short” ESIMM method
throughout this paper.

Let us modify a short ESIMM method to make it suitable for implementation with
a variable stepsize by interpreting our step values as the following system of linear alge-
braic equations:

xn+1 =
s

∑
i = 1

kiTi. (9)

Considering the Taylor expansion for ki*x(tn+1) through Ti where Ti represents the first
components of the extrapolation table, we obtain coefficients for the short version of the
ESIMM method of the desired order:

k1x(tn+1) = k1T1 + k1Hp+1
1 ep+1 + k1Hp+2

1 ep+2 + . . . + k1Hp+s
1 ep+s

k2x(tn+1) = k2T2 + k2Hp+1
2 ep+1 + k2Hp+2

2 ep+2 + . . . + k2Hp+s
2 ep+s

. . .
ksx(tn+1) = ksTs + ksHp+1

s ep+1 + ksHp+2
s ep+2 + . . . + ksHp+s

s ep+s

(10)

Keeping in mind that that the sum of coefficients ki should equal 1, while the sum of
all the other terms by any power of H equals zero, one can write the following system of
algebraic equations:

1 1 1 . . . 1
Hp+1

1 Hp+1
2 Hp+1

3 . . . Hp+1
s

Hp+2
1 Hp+2

2 Hp+2
3 . . . Hp+2

s
. . . . . . . . . . . . . . .

Hp+s
1 Hp+s

2 Hp+s
3 . . . Hp+s

s




k1
k2
k3
. . .
ks

 =


1
0
0

. . .
0

 (11)
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This approach can be used for obtaining coefficients of the ESIMM method of an
arbitrary accuracy order and proved to be efficient while using a symmetric basic method.
In the current study, we use the semi-implicit self-adjoint CD method [9,22] of order 2 as a
basic method for the ESIMM solver.

The important note here is that one needs to recalculate all extrapolation coefficients on
each step of ESIMM while implementing it with variable stepsizes because these coefficients
are directly influenced by the step values used in previous iterations. Thus, we recommend
using the “short” version of the ESIMM method in practical applications because it is more
computationally efficient, provides fewer overhead calculations, and maintains the same
high accuracy as the “full” version.

3. Results

In this section, we propose two algorithms for estimating the local truncation error
while controlling the stepsize of the ESIMM solver. Then, we analyze the performance
of the extrapolation semi-implicit multistep (ESIMM) method with a variable stepsize
in comparison with classical multistep methods, including Adams–Bashforth, Adams–
Moulton and Backward Differentiation Formula. In our study, we use the Dormand-Prince
8 (DOPRI8) method [23] to obtain the reference solution. All experiments were conducted
using NI LabVIEW 2020 environment with double floating-point data precision.

3.1. Rössler Attractor

This dissipative chaotic system was proposed by Otto E. Rössler [16] and can be
described as follows: 

dx
dt = −y − z
dy
dt = x + ay
dz
dt = b + z(x − c)

, (12)

where a, b and c are system parameters. The basic semi-implicit CD method for the system
is as follows:

yn+0.5 = yn + H
2 (xn + ayn);

zn+0.5 = zn + H
2 (b + znxn − czn);

xn+1 = xn + H(−yn+0.5 − zn+0.5);

zn+1 =
zn+0.5+ H

2 b
1− H

2 xn+1+c H
2

;

yn+1 =
yn+0.5+ H

2 xn+1

1−a H
2

.

(13)

We carried out experiments with the following parameter values: a = 0.2, b = 0.2,
c = 5.7. The timing parameters and initial conditions are given in Table 1.

Table 1. Initial conditions and simulation parameters for experiments with the Rössler system.

Order of Accuracy 3 4 5

Initial Conditions (0.95; 0; −1.5) (3; 0; −0.3) (0.35; 0; −2)

Simulation Time (s.) 15

Step Values (s.)

Minimum 0.001

Starting 0.005

Maximum 1

To implement the adaptive stepsize control, one needs to estimate the local truncation
error (LTE) of the method. The first LTE estimator for the ESIMM method considered in this
study is based on the difference between two parallel solutions with different commutation
orders, generally following the idea used in [15] to create new metrics for quantifying
chaotic dynamics.
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The term “commutations order” basically means changing the order of the state
variables calculation, as shown in Equation (14), where a second possible commutation of
CD method for the Rössler system is given:

zn+0.5 = zn + H
2 (b + znxn − czn);

yn+0.5 = yn + H
2 (xn + ayn);

xn+1 = xn + H
(
−yn+0.5 − zn+0.5);

yn+1 =
yn+0.5+ H

2 xn+1

1−a H
2

;

zn+1 =
zn+0.5+ H

2 b
1− H

2 xn+1+c H
2

.

(14)

Figure 4 shows the scheme of the LTE evaluation using two different commutations of
the basic CD method executed in parallel.
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Figure 4. Block diagram of the commutations-based LTE estimator. Φ1
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commutations of a basic CD method.

The local truncation error is then estimated as the difference between ESIMM solutions
obtained with basic methods (13) and (14). The step control law is as follows [14]:

Hn+1 = Hn

∣∣∣ Tol
d(xn)

∣∣∣ 1
m
+ O(Hn), (15)

where m is the accuracy order of the scheme, Tol is the desired tolerance value and d(xn) is
a local error between two solutions.

Figure 5 illustrates the behavior of the stepsize in the ESIMM scheme with the
commutation-based LTE estimator being compared with the explicit Adams–Bashforth
linear multistep method with a standard stepsize control algorithm [14].
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One can see from Figure 5 that the ESIMM solver demonstrates a sharper curve of the
stepsize dynamics graph, but at the same time, it tends to use higher step values, resulting
in fewer RHS function calculations. It follows from the fewer number of steps required
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for obtaining a solution with ESIMM. Although these results were already promising, we
additionally developed an alternative step control approach to further increase the ESIMM
solver efficiency.

The second proposed technique for local truncation error estimation derives from the
embedded method approach, which is broadly used in single-step extrapolation solvers and
embedded Runge–Kutta methods [14]. To estimate the local truncation error, a difference
between two basic methods with the same commutation orders but with different stepsizes
was used. One solution was obtained using the step value H and the other contains a
composition of two consequent steps with H/2. Taking into account that the basic method is
of order 2, the local truncation error demonstrates a quadratic dependence from the chosen
integration step. Both solutions are extrapolated to increase the overall accuracy as follows:

xn+1 =
4PH/2

n+1 − PH
n+1

3
, (16)

where PH
n+1 and PH/2

n+1 are two solutions found with step sizes of H and H/2, respectively. We
called this approach “double extrapolation” because the ESIMM method already includes
one extrapolation procedure in the computation algorithm. After acquiring two ESIMM
solutions, one can use the difference between them as the estimation of LTE and calculate

the new stepsize value using Equation (15) with d(xn) =

√(∣∣∣x(n+1) − PH
n+1

∣∣∣2). Figure 6

illustrates the modification of the basic method in the ESIMM scheme, incorporating a
double extrapolation estimator. Figure 7 illustrates the benefits of the double extrapolation
approach in the form of performance plots obtained during the Rössler system simulation.
The performance plots show the dependence between the achieved precision and the real
program execution time needed to obtain the solution with the desired tolerance. The
execution time was averaged from 100 simulation runs. The simulation parameters were
set in accordance with Table 1.

As is shown in Figure 7, using the double-extrapolation technique results in a signifi-
cant increase in the calculation speed on higher tolerance values and a slight improvement
in the accuracy of the solution on low tolerances. Note that the stepsize curve in Figure 7b is
smoother than that in Figure 7a. Figure 8 represents the performance plots for all methods
under investigation of accuracy order 3 and 5 while solving the Rössler system.
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As is shown in Figure 7, using the double-extrapolation technique results in a 
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Figure 7. (a) Step behavior using commutation-based LTE estimator; (b) step behavior with double extrapolation estimator.
(c) The comparison of ESIMM solver with commutation-based LTE estimator vs. ESIMM with the double-extrapolation LTE
estimator. The precision gain can be clearly observed; (d) comparison of AB, AM and BDF methods with two proposed
versions of the adaptive ESIMM algorithm.
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One can see from Figure 8 that ESIMM methods with adaptive stepsizes appear to be
more computationally efficient than other multistep methods under investigation, namely,
Adams–Bashforth, Adams–Moulton and Backward Differentiation Formula. The observed
differences in performance with explicit methods, such as Adams–Bashforth solver, become
less noticeable with the increase in the accuracy order, but are still significant in terms of
accuracy and calculation speed on lower tolerance values. This fact can be explained by the
extra RHS calculations introduced to the ESIMM scheme by both proposed LTE estimation
algorithms. However, the higher stability of ESIMM methods still provides some superior-
ity over Adams–Bashforth solver on lower tolerance values. Let us consider some other test
dynamical systems to verify the obtained results in a series of computational experiments.

3.2. Dadras–Momeni Attractor

This chaotic system was described by S. Dadras and H.R. Momeni [11] and can be
written as the following initial value problem:

dx
dt = y − ax + byz
dy
dt = cy − xz + z
dz
dt = dxy − mz

, (17)

where a, b, c, d and m are system parameters. The basic semi-implicit CD solver for the
system is formulated as follows:

xn+0.5 =
xn+ H

2 (yn+bynzn)

1+a H
2

;

zn+0.5 =
zn+ H

2 dxn+0.5yn

1+ H
2 m

;

yn+0.5 =
yn+ H

2 (−xn+0.5zn+0.5+zn+0.5)
1− H

2 c
;

yn+1 = yn+0.5 + H
2 (cyn+0.5 − xn+0.5zn+0.5 + zn+0.5);

zn+1 = zn+0.5 + H
2 (dxn+0.5yn+1 − mzn+0.5);

xn+1 = xn+0.5 + H
2 (y

n+1 − axn+0.5 + byn+1zn+1).

(18)

We carried out experiments with the Dadras–Momeni system using the following
parameter values: a = 3, b = 2.7, c = 4.7, d = 2, m = 9. Other simulation parameters are given
in Table 2.

Table 2. The initial conditions and simulation parameters for Dadras–Momeni system.

Order of Accuracy 3 4 5

Initial Conditions (1; 0; −1)

Simulation Time (s.) 10

Step Values (s.)

Minimum 10−10

Starting 0.0001

Maximum 1

One can see from Figure 9 that the efficiency of the ESIMM methods decreases with
the increase in accuracy order due to the necessity of calculating additional RHS functions
per order. Nevertheless, the ESIMM solver with the double-extrapolation LTE estimator
provides the best computational efficiency among the investigated methods. It is of certain
interest to estimate the performance of the proposed multistep methods while simulating a
conservative nonlinear system.
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3.3. Nose–Hoover Attractor

This conservative chaotic system was proposed by S. Nose and W.G. Hoover [18–20]
and can be formulated as follows: 

dx
dt = ay
dy
dt = −x + yz
dz
dt = d − y2

, (19)

where a and d are system parameters. The basic semi-implicit algorithm for the system is
as follows:

yn+0.5 =
yn−xn H

2
1− h

2 zn ;

zn+0.5 = zn + H
2 (d − yn+0.5yn+0.5);

xn+1 = xn + Hayn+0.5;
zn+1 = zn+0.5 + H

2 (d − yn+0.5yn+0.5);
yn = yn+0.5 + H

2 (y
n+0.5zn+1 − xn+1).

(20)

We carried out the experiments with the Nose–Hoover system using the following set
of parameter values: a = 1, d = 1. The rest of the simulation parameters are given in Table 3.
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Table 3. The initial conditions and simulation parameters for Nose–Hoover system.

Order of Accuracy 3 4 5

Initial Conditions (0.1; 0; −0.1) (0.1; 0; −0.1) (0.1; 0; −0.1)

Simulation Time (s.) 15 25

Step Values (s.)

Minimum 10−5

Starting 0.001

Maximum 1

From Figure 10, one can see that while simulating a conservative system, ESIMM
methods maintain good performance even in the case of higher-order schemes. This fact
can possibly be explained by the geometric properties of the basic CD method, which
provides extra precision while solving conservative ODEs. However, the proposed step
control algorithms do not possess energy-preserving properties, and this phenomenon still
is to be investigated. Note that other linear multistep methods under investigation appear
to be much less accurate compared with results obtained for dissipative systems, while
ESIMM gives promising results in both cases.
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3.4. Van der Pol System

Considering the possibility that the abovementioned differences in the methods’
performance can originate from the varied stiffness of the previously studied systems, we
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considered a well-known stiff dynamical system as a test ODE. This nonlinear oscillator is
a traditional testbench for numerical integration methods and was proposed by Balthasar
van der Pol [21]: {

dx
dt = y
dy
dt = m(1 − x2)y − x

, (21)

where m is a parameter that defines the stiffness of the system. The basic semi-implicit CD
algorithm for the van der Pol oscillator is as follows:

yn+0.5 = yn + H
2 (m(1 − xnxn)yn − xn);

xn+1 = xn + Hyn+0.5;

yn+1 =
yn+0.5− H

2 xn+1

1− H
2 m(1−xn+1xn+1)

.
(22)

Experiments were carried out with m = 55 which corresponds to the medium-stiff
scenario. The rest of the simulation parameters are presented in Table 4.

Table 4. The initial conditions and simulation parameters for van der Pol system.

Order of Accuracy 3 4 5

Initial Conditions (0.1; 0) (0.9; −0.2) (0.9; −0.2)

Simulation Time (s.) 15 10

Step Values (s.)

Minimum 10−10

Starting 0.001

Maximum 1 0.35 0.4

One can see from Figure 11 that the proposed adaptive ESIMM methods perform
better than the other investigated multistep methods while simulating the stiff nonlinear
system. The excellent numerical stability of the ESIMM scheme, analytically determined
in [13], resulted in a better overall performance in the stiff system case. Moreover, it is
possible to further increase the stability of the ESIMM solver by changing the complexity
of the basic method and, therefore, achieving a perfect balance between the performance
and stability of the solver.
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4. Conclusions and Discussion

This study considered two possible techniques to implement extrapolation semi-
implicit multistep ODE solvers with adaptive stepsizes. The first method, which uses the
idea of estimating the local truncation error as a difference between two parallel solutions
with different string commutations, proven to be a reliable and computationally cheap step
control algorithm but, in some cases, it failed to outperform explicit multistep methods. The
second approach, named the double extrapolation estimator, is based on a more traditional
technique of LTE evaluation, which is similar to the embedded Runge–Kutta methods or
embedded LTE estimators in extrapolation solvers. A double extrapolation ESIMM solver
assumes the parallel solution consisting of the composition of two basic methods performed
with a half-step. This approach allowed us to introduce an extra extrapolation procedure
per stage to the ESIMM method, thereby increasing its accuracy. The double extrapolation
technique not only allowed estimating the local error more precisely but also additionally
increased the overall performance of the scheme. The numerical experiments included the
simulation of four non-linear ODEs: the dissipative Rössler and Dadras–Momeni systems,
the conservative Nose–Hoover system and the classical stiff van der Pol stiff oscillator.
ESIMM methods with the proposed adaptive step control techniques appeared to be the
most efficient solvers among the tested integration schemes. Further studies will be devoted
to the investigation of ESIMM methods with different basic methods, e.g., semi-implicit
SED solver, semi-implicit midpoint methods and symmetrized explicit midpoint method.
We will also consider the possibility of applying the proposed step control techniques to
some other numerical methods, including PDE solvers.
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